×
16.05.2023
223.018.6100

Результат интеллектуальной деятельности: Способ определения поглощенной дозы ядер отдачи

Вид РИД

Изобретение

Аннотация: Изобретение относится к области биотехнологии, а именно к определению поглощенной дозы ядер отдачи, как суммы доз быстрых нейтронов и тепловых нейтронов. Способ включает облучение клеточных культур γ-излучением и смешанным излучением (γ-излучение и нейтронное). Далее осуществляют определение дозы γ-излучения D, приводящей к одинаковой величине выживаемости клеток, и определение поглощенной дозы ядер отдачи D из соотношения D=D -D, где D - поглощенная доза ядер отдачи, Гр экв.; D - доза γ-излучения при облучении клеток γ-излучением, Гр; D - доза γ-излучения при облучении клеток смешанным излучением, Гр. Изобретение позволяет осуществить измерение необходимой для планирования бор-нейтронозахватной терапии злокачественных опухолей поглощенной дозы ядер отдачи - суммы доз быстрых нейтронов и тепловых нейтронов. 1 ил., 1 табл.

Изобретение относится к ядерной медицине, в частности, к нейроонкологии, и может быть применено при проведении бор-нейтронозахватной терапии (БНЗТ) злокачественных опухолей для определения поглощенной дозы.

Концепция нейтронозахватной терапии в онкологии была предложена в 1936 году, спустя четыре года после открытия нейтрона. Ее физический принцип заключается в следующем. Раствор, содержащий стабильный изотоп бор-10, вводится в кровь человека, и через некоторое время бор сорбируется преимущественно в клетках опухоли. Затем опухоль облучается потоком эпитепловых нейтронов с энергией от 0,5 эВ до 10 кэВ. В результате поглощения нейтрона стабильным изотопом 10В происходит ядерная реакция, и образующиеся энергетичные α-частица и ион 7Li быстро тормозятся на длине размера клетки, выделяя энергию ~2,3 МэВ в пределах именно той клетки, которая содержала ядро бора, и приводя к ее поражению. Т.о., бор-нейтронозахватная терапия позволяет осуществить избирательное поражение клеток злокачественных опухолей.

Целесообразность развития технологии нейтронозахватной терапии обусловлена ее ориентацией на лечение таких видов злокачественных опухолей, которые практически не поддаются никаким другим методам, - глиобластомы мозга и метастазы меланомы.

Клинические испытания методики БНЗТ проведены на ядерных реакторах, и получены положительные результаты в лечении глиобластомы, меланомы, опухолей шеи, менингиомы, мезотелиомы плевры и гепатоцеллюлярной карциномы [W. Sauerwein, A. Wittig, R. Moss, Y. Nakagawa (Eds.), Neutron Capture Therapy: Principles and Applications (Springer, 2012)].

Широкое внедрение методики в клиническую практику связано с применением ускорителей заряженных частиц из-за их безопасности и возможности формирования терапевтического пучка нейтронов лучшего качества. Наибольшее внимание сосредоточено на двух пороговых реакциях: 7Li(p,n)7Be и 9Ве(р,n)9В, из которых наилучшей признается 7Li(p,n)7Be из-за максимального выхода и минимальной энергии нейтронов [Т. Blue, J. Yanch. Accelerator-based epilhermal neutron sources for boron neutron capture therapy of brain tumors. J. Neuro-Oncol. 62, 19 (2003)].

Нескольким группам исследователей удалось решить проблему создания ускорительного источника нейтронов эпитеплового диапазона энергий, и в настоящее время в мире сооружаются первые пять клиник БНЗТ везде разными командами с разными техническими решениями [С.Ю. Таскаев. Разработка ускорительного источника эпитепловых нейтронов для бор-нейтронозахватной терапии. Физика элементарных частиц и атомного ядра. 50, 657 (2019)].

Одной из основных проблем, требующих решения для внедрения БНЗТ в клиническую практику, является измерение поглощенной дозы.

Вклад в поглощенную дозу дают следующие процессы.

Во-первых, процесс поглощения тепловых нейтронов бором, в результате которого выделяется энергия 2,79 МэВ - в 6,1% случаев энергия распределяется только между ядрами лития и α-частицей, в 93,9% случаев ядро лития вылетает в возбужденном состоянии и испускает γ-квант энергией 0,48 МэВ.

