×
16.05.2023
223.018.6119

Результат интеллектуальной деятельности: Способ поддержания оптимального температурного режима работы солнечного модуля и устройство для его реализации

Вид РИД

Изобретение

Аннотация: Изобретение относится к гелиотехнике и может быть использовано для электрификации инфраструктуры сельского хозяйства. Охлаждение фотоэлектрических элементов до оптимальной температуры осуществляют антигравитационным теплообменным устройством с капиллярным телом, конденсаторную часть которого погружают в нижний горизонт грунта на глубину, обеспечивающую охлаждение теплоносителя до оптимальной температуры фотоэлектрических элементов в пределах 20-30°С, а верхнюю часть теплообменного устройства с испарителем подсоединяют к подложке солнечного модуля и охлаждают фотоэлектрические элементы за счет переноса тепла паром из зоны испарения вниз в зону конденсации устройства, где теплоноситель конденсируют за счет отдачи скрытой теплоты парообразования нижнему горизонту грунта, откуда в жидком виде по капиллярному телу теплоноситель поднимается наверх в испаритель, процесс регенерации теплоносителя повторяется циклически, при этом параметры теплоносителя подбирают таким образом, чтобы температура кипения совпадала с нижней границей диапазона оптимальных для работы фотоэлектрических элементов температур, причем глубину закладки конденсаторной части теплообменного устройства выбирают таким образом, чтобы температура грунта обеспечивала охлаждение теплоносителя до оптимальной температуры фотоэлектрических элементов. Изобретение обеспечивает возможность поддерживать оптимальную температуру работы фотоэлектрических элементов и избежать искажения электрических характеристик под воздействием экстремальных температур охлаждением фотоэлектрического приемника солнечного модуля путем теплообмена между рамой (подложкой) фотоэлектрического элемента и нижним горизонтом грунта за счет разницы температур по теплообменному устройству с испарительно-конденсационным циклом. 2 н.п. ф-лы, 1 ил.

Изобретение относится к гелиотехнике, к способам поддержания оптимального температурного режима работы фотоэлектрических элементов солнечного модуля в условиях экстремальных температур и может быть использовано для электрификации инфраструктуры сельского хозяйства.

Известно, что только 6 – 20 % падающего на фотоэлемент солнечного излучения используется для получения электричества. Остальная энергия, в большей степени, идет на нагрев фотоэлемента, происходит значительное увеличение температуры его поверхности, что, в свою очередь, негативно сказывается на его работе (Асанов М.М., Бекиров Э.А., Воскресенская С.Н. Снижение влияния нагрева поверхности фотоэлемента на эффективность его работы // Строительство и техногенная безопасность. 2014. №51. С.92-96).

Стандартные условия испытания (СУИ) (STC — Standard Test Conditions) для солнечных модулей производительностью 1 кВт/м2 проводятся для температуры их эксплуатации 25 °C (Лист спецификации данных Delta Battery. URL: https://eco50.ru/solnechnye-sistemy/solnechnyebatarei/solnechnaya-batareya-delta-sm-100-12m-100-vatt-12v-mono).

В яркий солнечный день элементы нагреваются до 60-70оС теряя 0,07-0,09В каждый. Это и является основной причиной снижения КПД солнечных элементов, приводя к падению напряжения, генерируемого модулем (http://solarmir.ru/stati/avtonomnaya-sistema/fotoelektricheskie-moduli-fem). Так, у кремниевых солнечных элементов номинальная мощность падает с каждым градусом превышения номинальной температуры на 0,43-0,47%, солнечные элементы из теллурида кадмия теряют всего 0,25% (Норкин А. Типы и особенности солнечных батарей для индивидуальной энергетической установки //FacePla.net [Электронный ресурс] – Режим доступа: http://www.facepla.net/the-news/energy-news-mnu/2158-home-solar.html).

Известен солнечный фотоэлектрический модуль, с устройством охлаждения выполненный в виде цилиндра из скоммутированных высоковольтных ФЭП (патент РФ №2505755, МПК F24 J2/10, G02 B5/10, опубл. 27.01.2014).

