×
16.05.2023
223.018.610a

Результат интеллектуальной деятельности: Анод литий-ионного аккумулятора для работы при пониженных температурах и способ его изготовления

Вид РИД

Изобретение

Аннотация: Изобретение относится к электротехнической промышленности, в частности, к устройствам для непосредственного преобразования химической энергии в электрическую, а конкретно - к литий-ионному аккумулятору. Способ изготовления анода литий-ионного аккумулятора включает нанесение массивов наночастиц индия на подложку вакуум-термическим испарением с молибденового испарителя при остаточном давлении 1×10 торр и расстоянии от испарителя до подложки 20 см, отжиг подложки в вакууме при температуре 150°С в течение 10 мин, катодное осаждение на подложку из раствора, содержащего 0,05 М GeO, 0,5 М KSO и 0,5 М янтарной кислоты, доведение рН раствора до 6,5 добавлением NHOH, поддержание температуры раствора на уровне 90°С, осаждение в гальваностатическом режиме при плотности тока 2 мА/см. Анод литий-ионного аккумулятора изготавливается из нановолокнистого германия, выращенного непосредственно на подложке-токоотводе, без применения связующих и электропроводных добавок. Технический результат заключается в повышении удельной энергии литий-ионного аккумулятора, а также достижении возможности его эксплуатации при низких температурах. 2 н. и 1 з.п. ф-лы, 1 пр., 3 ил.

Изобретение относится к электротехнической промышленности, в частности к устройствам для непосредственного преобразования химической энергии в электрическую, а конкретно − к литий-ионному аккумулятору. Литий-ионные аккумуляторы являются сейчас наиболее распространёнными и наиболее прогрессивными источниками питания практически всех портативных электронных устройств, включая сотовые телефоны и смартфоны, ноутбуки и видеокамеры. Обычные литий-ионные аккумуляторы работоспособны при температурах от 0 до +50°С, иногда в качестве нижней температуры работоспособности указывают −20°С, но при этом энергия аккумуляторов составляет не более 5% от энергии, отдаваемой при комнатной температуре. Например, в статье [Nagasubramanian G. Electrical characteristics of 18650 Li-ion cells at low temperatures. // J. Appl. Electrochem. 2001. Vol. 31. P. 99−10.] указано, что удельная энергия коммерческих аккумуляторов фирмы Panasonic типоразмера 18650 при разряде током 1 А (т.е. в режиме 0.7С) составляет 125 Втч/кг при комнатной температуре, 110 Втч/кг при температуре +10°С, 60 Втч/кг при температуре −10°С и около 5 Втч/кг при температуре −20°С. Большинство коммерческих литий-ионных аккумуляторов основано на так называемой традиционной электрохимической системе с отрицательным электродом (анодом), изготовленным из углеродного материала. Общепризнано, что именно такой электрод теряет свою работоспособность при снижении температуры.

В научной и патентной литературе имеются предложения о замене анодов из углеродных материалов на аноды иной природы, в том числе, предложения об использовании анодов на основе германия (см., напр., US Patent 9871247, 16.01.18; US Patent 9728776, 08.08.17; US Patent 9472804, 18.10.16; EP 1562250, 10.08.05; WO/2013/125761, 29.08.13; Jian Hao, Yanxia Wang, Qingjie Guo, Jiupeng Zhao, and Yao Li, Structural Strategies for Germanium-Based Anode Materials to Enhance Lithium Storage //Part. Part. Syst. Charact. 2019, Article No. 1900248). Германий обладает способностью внедрять довольно большое количество лития, соответствующее теоретической ёмкости 1550 мАч/г, уступая в этом отношении только кремнию. Однако германий обладает гораздо более высокой электронной проводимостью и более высоким коэффициентом диффузии, чем кремний, что позволяет, в принципе, поводить разряд и заряд электродов на основе германия в форсированных режимах. В то же время, подобно кремнию германий многократно увеличивает удельный объём при внедрении лития, что приводит к сильной деградации при циклировании и затрудняет его использование в литий-ионных аккумуляторов. Одним из перспективных подходов для решения данной проблемы является использование наноматериалов. Такие материалы способны выдерживать высокие механические напряжения без разрушения и обеспечивать хороший электрический контакт. В литературе описаны различные наноматериалы, предлагаемые для создания германиевых анодов литий-ионных аккумуляторов (нанопорошки, нановолокна, нанопористые материалы и т.п.), однако нигде не приводится информация о влиянии температуры на характеристики электродов на основе этих материалов.

