×
17.05.2023
223.018.64a0

Результат интеллектуальной деятельности: Импульсный лазерный ракетный двигатель для систем ориентации, стабилизации и коррекции орбитальных космических летательных аппаратов с малой массой

Вид РИД

Изобретение

Аннотация: Изобретение относится к космическим летательным аппаратам и их управляющим устройствам, в частности, для ориентации и стабилизации аппаратов в пространстве. Импульсный лазерный ракетный двигатель для систем ориентации, стабилизации и коррекции орбитальных космических летательных аппаратов с малой массой содержит источник лазерного излучения, создающий лазерные импульсы, фокусирующую линзу, предварительную камеру, бак для хранения рабочего тела под давлением, электроклапан, регулирующий подачу рабочего тела в предварительную камеру, канал произвольного сечения, соединяющий бак с электроклапаном, цилиндрическую камеру и заднюю стенку цилиндрической камеры. Цилиндрическая камера расположена перпендикулярно к предварительной камере. При этом фокусирующая линза расположена под углом к предварительной камере для фокусирования лазерного импульса на задней стенке цилиндрической камеры. Повышается удельный импульс двигателя лазерного ракетного двигателя. 1 ил.

Изобретение относится к космическим летательным аппаратам и их управляющим устройствам, в частности, для ориентации и стабилизации аппаратов в пространстве.

Известно устройство «Двигатель системы ориентации и стабилизации космических летательных аппаратов» (патент РФ №2281890, МПК B64G 1/34 (2006.01), опубликовано 20.08.2006). Устройство состоит из корпуса, рабочего тела в виде вещества, сублимирующего при нагревании, электронагревателей и холодильников. Устройство содержит герметичный корпус, внутри которого размещены рабочее тело и электронагреватели, а на торцах корпуса расположены холодильники. Устройство работает следующим образом: при включении электронагревателя происходит нагрев рабочего тела, оно переходит в газообразное состояние и распределяется внутри герметичного корпуса. Включение холодильника на противоположном торце корпуса создает больший градиент температур по длине корпуса, при этом рабочее тело будет конденсироваться преимущественно на холодной части корпуса, создавая больший момент сил. Если необходимо изменить направление момента сил, то нужно включить противоположную пару электронагреватель - холодильник. При данной конструкции двигателя система электронагреватель-холодильник включается и выключается попарно.

Недостатком данного решения является повышенные энергозатраты двигателя вследствие применения нагревателя и холодильника, что влияет на габариты и массу двигателя, а также низкая надежность двигателя вследствие выполнения условий обеспечения герметичности корпуса для осуществления рабочего процесса.

Известно техническое решение «LASER-ABLATIVE THRUSTER MICROLAS», приведенное в публикации Overview of Laser Ablation Micropropulsion Research Activities at DLR Stuttgart (Hans-Albert Eckel, Stefan Scharring, Stephanie Karg, Christian Illg, and Johannes Peter, International High Power Laser Ablation and Beamed Energy Propulsion Symposium (HPLA/BEP (2014), 21-25 апреля 2014 (https://core.ac.uk/download/pdf/31010835.pdf). Устройство состоит из импульсного лазера, электрооптической линзы с изменяющимся фокусным расстоянием, электрооптическим устройством для плоскостного продольного управления лазерным лучом, f-theta линзы с зафиксированным фокусным расстоянием, плоским отражателем (зеркало) и металлической мишени. Устройство работает следующим образом: луч импульсного лазера проходит через электрооптическую линзу и поступает в электрооптическое устройство, откуда выходит через f-theta линзу, поступает на отражатель и фокусируется на металлической мишени. Недостатком данного решения является сложность наведения и получения лазерного пятна необходимого размера из-за наличия отражающего зеркала, а также размеры устройства, затрудняющее применение в системах стабилизации и ориентации для малых космических аппаратов.

f-theta линза – это линза, позволяющая сфокусировать лазерный луч на заданном (фокусном) расстоянии.

