×
16.05.2023
223.018.6280

Результат интеллектуальной деятельности: ПОЖАРОБЕЗОПАСНЫЙ МАГНИЕВЫЙ ЛИТЕЙНЫЙ СПЛАВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к литейным сплавам на магниевой основе, и может быть применено при изготовлении деталей в автомобилестроении, ракетно-космической и авиационной промышленности, а также корпусных деталей различной электронной аппаратуры, работающих в условиях повышенной вероятности внезапного скачка температуры или прямого воздействия пламени. Пожаробезопасный магниевый литейный сплав содержит, мас. %: иттрий 5-8, цинк 1,5-3, неодим 0-2, цирконий 0,3-1, церий и/или иттербий и/или европий суммарно 0,2-1%, магний - остальное, при этом сплав имеет температуру воспламенения на уровне 1000°С. Изобретение направлено на повышение температуры воспламенения сплава при сохранении высокой прочности и пластичности магниевого сплава. 1 пр.

Изобретение относится к области металлургии, а именно к литейным сплавам на магниевой основе, и может быть применено при изготовлении деталей в автомобилестроении, ракетно-космической и авиационной промышленности, а также корпусных деталей различной электронной аппаратуры и т.д., работающих в условиях повышенной вероятности внезапного скачка температуры или прямого воздействия пламени. Литейный сплав содержит, масс. %: иттрий 5-8, цинк 1,5-3, неодим 0-2, цирконий 0,3-1, РЗМ церий и/или иттербий и/или европий суммарно 0,2-1%, магний - остальное. Сплав характеризуется удовлетворительными механическими свойствами и повышенной температурой возгорания - на уровне 1000°С. Режим термообработки сплава включает в себя гомогенизационный отжиг при температурах от 450°С до 545°С, закалку под вентилятором или в горячую воду от температур от 450°С до 545°С, последующее старение при температуре 200°С в течение 8-100 часов.

Магниевые сплавы, как одни из самых легких металлических материалов, наиболее востребованы в конструкциях, требующих снижения веса, главным образом, в транспортных системах: авиакосмическая, автомобильная, высокоскоростная железнодорожная техника. К числу наиболее металлоемких изделий указанной техники относятся корпуса двигателей, крышки, кронштейны и др., изготавливаемые с помощью литья, т.е. из литейных сплавов. Соответственно, к таким сплавам с каждым годом предъявляются все более высокие требования, как по прочностным характеристикам, так и по технологическим и функциональным свойствам. В частности, для корпусов двигателей выдвигаются особо высокие требования по температуре воспламенения. Существуют различные способы улучшения свойств материалов, многие из которых (в частности современные методы интенсивной пластической деформации) не применимы к литейным сплавам. Поэтому для литейных сплавов, по сути, есть только три основных способа улучшения их свойств: (1) модификация химического состава (система легирования), (2) оптимизация технологии литья и термической обработки и (3) модификация поверхности (обработка поверхности, нанесений покрытий и т.п.).

Магниевые сплавы отличаются своей пожароопасностью. Они способны воспламеняться даже при 400°С, что накладывает ряд ограничений на области их применения. Например, магниевые сплавы запрещено использовать в салоне пассажирских самолетов.

Проблемой снижения пожароопасности магниевых сплавов занимается множество различных научных групп, и предлагаемые ими способы значительно отличаются друг от друга. Тем не менее, можно выделить три основных направления, с помощью которых получается достичь некоторого результата: 1) нанесение покрытий на поверхность сплава; 2) легирование сплава кальцием; 3) легирование сплава РЗМ.

Так, например, литейный магниевый сплав (RU 2506337 С1, МПК С22С 23/02, дата подачи заявки 13.11.2012) содержит, масс. %: алюминий 7,5-9,0, цинк 0,2-0,8, марганец 0,15-0,5 и кальций 0,1-0,4, магний - остальное. Сплав характеризуется удовлетворительными механическими свойствами: пределом прочности 246 МПа, пластичностью 2,5%, а также температурой воспламенения сплава - не ниже 650°С.

Литейный магниевый сплав (CN 101787473 А, МПК B22D 21/04 дата подачи заявки 28.07.2010) содержит, масс. %: гадолиний 5,0-12,0, европий 0,5-3,0, марганец 0-0,8, цирконий 0-0,8, остальное - магний, - обладает следующими характеристиками: температура воспламенения 740°С, предел прочности 220 МПа, относительное удлинение 5%.

В патенте CN 106435316 А, МПК С22С 1/03 дата подачи заявки 02.22.2017, описан сплав, содержащий, масс. %: цинк 0,2-0,7, цирконий 0,4-1,0, неодим 2,0-2,8, церий 0-3,0, лантан 0-3,0, остальное магний, который обладает еще более высокими физико-механическими характеристиками: температура воспламенения 754°С, предел прочности 233 МПа, относительное удлинение 5%.