Недостатком данного солнечного модуля является сильный нагрев фотоэлементов при прохождении через них концентрированного солнечного излучения.

Известна конструкция маломощного теплофотоэлектрического приемника (ТФЭП), основные компоненты которой имеют протяженную цилиндрическую форму и представляют собой концентрически расположенные эмиттер, набор фотоэлементов и радиатор с жидкостной либо воздушной системой охлаждения фотоэлементов (патент США №6489553, МПК, опубл. 03.12.2002). Эмиттер такого ТФЭП может быть выполнен из тугоплавкого металла типа вольфрама и иметь антиотражающее покрытие. Промежуток между эмиттером и фотоэлементами может быть заполнен инертным газом для повышения теплового сопротивления и обеспечения долговременной высокотемпературной (без окисления) работы материала эмиттера и антиотражающего покрытия.

Недостатком такого ТФЭП является низкая эффективность охлаждения фотоэлементов (при диаметре окружности, на которой располагаются фотоэлементы, сравнимой с диаметром эмиттера).

Известен фотоэлектрический модуль включающий множество оптических концентраторов, фокусирующих солнечное излучение на фотоприемные площадки солнечных фотоэлементов и устанавливаемый на площадке, имеющей оребрение для рассеяния тепла (патент US 6717045, МПК H01L 31/052, опубликован 06.04.2004).

Недостатками известного фотоэлектрического модуля являются технические сложности изготовления, монтажа и юстировки большого количества оптических деталей и, соответственно, также высокая стоимость конструкции.

Известен способ направления подогретого теплоносителя вниз, то есть в сторону противоположную к направлению естественной конвекции по обратному термосифону, работа которого основана на использовании повышенного давления насыщенного водяного пара в теплой ветви циркуляционного контура по сравнению с давлением насыщенного пара в холодной ветви, это давление может преодолеть силы естественной конвекции и вытеснить теплый теплоноситель по теплой ветви вниз к охладителю, через охладитель и далее уже холодный теплоноситель по холодной ветви к верхней части циркуляционного контура (патент UA 15361 А, МПК F28 D 25/00,опубл. 30.06.1997).

Наиболее близким по технической сущности к предлагаемому изобретению является гибридный солнечный коллектор, где фотоэлектрические элементы охлаждаются активной системой отвода теплоты через медные трубки, встроенные в тыльную часть солнечной панели и используют отведенную теплоту для нагрева воды в системе горячего водоснабжения в здании (Sevela P. Energy Management in DTU Solar Decathlon house. Technical University of Denmark. 2012. http://zvt.abok.ru/articles/106/Gibridnii_solnechnii_kollektor). Фотоэлектрические преобразователи уложены в этиленвинилацетатную пленку, гидравлическая часть – в комбинацию из поливинилфторидной и этиленвинилацетатной пленок. Тыльная сторона панели обклеена теплоизоляцией AFarmaflex. Тепловая энергия утилизируется в баке горячего водоснабжения, за счет чего охлаждаются фотоэлектрические преобразователи и повышается КПД фотоэлектрического модуля. При невозможности дальнейшей утилизации тепловой энергии баком горячего водоснабжения охлаждение осуществлялось с помощью воды от вертикального грунтового теплообменника глубиной 120 м. В контур системы гибридного солнечного коллектора встроен дренажный бак на 100 л, заполненный на ¾ воздухом. Все трубопроводы выше дренажного бака выполняют под уклоном к нему как минимум 2 %. В идеальных условиях вода из гибридного солнечного коллектора самотеком поступает в дренажный бак, откуда попадает в бак горячего водоснабжения. Насос используется только для подъема воды в гибридный солнечный коллектор.

Недостатками известного технического решения являются сложность и материалоемкость конструкции, необходимость энергозатрат для работы насоса.

Задачей предлагаемого изобретения является обеспечение оптимального температурного режима работы фотоэлектрических элементов в солнечном модуле с применением температуры нижних горизонтов грунта, повышения КПД солнечного модуля и снижения стоимости вырабатываемой электроэнергии в регионах с жарким климатом.