Во-вторых, захват тепловых нейтронов водородом, приводящий к образованию дейтерия и к мгновенному испусканию γ-кванта с энергией 2,2 МэВ; захват тепловых нейтронов хлором, приводящий к мгновенному испусканию γ-кванта с энергией 8,85 МэВ; захват тепловых нейтронов азотом, приводящий к образованию ядра отдачи 14С и протона отдачи с выделением энергии 580 кэВ, и захват нейтронов хлором, приводящий к образованию ядра отдачи 35S и протона отдачи с выделением энергии.

В-третьих, радиационный захват нейтронов натрием, хлором, калием и марганцем, приводящий к их активации с последующим испусканием γ-квантов. В таблице приведены характеристики этих стабильных ядер и радиоактивных ядер, образующихся при поглощении нейтронов.

В-четвертых, появление ядер отдачи при упругом рассеянии нейтронов, преимущественно быстрых, от ядер вещества, преимущественно водорода.

В-пятых, поток γ-квантов из ускорителя, мишени, системы формирования пучка нейтронов и из объекта облучения (пациента). Ускоритель заряженных частиц является источником тормозного излучения из-за неизбежно присутствующих в нем потоков высокоэнергетичных электронов. Литиевая нейтроногенерирующая мишень является источником γ-квантов с энергией 478 кэВ, испускаемых в результате неупругого рассеяния протонов на атомных ядрах лития в реакции 7Li(p,p'γ)7Li и испускаемых в результате распада радиоактивного изотопа бериллий-7, образующегося в реакции генерации нейтронов 7Li(p,n)7Be. Источником γ-квантов с энергией 2,2 МэВ является вода, охлаждающая мишень, из-за поглощения нейтронов водородом в реакции 1H(n,γ)2H. Некоторые конструкционные материалы системы формирования пучка нейтронов активируются под действием нейтронов и являются источниками γ-излучения, как правило значительно меньшего по интенсивности, чем интенсивность излучения ускорителя и мишени. Внутренними источниками γ-излучения служат ядерные реакции поглощения нейтронов водородом и хлором, приводящие к мгновенному испусканию γ-квантов, и ядерные реакции радиационного захвата нейтронов натрием, хлором, калием и марганцем, приводящие к их активации с последующим испусканием γ-квантов.

В БНЗТ принято выделять четыре компоненты поглощенной дозы:

1) Борная доза, обусловленная α-частицами и атомными ядрами лития - продуктами ядерной реакции 10B(n,αγ)7Li. Из-за малой длины пробега частиц эта доза выделяется в малом объеме - в объеме клетки, содержащей ядро бора. В методике БНЗТ, когда бор накапливают преимущественно в опухолевых клетках, борная доза является терапевтической; ее стремятся сделать как можно большей.

2) Доза γ-излучения, обусловленная ионизацией атомов вещества под действием γ-излучения. Источниками γ-квантов являются ускоритель заряженных частиц, нейтроногенерирующая мишень, система формирования пучка нейтронов и облучаемый объект (пациент).

3) Доза быстрых нейтронов, обусловленная ядрами отдачи при упругом рассеянии нейтронов, преимущественно быстрых, на ядрах вещества, преимущественно водорода.

4) Доза тепловых нейтронов, обусловленная ядрами отдачи, преимущественно протонами, ядерной реакции поглощения нейтрона атомным ядром хлора 35Cl(n,p)35S и азота l4N(n,p)l4C. Основной вклад в дозу дает реакция 14N(n,p)l4C из-за большего сечения и большей концентрации азота в организме человека. По этой причине эту дозу от тепловых нейтронов иногда называют «азотной» дозой.

Хотя принято отдельно выделять дозу быстрых нейтронов и дозу тепловых нейтронов, в обоих случаях ионизация вещества осуществляется ядрами отдачи - продуктами упругого рассеяния быстрых нейтронов на атомных ядрах вещества и продуктами ядерной реакции поглощения тепловых нейтронов атомными ядрами хлора и азота. По признаку ионизации вещества ядрами отдачи объединим дозу быстрых нейтронов и дозу тепловых нейтронов в дозу ядер отдачи.

При проведении терапии каждая из этих компонент дает свой вклад в поглощенную дозу, некоторые из них - определяющий вклад. Так, борная доза является определяющей при облучении опухолевых клеток, в которых накоплен бор. Доза быстрых нейтронов значительна для кожи, через поверхность которой направляется поток нейтронов к опухоли. Доза тепловых нейтронов является определяющей в дозе, получаемой клетками здоровых органов, например, клетками мозга при лечении глиобластомы.