Наиболее близким к заявляемому (т.е. прототипом) является анод литий-ионного аккумулятора по патенту US Patent 9871247, 16.01.18. Анод по этому патенту изготовлен из наночастиц германия с размером от 20 до 100 нм, к которому может быть добавлено небольшое количество карбида бора или карбида вольфрама. При изготовлении анода по прототипу порошок германия (с добавкой карбида бора или карбида вольфрама) смешивают со связующим (например, с поливинилиденфторидом) и электропроводной добавкой (например, с сажей) и наносят обычным способом на металлическую подложку. В соответствии с патентом-прототипом такой анод при циклировании при комнатной температуре имел удельную ёмкость около 900 мАч/г на первом цикле, около 800 мАч/г на пятом цикле и около 700 мАч/г на двенадцатом цикле.

Задачей настоящего изобретения является создание анода литий-ионного аккумулятора на основе германия, имеющего более высокую удельную ёмкость и работоспособного при температурах до – 50°С.

Технический результат, достигаемый настоящим изобретением, заключается в повышении удельной энергии литий-ионного аккумулятора, а также достижении возможности его эксплуатации при низких температурах.

Указанный технический результат достигается тем, что анод литий-ионного аккумулятора работоспособный при температурах от −50 до +20°С изготавливается способом, включающим нанесение массивов наночастиц индия на подложку вакуум-термическим испарением с молибденового испарителя при остаточном давлении 1 × 10–5 торр и расстоянии от испарителя до подложки 20 см, отжиг подложки в вакууме при температуре 150°С в течение 10 мин, катодное осаждение на подложку из раствора, содержащего 0.05 М GeO2, 0.5 М K2SO4 и 0.5 М янтарной кислоты, доведение рН раствора до 6.5 добавлением NH4OH, поддержание температуры раствора на уровне 90°С, осаждение в гальваностатическом режиме при плотности тока 2 мА/см2.

Сущность предлагаемого изобретения поясняется примерами изготовления анода для литий-ионного аккумулятора, а также определения характеристик анодов и фигурами, где:

На фиг. 1 – микрофотография поверхности электрода по настоящему изобретению с нановолокнами германия;

На фиг. 2 – типичные зарядные и разрядные кривые на электроде по настоящему изобретению, полученные при комнатной температуре, на которых приняты следующие обозначения:

сплошные кривые – 1-й цикл, при токе нагрузки1500 мА/г;

штриховые кривые – 2-5 циклы, при токе нагрузки 1500 мА/г;

пунктирные кривые – 6-10 циклы, 3000 мА/г.

На фиг. 3 − изменение удельной ёмкости электрода по настоящему изобретению при изменении температуры.

Приведенные примеры не ограничивают заявленных параметров, а служат только для иллюстрации изобретения.

Пример.

Нановолокнистые структуры германия были получены методом катодного осаждения из водных растворов на специально подготовленную подложку. В качестве подложек использовали фольгу из титана марки ВТ 1-0 толщиной 50 мкм. На поверхность подложек известными способами наносили массивы наночастиц индия, на которых впоследствии будут образованы зародыши нановолокон германия. В данном примере индий наносили вакуум-термическим испарением с молибденового испарителя при остаточном давлении 1 × 10–5 торр и расстоянии от испарителя до подложки 20 см. После нанесения металла образцы отжигали в вакууме при температуре 150°С в течение 10 мин. Катодное осаждение проводили из раствора, содержащего 0.05 М GeO2, 0.5 М K2SO4 и 0.5 М янтарной кислоты. Сульфат калия служил фоновой солью, а янтарная кислота играла роль буферирующей добавки. рН раствора доводили до 6.5 добавлением NH4OH. Температуру раствора поддерживали на уровне 90°С. Осаждение проводили в гальваностатическом режиме при плотности тока 2 мА/см2. На фиг. 1 показана микрофотография образца, полученного после 20 минутного осаждения нановолокон германия.