В результате использования предлагаемого изобретения появляется возможность поддерживать оптимальную температуру работы фотоэлектрических элементов и избежать искажения электрических характеристик под воздействием экстремальных температур охлаждением фотоэлектрического приемника солнечного модуля путем теплообмена между рамой (подложкой) фотоэлектрических элементов и нижним горизонтом грунта за счет разницы температур по антигравитационному теплообменному устройству с капиллярным телом с испарительно-конденсационным циклом.

Вышеуказанный технический результат достигается тем, что в предлагаемом способе поддержания оптимального температурного режима работы солнечного модуля, включающем охлаждение фотоэлектрических элементов солнечного модуля отведением теплоты с помощью системы труб с теплоносителем, согласно изобретению, охлаждение фотоэлектрических элементов до оптимальной температуры осуществляют антигравитационным теплообменным устройством с капиллярным телом, конденсаторную часть которого погружают в нижний горизонт грунта на глубину, обеспечивающую охлаждение теплоносителя до оптимальной температуры фотоэлектрических элементов в пределах 20-30°С, а верхнюю часть теплообменного устройства с испарителем подсоединяют к подложке солнечного модуля и охлаждают фотоэлектрические элементы за счет переноса тепла паром из зоны испарения вниз в зону конденсации устройства, где теплоноситель конденсируют за счет отдачи скрытой теплоты парообразования нижнему горизонту грунта, откуда в жидком виде по капиллярному телу теплоноситель поднимается наверх в испаритель, процесс регенерации теплоносителя повторяется циклически, при этом параметры теплоносителя подбирают таким образом, чтобы температура кипения совпадала с нижней границей диапазона оптимальных для работы фотоэлектрических элементов температур, причем глубину закладки конденсаторной части теплообменного устройства выбирают таким образом, чтобы температура грунта обеспечивала охлаждение теплоносителя до оптимальной температуры фотоэлектрических элементов.

Также технический результат достигается тем, что предлагаемое устройство для реализации способа поддержания оптимального температурного режима работы солнечного модуля, содержащее солнечный модуль, включающий в себя фотоэлектрические элементы, согласно изобретению, снабжено антигравитационным теплообменным устройством в виде труб с капиллярным телом, при этом верхнюю часть теплообменного устройства с испарителем подсоединяют к подложке солнечного модуля, а конденсаторную часть теплообменного устройства погружают в нижний горизонт грунта на глубину с температурой грунта, обеспечивающую охлаждение теплоносителя до оптимальной температуры фотоэлектрического элемента.

Сущность предлагаемого изобретения поясняется чертежом, на котором представлена общая схема устройства для реализации способа поддержания оптимального температурного режима работы солнечного модуля.

Устройство для реализации способа поддержания оптимального температурного режима работы солнечного модуля содержит солнечный модуль 1, состоящий из прозрачной пластины 2, подложки (теплопроводного листа) 3, фотоэлектрических элементов 4, установленных между пластиной 2 и подложкой 3, заключенными в раму 5; антигравитационное теплообменное устройство в виде труб 6 с капиллярным телом 10, верхняя часть которого является испарителем 7 и соединена с подложкой 3, а нижняя часть является конденсатором 8 и погружается в нижний горизонт грунта 9. Теплоноситель в конденсированном виде поднимается вверх в испаритель 7 по капиллярному телу 10 Теплоноситель вскипает до температуры кипения, испаряясь движется в конденсаторную часть, где конденсируется и по капиллярному телу 10 поднимается наверх в испаритель 7.

Для поддержания оптимальных температурных режимов работы солнечных модулей использующих разницу температур грунта возможно использовать теплоноситель с температурой кипения совпадающей с системами передачи тепловой энергии от солнечных элементов в нижние горизонты грунта на глубине, равную от 30 до 50 % от глубины годового прогревания грунта.

Работает устройство для реализации способа поддержания оптимального температурного режима работы солнечного модуля следующим образом.