Интересен магниевый литейный сплав (CN 109881068 А, МПК С22С 1/03 дата подачи заявки 14.06.2019) содержит, масс. %: неодим 5,0-7,0, церий 3,0-3,5, алюминий 2,0-2,5, кремний 0,5-0,8, серебро 1,5-2,0, ниобий 0,8-1,0, остальное магний, температура воспламенения которого порядка 800°С, предел прочности 280 МПа.

Все упомянутые сплавы обладают недостаточно высокой температурой воспламенения для широкого применения в промышленности.

Задачей изобретения является создание литейного магниевого сплава, обладающего повышенным значением температуры воспламенения и, в то же время, удовлетворительными механическими характеристиками.

Техническим результатом изобретения является существенное увеличение температуры воспламенения с сохранением достаточно высоких значений прочности и пластичности литейного магниевого сплава.

Технический результат достигается тем, что, согласно изобретению, пожаробезопасный магниевый литейный сплав содержит, масс. %: иттрий 5-8, цинк 1,5-3, неодим 0-2, цирконий 0,3-1, РЗМ церий и/или иттербий и/или европий суммарно 0,2-1%, магний - остальное.

Сплав характеризуется удовлетворительными механическими свойствами и повышенной температурой возгорания - на уровне 1000°С. Термообработка сплава проводится по следующему режиму: гомогенизационный отжиг при температурах от 450°С до 545°С, закалку под вентилятором или в горячую воду от температур от 450°С до 545°С, последующее старение при температуре 200°С в течение 8-100 часов.

В качестве конкретного примера реализации предлагаемого изобретения приведем результаты исследования двух сплавов следующего химического состава:

1) 6.8Y+2.5Zn+0.6Zr+0.4Yb+0.2Eu, остальное Mg (все в масс. %)

2) 6.8Y+3.0Zn+2.0Nd+0.6Zr+0.3Yb+0.3Ce, остальное Mg (все в масс. %).

Сплавы заданного состава были выплавлены по следующей процедуре. Расчетное количество чушкового магния Мг95В расплавляли в тигле при 740°С. После охлаждения расплава до 720°С в тигель помещали механическую мешалку и осуществляли перемешивание в течение 5-10 минут при средних оборотах. Далее, не отключая перемешивание, в перфорированную корзину добавляли необходимые металлические компоненты и лигатуру MgZr (для измельчения зеренной структуры). После добавления последнего компонента мешалку отключали, отстаивали расплав в течение 10-15 минут и брали из него пробу на химический анализ. Далее расплав заливали в предварительно прогретый до 300-350°С и покрытый разделительным покрытием стальной кокиль. В процессе кристаллизации отливки в ее прибыльную часть доливали горячий металл. Полученные отливки представляли собой слитки в виде цилиндрических чушек диаметром d≈60 мм и длиной l≈250 мм

Химический состав сплава исследовали непосредственно перед разливкой с помощью оптического спектрометра SPECTROMAX, а после разливки - высокоточного оптико-эмиссионного спектрометра ARL 4460-1632.

Термообработку проводили в муфельной печи электросопротивления в среде защитного газа. Материал помещали в разогретую до 540°С печь и выдерживался в течение 12 часов, по истечении времени выдержки материал доставали из печи и охлаждали под вентилятором. Спустя 8-12 часов закаленный сплав помещали в разогретую до 200°С муфельную печь и выдерживали еще в течение 12 часов. По прошествии 12 часов старения сплав охлаждался вместе с печью.

Образцы для испытаний на растяжение вырезали непосредственно из термообработанных слитков с применением смазочно-охлаждающей жидкости. Пятикратные пропорциональные цилиндрические образцы диаметром 6 мм изготавливали методом токарной обработки. Испытания на растяжение проводили на универсальной испытательной машине Н50КТ в соответствии с «ГОСТ 1497-84. Металлы. Методы испытаний на растяжение». Длина рабочей части и базы экстензометра составляла 30 мм, а скорость перемещения траверсы - 5 мм/мин.

Для испытаний на воспламеняемость из сплавов, прошедших термообработку, изготавливали кубические образцы со сторонами ≈15 мм. Такой образец помещался в муфельную печь комнатной температуры и производился нагрев со скоростью 200°С/час. Параллельно с нагревом осуществляли видеофиксацию контроллера печи с показаниями термопары и ежеминутную фотофиксацию образца через глазок печи. Температуру воспламенения определяли как расчетную температуру, которая должна быть в печи по прошествии того количества минут, которое соответствует порядковому номеру фотографии образца, на которой фиксировалось резкое изменение интенсивности его свечения.

Фактические характеристики сплавов указанных составов после термообработки по режиму Т6 составили, соответственно: предел прочности 245 и 250 МПа; относительное удлинение 8 и 3%, температура воспламенения 1020 и 1040°С.