Аноды с нановолокнами германия испытывались в трёхэлектродных ячейках с противоэлектродом и электродом сравнения из металлического лития и 1 М LiClO4 в смеси пропиленкарбонат-диметоксиэтан (7:3) в качестве электролита. Содержание воды в электролите не превышало 0,015%. Гальваностатическое циклирование электродов проводили с помощью компьютеризированного зарядно-разрядного стенда (ООО «Бустер», Санкт-Петербург). Пределы потенциалов циклирования составляли от 0.01 до 2.0 В. Токи циклирования составляли 1500 и 3000 мА/г германия (что примерно соответствует одночасовому и получасовому режимам). На фиг. 2 приведены типичные зарядные (катодные) и разрядные (анодные) кривые электрода, изготовленного по настоящему изобретению. Показаны кривые для первых десяти циклов, полученные при комнатной температуре.

Как видно, электрод по настоящему изобретению демонстрирует начальную ёмкость, близкую к теоретической, и мало изменяющуюся по мере циклирования и при изменении тока. Столь высокие характеристики обусловлены наноструктурой электрода, а также отсутствием связующей добавки, обладающей изолирующими свойствами. (Отличие катодной кривой первого цикла от кривых последующих циклов связано с известным явлением образования пассивной плёнки за счёт первоначального восстановления электролита).

Электрохимические исследования при различных температурах проводили с помощью камеры тепла-холода (КТХ-165/150, Россия), интегрированной с многоканальным гальваностатом (АЗВРИК-50-10В, Россия, Бустер). Перед началом низкотемпературных испытаний электрохимические ячейки выдерживали в камере тепла холода при заданной температуре не менее 1 часа. Все испытания в этой серии экспериментов проводили при токе 1500 мА/г. При каждой температуре проводили по 5 циклов.

На фиг. 3 показана зависимость разрядной ёмкости электрода по настоящему изобретению от температуры для температур +20, −20, −30, −40 и −50°С.

Как видно из фиг. 3, даже при достаточно отрицательной температуре (−50°С) при одночасовом режиме заряда-разряда обратимая емкость составляет около 500 мАч/г, что соответствует 30% от разрядной емкости, полученной при температуре +20°С.

Источник поступления информации: Роспатент

Показаны записи 21-30 из 42.
26.08.2017
№217.015.e38b

Способ выделения скандия из концентратов редкоземельных элементов

Изобретение относится к области металлургии редких металлов и может быть использовано в технологии селективного извлечения скандия из концентратов редкоземельных элементов (РЗЭ). Способ выделения скандия из концентрата редкоземельных элементов в виде водного раствора включает контактирование...
Тип: Изобретение
Номер охранного документа: 0002626206
Дата охранного документа: 24.07.2017
19.01.2018
№218.016.0528

Электрохимический сенсор для мониторинга воздуха на содержание токсичных веществ

Изобретение относится к электрохимическому сенсору для мониторинга воздуха на содержание летучих органических токсичных веществ, состоящему из планарной электродной группы, фонового электролита, пористой гидрофильной мембраны, полимерной газопроницаемой мембраны, герметичной емкости. При этом...
Тип: Изобретение
Номер охранного документа: 0002630697
Дата охранного документа: 12.09.2017
19.01.2018
№218.016.0556

2,4,6-трис[(2-дифенилфосфорил)-4-этилфенокси]-1,3,5-триазин в качестве электродоактивного селективного ионофора для катиона лития в пластифицированных мембранах ионоселективных электродов

Изобретение относиться к 2,4,6-трис[(2-дифенилфосфорил)-4-этилфенокси]-1,3,5-триазину, который может быть использован в качестве селективного ионофора для катиона лития в пластифицированной полимерной мембране в ионоселективных электродах для определения концентраций иона лития в биологических...
Тип: Изобретение
Номер охранного документа: 0002630695
Дата охранного документа: 12.09.2017
20.01.2018
№218.016.0f9a