В почву на глубину, для обеспечения оптимального температурного режима работы фотоэлемента солнечного модуля, зарывают антигравитационное теплообменное устройство с движением теплоносителя в направлении обратном по отношению к естественной конвекции. Конденсатор теплообменного устройства 8 погружают в нижний горизонт грунта 9 на глубину, обеспечивающую оптимальную температуру фотоэлемента солнечного модуля. Солнечные лучи нагревают фотоэлектрические элементы 4 и подложку 3 солнечного модуля 1, что вызывает кипение теплоносителя в испарителе 7 теплообменного контура 6, присоединенного к подложке 3 солнечного модуля 1. Под воздействием возникающей при этом разности давлений пар направляется от испарителя 7 вниз к конденсатору 8, где он охлаждается, отдавая скрытую теплоту парообразования нижнему горизонту грунта 9 с температурой, лежащей в диапазоне оптимальных температур для работы фотоэлектрического преобразователя 4. Теплоноситель в жидкой фазе по капиллярному телу 10 из конденсаторной части 8 возвращается в зону испарительной части 7. Цикл повторяется. При этом параметры теплоносителя подбираются таким образом, чтобы температура кипения совпадала с нижней границей диапазона оптимальных для работы фотоэлектрического элемента температур. Причем глубину закладки конденсаторной части 8 антигравитационного теплообменного устройства 6 выбирают таким образом, чтобы температура грунта обеспечивала охлаждение теплоносителя до температуры оптимальной для работы фотоэлектрических элементов 4. В процессе реализации способа фотоэлектрический модуль 1 охлаждается до оптимальной температуры 20-25ºС. Это приводит к повышению КПД солнечного модуля.

Пример.

В местности с жарким климатом для обеспечения оптимального температурного режима работы фотоэлектрических элементов солнечного модуля в почву на глубину 4 м зарывают антигравитационное теплообменное устройство с обратной конвекцией. Конденсатор теплообменного устройства погружают в нижний горизонт грунта на глубину, обеспечивающую оптимальную температуру фотоэлектрического элемента солнечного модуля. Солнечные лучи нагревают фотоэлектрические элементы и медную подложку солнечного модуля, что вызывает кипение фреона в испарителе теплообменного контура, присоединенного к медной подложке солнечного модуля. Под воздействием возникающей при этом разности давлений пар направляется от испарителя вниз к конденсатору, где он охлаждается, отдавая скрытую теплоту парообразования нижнему горизонту грунта с температурой, лежащей в диапазоне оптимальных температур для работы фотоэлектрических элементов 25 оС. Фреон в жидкой фазе по капиллярному телу из зоны конденсатора возвращается в зону испарителя. Цикл повторяется. В качестве теплоносителя используют фреон R601a.

В процессе реализации предлагаемого способа фотоэлектрические элементы охлаждают до оптимальной температуры 25ºС, что приводит к повышению КПД солнечного модуля на 30 % .

Источник поступления информации: Роспатент

Показаны записи 71-80 из 272.
26.08.2017
№217.015.df93

Способ и устройство дифференцированного дозирования жидких органических удобрений

Изобретение относится к области механизации сельскохозяйственного производства, а именно к внесению жидких органических удобрений. Способ заключается в том, что определяют дозу внесения удобрений, производят подачу жидких органических удобрений из емкости 1 агрегата центробежным насосом 2 по...
Тип: Изобретение
Номер охранного документа: 0002625177
Дата охранного документа: 12.07.2017
26.08.2017
№217.015.dfc9

Способ обрезки плодовых деревьев

Изобретение относится к сельскохозяйственным технологическим процессам, а именно к обрезке плодовых деревьев в промышленных насаждениях. Способ заключается в том, что проводят операции среза ветвей с помощью инструмента, обеззараживание режущей части инструмента и места среза, защиту места...
Тип: Изобретение
Номер охранного документа: 0002625183
Дата охранного документа: 12.07.2017
26.08.2017
№217.015.e136

Способ оценки качества работы гидроподжимных муфт при переключении зубчатых передач гидрофицированных коробок передач самоходных машин

Изобретение относится к техническому диагностированию гидрофицированных силовых передач самоходных машин. Способ оценки качества работы гидроподжимных муфт при переключении зубчатых передач гидрофицированных коробок передач осуществляется без разрыва потока мощности в передачах во время их...
Тип: Изобретение
Номер охранного документа: 0002625507
Дата охранного документа: 14.07.2017
26.08.2017
№217.015.e33f