Измерение компонентов дозы является важной задачей при проведении БНЗТ.

Методом, который напрямую позволяет измерить борную дозу в опухоли, является γ-спектроскопия, основанная на регистрации γ-кванта энергией 478 кэВ, испускаемого при мгновенном распаде ядра бора после поглощения им нейтрона [Т. Kobayashi, K. Kanda. Microanalysis system of ppm order В-10 concentrations in tissue for neutron capture therapy by prompt gamma-ray spectrometry. Nucl. Instrum. Methods Phys. Res. 204 (1983) 525-531].

Вторым методом, который напрямую позволяет измерить борную дозу в опухоли, является метод, защищенный патентом [С.Ю. Таскаев, А.А. Заборонок. Способ измерения поглощенной дозы при бор-нейтронозахватной терапии злокачественных опухолей. Патент на изобретение №2606337 от 10.01.2017]. В этом методе препарат адресной доставки бора дополнительно маркируют стабильным атомным ядром, активируемым под действием нейтронов. Измерение наведенной активности γ-спектрометром после облучения позволяет восстановить пространственное распределение поглощенной дозы.

Измерить борную дозу в фантоме можно детектором нейтронов со сцинтиллятором, обогащенным бором, например, с малогабаритным литьевым полистирольным сцинтиллятором, специально разработанным для применения в БНЗТ [Т. Bykov, D. Kasatov, A. Koshkarev, A. Makarov, V. Porosev, G. Savinov, I. Shchudlo, S. Taskaev. A multichannel neutron flux monitoring system for a boron neutron capture therapy facility. JINST 14 (2019) P12002]. Поскольку размер разработанного сцинтиллятора небольшой - диаметр 1 мм, длина 1 мм, его можно использовать при проведении терапии, расположив рядом с опухолью.

Таким образом, существует несколько способов измерения борной дозы.

Для измерения дозы γ-излучения широко применяют счетчики Гейгера-Мюллера, например, дозиметр γ-излучения ДБГ-С11Д (ООО «Доза», Дубна, Россия); сцинтилляционные детекторы, например, сцинтилляционные детекторы с кристаллом NaI(Tl) или CaF2 (ООО "Компания «Азимут фотоникс», Москва, Россия); полупроводниковые детекторы, например, спектрометр γ-излучения на основе детектора полупроводникового ППД, выполненного из особо чистого германия типа СЕГ-1КП-ИФТП (Институт физико-технических проблем, Дубна, Россия); термолюминесцентные, например, дозиметры ДТЛ-02 или ТЛД-3 (ООО НПП «Доза», Зеленоград, Россия) и др. Таким образом, существует множество приборов измерения дозы γ-излучения.

Для измерения дозы быстрых нейтронов используют ионизационные камеры деления или детекторы тепловых нейтронов с замедлителем. Однако использование их при проведении БНЗТ невозможно. Так, ионизационные камеры деления с радиатором 238U (АО "НИИТФА», Москва) чувствительны к нейтронам с энергией более 1 МэВ, а в формируемом терапевтическом пучке нейтронов для БНЗТ нейтроны с энергией более 1 МэВ полностью отсутствуют. Обратим внимание на тот факт, что так называемую дозу быстрых нейтронов могут давать и нейтроны эпитеплового диапазона энергий, конечно меньшую, но значимую для планирования БНЗТ. Широко применяемые дозиметры смешанного излучения ДВГН-01 на основе термолюминесцентных детекторов с 7Li и с 6Li (ИФВЭ, Москва) или любые другие дозиметры с замедлителем являются дозиметрами альбедного типа, т.е. их показания существенно зависят от спектра нейтронов. Нейтроны для БНЗТ характеризуются заметно более мягких спектром по сравнению со спектром нейтронов калибровочных источников, а потому эти дозиметры будет давать завышенные показания. Таким образом, методов измерения дозы быстрых нейтронов для БНЗТ нет. При планировании БНЗТ ограничиваются результатами численного моделирования переноса нейтронов.