Наиболее близким по технической сущности является устройство «Лазерно-плазменный микродвигатель» (патент РФ № 139344, МПК F02K 1/00 (2006.01), опубликовано 20.04.2014). Устройство состоит из источника лазерного излучения, системы ввода излучения в световод, световод, механизма подачи световода в сопловую камеру, вакуумного уплотнения, сопловой камеры, приосевой трубки держателя конца световода. Устройство работает следующим образом: лазерное излучение от источника подается через систему ввода излучения в световод, где, взаимодействуя на выходе из световода с поглощающим излучение торцом, инициирует оптический пробой материала выходного конца световода как рабочего тела в сопловой камере с формированием приосевой газово-плазменной струи, обеспечивающей передачу стенкам сопловой камеры противоположно направленного реактивного импульса отдачи. Для обеспечения квазинепрерывного режима работы двигателя генерация импульсов излучения лазера согласуется со скоростью работы механизма подачи световода в сопловую камеру для восстановления исходного положения поглощающего излучение торца световода над срезом приосевой трубки держателя конца световода.

Недостатком данного решения является усложнение конструкции, заключающаяся в наличии вакуумного уплотнения, сложность практической реализации устройства в связи с высокими требованиями к материалу торца световода, который должен поглощать энергию источника лазерного излучения, другим существенным недостатком является износ торца в связи с испарением материала, а также сложность использования в двигателях ориентации КЛА с малой массой вследствие того, что рабочий процесс протекает при условии организации квазинепрерывного режима подачи лазерных импульсов.

Технической проблемой изобретения является создание импульсного лазерного ракетного двигателя для ориентации и стабилизации орбитальных космических летательных аппаратов с малой массой

Техническим результатом является повышение удельного импульса двигателя лазерного ракетного двигателя для ориентации, стабилизации и коррекции орбитальных космических летательных аппаратов с малой массой, уменьшение расхода рабочего тела, снижение массогабаритных характеристик и упрощение условий размещения на борту малого космического аппарата.

Технический результат достигается тем, что дополнительно содержит фокусирующую линзу, предварительную камеру, бак, электроклапан, канал произвольного сечения, цилиндрическую камеру и заднюю стенку цилиндрической камеры; цилиндрическая камера расположена перпендикулярно к предварительной камере.

Предлагаемое устройство состоит из источника лазерного излучения (1), создающего лазерные импульсы, фокусирующей линзы (2), через которую проходят лазерные импульсы и фокусируются на задней стенке цилиндрической камеры (8), где возникают импульсные приповерхностные оптические разряды и которая расположена под углом к предварительной камере (3). В баке (5) хранится рабочее тело под давлением, которое с помощью канала произвольного сечения (7) поступает в электроклапан (4), регулирующего подачу рабочего тела в предварительную камеру (3). Рабочее тело из предварительной камеры (3) за счет высокого давления стремится в окружающую среду через цилиндрическую камеру (6), создавая область внутри цилиндрической камеры (6), заполненной рабочим телом. В момент возникновения импульсного оптического приповерхностного разряда в данной области у рабочего тела увеличивается внутренняя энергия и повышается температура, вследствие чего рабочее тело разгоняется и вылетает из цилиндрической камеры (6), создавая импульс тяги порядка нескольких десятков мкНс для стабилизации орбитального космического летательного аппарата с малой массой. Создаваемый лазерным источником и фокусирующийся при помощи линзы на задней стенке цилиндрической камеры импульсный приповерхностный оптический разряд обладает высокой температурой (в точке разряда температура достигает нескольких сотен тысяч градусов и быстро убывает до десятков тысяч на границе разряда с окружающей средой). При возникновении на задней стенке цилиндрической камеры импульсного приповерхностного оптического разряда происходит нагрев рабочего тела до высоких температур. Благодаря этому газ приобретает большую температуру и увеличивается внутренняя энергия, вследствие чего достигается высокая скорость истечения из цилиндрической камеры, а скорость истечения оценивается параметром удельного импульса. Таким образом возможно использовать небольшое количество рабочего тела за счет импульсного приповерхностного оптического разряда. Преимущество импульсного приповерхностного оптического разряда заключается в возможности создания разряда в условиях низкого давления, когда требуется высокая плотность мощности (порядка 1012 Вт/см2) благодаря наличию, например, металлической поверхности вследствие наличия паров вещества на металлической поверхности, где концентрации электронов достаточно для возникновения импульсного приповерхностного оптического разряда. Снижение массогабаритных характеристик достигается за счет применения компактного лазера (масса 1 кг, размер 25 см х 15 см х 15 см), способного обеспечить импульсный режим работы лазерного источника.

Импульсный лазерный ракетный двигатель для систем ориентации, стабилизации и коррекции орбитальных космических летательных аппаратов с малой массой представлен на фиг. 1.