Алюмооксидный носитель катализатора

Изобретение относится к технике получения термостойких носителей катализаторов и может найти применение в машиностроении, химической и других отраслях промышленности. Заявлена шихта носителя катализатора, включающая тальк и каолин, дополнительно содержащая белую сажу и моногидрат оксида...
Тип: Изобретение
Номер охранного документа: 0002626001
Дата охранного документа: 21.07.2017
26.08.2017
№217.015.e3c0

Способ оптимизации метрологии оптического излучения и устройство для его реализации - универсальный фотометр-эксергометр

Изобретение относится к области оптических измерений и касается способа оптимизации метрологии оптического излучения. Способ заключается в том, что выделяют часть энергии оптического излучения, которая потенциально пригодна в фотоэлектрическом, фотосинтезном, световом, эритемном и квантовом...
Тип: Изобретение
Номер охранного документа: 0002626219
Дата охранного документа: 24.07.2017
26.08.2017
№217.015.e574

Способ измельчения бемита

Изобретение относится к химической промышленности и предназначено для тонкого измельчения суспензии порошка бемита до нанодисперсного состояния. Способ измельчения бемита заключается в том, что для циркуляции водной суспензии бемита используют рециркуляционный контур, включающий...
Тип: Изобретение
Номер охранного документа: 0002626624
Дата охранного документа: 31.07.2017
26.08.2017
№217.015.e608

Способ и устройство передачи электрической энергии

Изобретение относится к электротехнике, к трансформации и передаче электрической энергии. Технический результат состоит в уменьшении расхода материалов и повышении стабильности, безопасности и кпд за счет использования бессердечниковых трансформаторов с фазовой автоподстройкой частоты и...
Тип: Изобретение
Номер охранного документа: 0002626815
Дата охранного документа: 02.08.2017
26.08.2017
№217.015.e739

Механический плодосъемник

Изобретение относится к устройствам для сбора фруктов с деревьев. Механический плодосъемник содержит рукоятку и закрепленный на рукоятке нож. Рукоятка выполнена в виде двух боковых обрезиненных снаружи и жестко закрепленных между собой пластин. Рукоятка снабжена курком с пружиной кручения....
Тип: Изобретение
Номер охранного документа: 0002627279
Дата охранного документа: 04.08.2017
26.08.2017
№217.015.ecf2

Способ возделывания картофеля и топинамбура в двупольном севообороте

Изобретение относится к области сельского хозяйства, а именно к способам возделывания картофеля и топинамбура, и может быть использовано в условиях возделывания культур на легких, средних и тяжелых по механическому составу почвах. Способ включает зяблевую вспашку почвы, нарезание гребней,...
Тип: Изобретение
Номер охранного документа: 0002628578
Дата охранного документа: 21.08.2017
29.12.2017
№217.015.f592

Система автоматической сортировки животных по результатам взвешивания и идентификации номера с использованием селекционных ворот для выделения в ветеринарный бокс

Изобретение относится к сельскому хозяйству, в частности к устройствам для сортировки животных. Система автоматической сортировки животных содержит датчик номера животного с приемопередатчиком и контроллером номера распознавания животного, селекционные ворота, блок управления, тензометрические...
Тип: Изобретение
Номер охранного документа: 0002637768
Дата охранного документа: 07.12.2017
Показаны записи 71-80 из 131.
09.06.2018
№218.016.5c7d

Сошник безрядкового посева

Изобретение относится к области сельскохозяйственного машиностроения, в частности к сошникам сеялок сельскохозяйственных культур. Сошник безрядкового посева содержит корпус (1) с узлом крепления (2) его к поводку, установленный под углом к направлению движения плоский диск (3),...
Тип: Изобретение
Номер охранного документа: 0002655951
Дата охранного документа: 30.05.2018
16.06.2018
№218.016.62c7