Литий-ионный аккумулятор

Изобретение относится к электротехнической промышленности, в частности к устройствам для непосредственного преобразования химической энергии в электрическую, а конкретно - к литий-ионному аккумулятору. Литий-ионный аккумулятор содержит разделенные пористым сепаратором с электролитом и...
Тип: Изобретение
Номер охранного документа: 0002633529
Дата охранного документа: 13.10.2017
10.05.2018
№218.016.44bc

Способ хранения природного газа в адсорбированном виде при пониженных температурах

Изобретение относится к хранению природного газа, или метана, или смеси метана с углеводородными соединениями С2, С3, С4, С5 или С6+, в том числе всеми насыщенными и ненасыщенными углеводородами под давлением в контейнере в адсорбированном виде, и дальнейшей транспортировке находящегося под...
Тип: Изобретение
Номер охранного документа: 0002650012
Дата охранного документа: 06.04.2018
09.06.2018
№218.016.5b9c

Способ и контроллер управления электрохромными светомодуляторами с тонкопленочными электрохромными и/или заряд-буферными слоями

Изобретение относится к электронным устройствам для управления электрохромными светомодуляторами (ЭХСМ), предназначенными для регулирования потоков световой и лучистой тепловой энергии. Способ управления ЭХСМ заключается в том, что в качестве необходимого и достаточного критерия для выработки...
Тип: Изобретение
Номер охранного документа: 0002655657
Дата охранного документа: 29.05.2018
10.04.2019
№219.017.0766

Летучий ингибитор атмосферной коррозии

Изобретение относится к технике защиты металлов от атмосферной коррозии с помощью летучих ингибиторов. Ингибитор содержит, мас.%: гетероциклическое азотсодержащее соединение 5-20, продукт конденсации альдегида с первичным амином 20-50, бензойная или замещенная бензойная кислота 5-20,...
Тип: Изобретение
Номер охранного документа: 0002457283
Дата охранного документа: 27.07.2012
10.04.2019
№219.017.0a05

Пассивация поверхности металлов для защиты от атмосферной коррозии

Изобретение относится к технике защиты металлов от атмосферной коррозии с помощью контактных ингибиторов, в частности к получению из водных растворов устойчивых пассивирующих слоев на поверхности металлов, и может быть использовано для защиты прецизионных металлических изделий. Пассивирующий...
Тип: Изобретение
Номер охранного документа: 0002468125
Дата охранного документа: 27.11.2012
12.04.2023
№223.018.451b

Литий-кислородный аккумулятор с твердым полимерным электролитом

Изобретение относится к электротехнической промышленности, в частности к устройствам для непосредственного преобразования химической энергии в электрическую, конкретно – к литий кислородному аккумулятору. Литий-кислородный аккумулятор с твердым полимерным электролитом содержит положительный...
Тип: Изобретение
Номер охранного документа: 0002763037
Дата охранного документа: 27.12.2021
20.04.2023
№223.018.4ad5

Центробежное устройство для измерения сдвиговой прочности адгезии льда к твердым поверхностям

Изобретение относится к области исследования материалов. Центробежное устройство для измерения сдвиговой прочности адгезии льда к твердым поверхностям содержит серводвигатель, защитный кожух, диск для размещения тестируемых образцов, регистратор температуры, стробоскопический осветитель, две...
Тип: Изобретение
Номер охранного документа: 0002777678
Дата охранного документа: 08.08.2022
Показаны записи 21-21 из 21.
20.05.2023
№223.018.6788

Композитный каталитический материал для получения чистого водорода для водородо-воздушных топливных элементов и способ его изготовления

Изобретение относится к технологиям получения водорода из боргидридов щелочных металлов при их гидролизе в присутствии катализатора. Предложены композитный каталитический материал для получения чистого водорода, содержащий по массе из расчёта на боргидрид щелочного металла 6,0-20,0% борида...
Тип: Изобретение
Номер охранного документа: 0002794902
Дата охранного документа: 25.04.2023
+ добавить свой РИД