Пожаробезопасный магниевый литейный сплав, содержащий иттрий, цинк, неодим, цирконий, отличающийся тем, что он дополнительно содержит иттрий, церий, и/или иттербий, и/или европий при следующем соотношении компонентов, мас. %: иттрий 5-8, цинк 1,5-3, неодим 0-2, цирконий 0,3-1, церий, и/или иттербий, и/или европий суммарно 0,2-1%, магний - остальное, при этом сплав имеет температуру воспламенения на уровне 1000°С.
Источник поступления информации: Роспатент

Показаны записи 1-10 из 12.
20.08.2015
№216.013.7303

Способ оценки качества поверхности цилиндра двигателя внутреннего сгорания после операции плосковершинного хонингования

Изобретение относится преимущественно к области исследований материалов, а именно к обнаружению локальных дефектов или нерегулярностей на подвергнутых механической обработке поверхностях деталей машин, в частности на поверхности цилиндра двигателя внутреннего сгорания, далее ДВС, после...
Тип: Изобретение
Номер охранного документа: 0002561013
Дата охранного документа: 20.08.2015
27.09.2015
№216.013.7ebe

Способ определения обрабатываемости материалов

Изобретение относится к обработке материалов резанием и может быть использовано в машиностроении для ускоренной автоматизированной оценки обрабатываемости как традиционно применяемых сталей и сплавов в изменяющихся условиях резания, так и новых марок сплавов, наплавленных и композиционных...
Тип: Изобретение
Номер охранного документа: 0002564043
Дата охранного документа: 27.09.2015
13.01.2017
№217.015.7ec0

Преобразователь акустической эмиссии повышенной надежности

Использование: для контроля и мониторинга объектов посредством акустической эмиссии. Сущность изобретения заключается в том, что пьезоэлектрический преобразователь для приема сигналов акустической эмиссии имеет минимум три одинаковые по исполнению параллельные дублирующие друг друга линии...
Тип: Изобретение
Номер охранного документа: 0002601270
Дата охранного документа: 27.10.2016
24.08.2017
№217.015.9610

Универсальный учебно-исследовательский стенд изучения генерации и распространения акустических волн в элементах промышленных объектов от имитаторов реальных источников акустической эмиссии

Изобретение относится к области неразрушающего контроля и технической диагностике промышленного оборудования, а именно к учебно-исследовательским стендам для изучения и демонстрации возможностей метода акустической эмиссии (АЭ). Стенд содержит макет объекта контроля, имитаторы акустической...
Тип: Изобретение
Номер охранного документа: 0002608969
Дата охранного документа: 30.01.2017
26.08.2017
№217.015.da04

Способ определения вязкой и хрупкой составляющих деформации в испытаниях на ударный изгиб

Изобретение относится к области научно-исследовательских методов, применяемых при выявлении причин разрушения изделий, а также используемых при изучении свойств твердых тел и механизмов их разрушения, и может быть использовано в химической, нефтехимической, энергетической, машиностроительной и...
Тип: Изобретение
Номер охранного документа: 0002623711
Дата охранного документа: 28.06.2017
30.08.2018
№218.016.8171

Универсальный волновод сигналов акустической эмиссии

Изобретение относится к волноводам сигналов акустической эмиссии (АЭ), предназначенным для контроля и мониторинга опасных производственных объектов или их элементов при температурах, выходящих за допустимый диапазон температуры применения преобразователя АЭ. Универсальный волновод сигналов...
Тип: Изобретение
Номер охранного документа: 0002665360
Дата охранного документа: 29.08.2018
23.02.2019
№219.016.c729

Полиромбическая антенна (варианты)

Изобретение предназначено для использования в составе радиотехнических устройств для телевидения, радиовещания и радиосвязи в дециметровом и сантиметровом диапазонах волн. Техническим результатом является увеличение коэффициента усиления и коэффициента полезного действия. Для этого предлагается...
Тип: Изобретение
Номер охранного документа: 0002288526
Дата охранного документа: 27.11.2006
23.02.2019
№219.016.c72a

Ромбическая антенна с рефлектором

Изобретение предназначено для телевидения, радиовещания и радиосвязи в сантиметровом и дециметровом диапазоне волн. Технический результат заключается в увеличении направленности при сохранении малых размеров конструкции. Для этого предлагается первую и вторую ромбические антенны, провода каждой...
Тип: Изобретение
Номер охранного документа: 0002288525
Дата охранного документа: 27.11.2006
13.04.2019
№219.017.0c64

Способ акустико-эмиссионной диагностики динамического промышленного оборудования

Использование: для акустико-эмиссионной диагностики промышленного оборудования. Сущность изобретения заключается в том, что выполняют запись и обработку данных акустической эмиссии беспороговым способом, при этом распознавание вида повреждения и оценка годности оборудования к эксплуатации...
Тип: Изобретение
Номер охранного документа: 0002684709
Дата охранного документа: 11.04.2019
15.03.2020
№220.018.0c83

Способ гибридной обработки магниевых сплавов

Изобретение относится к области металлургии, в частности к обработке магниевых сплавов, которое может быть использовано в производстве конструкционных или биорезорбируемых материалов. Способ обработки магниевых сплавов включает гомогенизирующий отжиг, всестороннюю изотермическую ковку и...
Тип: Изобретение
Номер охранного документа: 0002716612
Дата охранного документа: 13.03.2020
+ добавить свой РИД