Автоматизированный рулонный агрегат с обеззараживанием стебельчатых кормов

Изобретение относится к сельскому хозяйству, к области кормопроизводства в животноводстве для получения экологически чистых грубых стебельчатых кормов. Автоматизированный рулонный агрегат с обеззараживанием стебельчатых кормов содержит устройство для свертывания слоя стебельчатого корма в...
Тип: Изобретение
Номер охранного документа: 0002657469
Дата охранного документа: 14.06.2018
25.06.2018
№218.016.6684

Система обогрева и охлаждения животноводческих помещений

Изобретение относится к области сельского хозяйства, а именно к оборудованию для создания микроклимата в животноводческих помещениях, например в коровниках. Система обогрева и охлаждения животноводческих помещений содержит установленный в помещении теплообменник в комплекте с вентилятором,...
Тип: Изобретение
Номер охранного документа: 0002658786
Дата охранного документа: 22.06.2018
06.07.2018
№218.016.6cb7

Теплоэлектрогенератор на твердом топливе

Изобретение относится к энергетике, а именно к системам отопления и генерации электроэнергии и может быть использовано: в системах воздушного отопления и электроснабжения сельскохозяйственных объектов (фермы, теплицы, мастерские, зернохранилища, овощехранилища, сушилки фруктов, грибов), жилых...
Тип: Изобретение
Номер охранного документа: 0002660226
Дата охранного документа: 05.07.2018
09.08.2018
№218.016.7a19

Многофункциональная зажигалка

Изобретение относится к зажигалкам общего назначения для поджига любых углеводородных компонентов, таких как пластик, дерево, бумага, горюче-смазочные материалы и т.д. Многофункциональная зажигалка состоит из корпуса и токоведущих контактов, кроме того, она снабжена электронным преобразователем...
Тип: Изобретение
Номер охранного документа: 0002662990
Дата охранного документа: 31.07.2018
04.10.2018
№218.016.8e58

Механизированная установка для бесконтактной тепловизионной видеоцифровой диагностики заболеваний животных

Изобретение относится к сельскому хозяйству, в частности к животноводству, и предназначено для идентификации и диагностики заболеваний коров, лошадей. Механизированная установка для бесконтактной тепловизионной видеоцифровой диагностики заболеваний животных содержит станок для фиксации...
Тип: Изобретение
Номер охранного документа: 0002668674
Дата охранного документа: 02.10.2018
21.10.2018
№218.016.9483

Солнечный модуль с асимметричным параболоцилиндрическим концентратором и фотоприемником с треугольным профилем

Изобретение относится к области гелиотехники и касается солнечного модуля с асимметричным параболоцилиндрическим концентратором и фотоприемником с треугольным профилем. Солнечный модуль содержит асимметричный из одной ветви параболоцилиндрического типа концентратор с зеркальной внутренней...
Тип: Изобретение
Номер охранного документа: 0002670180
Дата охранного документа: 18.10.2018
26.10.2018
№218.016.96a4

Автоматизированная система поточного измерения урожайности зерна

Изобретение относится к сельскохозяйственному машиностроению и может найти применение в уборке сельскохозяйственных культур зерноуборочным комбинатом при реализации технологии точного земледелия. Автоматизированная система поточного измерения урожайности зерна включает корпус 1, разветвитель...
Тип: Изобретение
Номер охранного документа: 0002670718
Дата охранного документа: 24.10.2018
27.10.2018
№218.016.975e

Эжекторный газовый теплоэлектрогенератор

Изобретение относится к энергетике, а именно к системам генерации тепла для систем отопления и электроэнергии. В результате применения изобретения происходит прямое использование тепловой энергии продуктов сгорания топлива при одновременном получении тепла и электроэнергии за счет формирования...
Тип: Изобретение
Номер охранного документа: 0002670856
Дата охранного документа: 25.10.2018
01.11.2018
№218.016.9825

Ягодоуборочный комбайн с системой мониторинга урожайности

Изобретение относится к сельскохозяйственному машиностроению, а именно к техническим средствам для уборки урожая ягодных культур, например смородины черной. Ягодоуборочный комбайн включает колесное шасси с кабиной, делитель, формирователь, раму уборочного модуля, бичи активатора, улавливатели,...
Тип: Изобретение
Номер охранного документа: 0002671173
Дата охранного документа: 29.10.2018
+ добавить свой РИД