Пример реализации

В баке под давлением 13,61 МПа хранится рабочее тело (воздух). При открытом положении электроклапана воздух из бака через трубопровод поступает в предварительную камеру. Источник лазерного излучения LQ529B с энергией 0,35 Дж, длительностью импульса 10 нс и длиной волны 1064 нм создает лазерный импульс, проходящий через фокусирующую линзу с фокусным расстоянием 7 см, и образует импульсный оптический приповерхностный разряд на поверхности цилиндрической камеры, выполненной из алюминия. В момент поступления воздуха в цилиндрическую камеру происходит импульсный оптический приповерхностный разряд, вследствие чего воздух приобретает температуру до 900000 К и вылетает из цилиндрической камеры диаметром 3 мм и длиной 12 мм, создавая импульс тяги 17 мкНс.

Импульсный лазерный ракетный двигатель для систем ориентации, стабилизации и коррекции орбитальных космических летательных аппаратов с малой массой, состоящий из источника лазерного излучения, создающего лазерные импульсы, отличающийся тем, что дополнительно содержит фокусирующую линзу, предварительную камеру, бак для хранения рабочего тела под давлением, электроклапан, регулирующий подачу рабочего тела в предварительную камеру, канал произвольного сечения, соединяющий бак с электроклапаном, цилиндрическую камеру и заднюю стенку цилиндрической камеры, цилиндрическая камера расположена перпендикулярно к предварительной камере, при этом фокусирующая линза расположена под углом к предварительной камере для фокусирования лазерного импульса на задней стенке цилиндрической камеры.
Импульсный лазерный ракетный двигатель для систем ориентации, стабилизации и коррекции орбитальных космических летательных аппаратов с малой массой
Импульсный лазерный ракетный двигатель для систем ориентации, стабилизации и коррекции орбитальных космических летательных аппаратов с малой массой
Источник поступления информации: Роспатент

Показаны записи 1-5 из 5.
10.06.2013
№216.012.490c

Способ организации рабочего процесса в лазерном ракетном двигателе и лазерный ракетный двигатель

Изобретение относится к реактивным двигателям летательных аппаратов, преимущественно орбитальных и аэрокосмических аппаратов. Способ включает подачу в камеру поглощения газообразного рабочего тела, создание в ней оптического плазменного ядра, фокусирования его через газодинамическое окно и...
Тип: Изобретение
Номер охранного документа: 0002484280
Дата охранного документа: 10.06.2013
10.08.2015
№216.013.6b50

Лазерный ракетный двигатель (варианты)

Изобретение относится к реактивным двигателям летательных аппаратов, преимущественно орбитальных и аэрокосмических аппаратов. Технический результат - повышение КПД, удельного импульса и ресурса работы лазерного ракетного двигателя. Лазерный ракетный двигатель (ЛРД) (вариант 1) содержит систему...
Тип: Изобретение
Номер охранного документа: 0002559030
Дата охранного документа: 10.08.2015
26.08.2017
№217.015.e534

Способ воспламенения топливной смеси в двигателе внутреннего сгорания лазерным оптическим разрядом и авиационная лазерная свеча зажигания

Изобретение относится к области авиационного двигателестроения, а конкретно к авиационным свечам зажигания, в которых для поджига топливной смеси «керосин + воздух» используется импульсный оптический разряд, в котором энергия лазерного излучения концентрируется в заранее заданном фокусе F....
Тип: Изобретение
Номер охранного документа: 0002626465
Дата охранного документа: 28.07.2017
04.07.2018
№218.016.6a32

Способ расчета пластической деформации и остаточного ресурса газотермического покрытия

Изобретение относится к механическим испытаниям газотермических покрытий, а конкретно касается определения пластических деформаций в различных диапазонах нагрузок. Сущность: осуществляют нагружение образца с газотермическим покрытием, расположенного на опорах покрытием вниз, статической...
Тип: Изобретение
Номер охранного документа: 0002659620
Дата охранного документа: 03.07.2018
21.05.2023
№223.018.6955

Импульсный лазерный ракетный двигатель для систем ориентации, стабилизации и коррекции низкоорбитальных космических летательных аппаратов с малой массой

Изобретение относится к космическим летательным аппаратам и их управляющим устройствам, в частности, для ориентации и стабилизации аппаратов в пространстве. Импульсный лазерный ракетный двигатель содержит источник лазерного излучения, компрессор, трубопровод произвольного сечения, ресивер,...
Тип: Изобретение
Номер охранного документа: 0002794911
Дата охранного документа: 25.04.2023
+ добавить свой РИД