Способы измерения дозы тепловых нейтронов в результате их захвата атомными ядрами азота и хлора отсутствуют. Конечно, существует множество детекторов, чувствительных к тепловым нейтронам, но для БНЗТ характерна ситуация, когда в терапевтическом пучке нейтронов минимизирован поток тепловых нейтронов. Нейтроны становятся тепловыми уже в процессе их торможения в организме пациента. Вероятность их поглощения атомными ядрами азота и хлора зависит от спектра нейтронов и пространственного распределения концентрации атомных ядер вещества, не только азота и хлора. Поскольку продуктами ядерных реакций 35Cl(n,p)35S и 14N(n,p)14C являются заряженные частицы с малой длиной пробега, то прямого метода их измерения, аналогичного мгновенной γ-спектроскопии при измерении борной дозы, нет. Таким образом, методов измерения дозы тепловых нейтронов для БНЗТ нет. При планировании БНЗТ ограничиваются результатами численного моделирования переноса нейтронов.

Предлагаемое изобретение направлено на создание способа, позволяющего определить поглощенную дозу ядер отдачи - сумму доз быстрых нейтронов и тепловых нейтронов, обеспечивающих ионизацию вещества ядрами отдачи, что крайне актуально для планирования БНЗТ.

Близкого аналога-прототипа у предлагаемого изобретения нет. Вместе с тем, аналогом методического подхода можно считать тот, который реализован при определении относительной биологической эффективности (ОБЭ) ионизирующих излучений. ОБЭ оценивают сравнением дозы излучения, вызывающей определенный биологический эффект, с дозой стандартного излучения, обуславливающий тот же эффект. В качестве стандартного излучения берут γ-излучение, которое широко применяют при лучевой терапии опухолей и для которого известны количественные данные о связи с дозой самых разных эффектов поражения. Значение ОБЭ вычисляют по формуле: ОБЭ=Dγ/Dx, где Dγ - доза γ-излучения, Гр; Dx - доза изучаемого излучения, Гр; при этом эффект сравнивают по одному и тому же показателю.

Сущность предлагаемого изобретения состоит в следующем.

Облучают клеточные культуры γ-излучением и смешанным излучением (нейтронным и γ-излучением), измеряя дозу γ-излучения. Сравнивают дозы γ-излучения, обуславливающие тот же эффект, например, выживаемость. Значение поглощенной дозы ядер отдачи вычисляют по формуле: Dn=Dγ standard-Dγ mixed, где Dn - поглощенная доза ядер отдачи, Гр экв.; Dγ standard - доза γ-излучения при облучении клеток γ-излучением, Гр; Dγ mixed - доза γ-излучения при облучении клеток смешанным излучением, Гр.

Предложенный способ определения поглощенной дозы ядер отдачи для планирования БНЗТ может быть реализован на практике следующим образом.

Берут клеточную культуру, например, клетки глиомы человека, глиобластомы человека, клетки яичника китайского хомячка, фибропласты легких китайского хомячка или другую. Из приведенных четырех культур первые две актуальны для БНЗТ, а последние две широко применяли при исследовании влияния рентгеновского и γ-излучения. При проведении измерений используют клетки, не подвергавшиеся инкубации в среде с бором, т.е. в них не содержится бор и борная доза отсутствует.

Облучают клеточную культуру γ-излучением несколькими дозами, контролируя дозу дозиметром γ-излучения. Облучение можно проводить на ускорительном источнике нейтронов Института ядерной физики СО РАН [С.Ю. Таскаев. Ускорительный источник эпитепловых нейтронов. Физика элементарных частиц и атомного ядра. Том 46, №6 (2015) стр. 1770-1830] при энергии протонов ниже порога реакции 7Li(p,n)7Be, например, 1,85 МэВ - в этом случае излучаются только γ-кванты с энергией 478 кэВ в результате неупругого рассеяния протонов на атомных ядрах лития. После облучения определяют выживаемость клеток, например, с помощью колониеобразующего метода. Строят график зависимости выживаемости клеток от дозы γ-излучения и проводят линию аппроксимации. Кривая 1 на Фиг. 1 показывает возможную зависимость выживаемости клеток от дозы.

Затем облучают клеточную культуру смешанным излучением, в котором присутствуют потоки нейтронов и γ-квантов, контролируя дозу γ-излучения дозиметром γ-излучения. Облучение можно проводить на том же ускорительном источнике нейтронов Института ядерной физики СО РАН при энергии протонов выше порога реакции 7Li(p,n)7Be, например, 2 МэВ - в этом случае к γ-квантам с энергией 478 кэВ добавляется поток нейтронов широкого энергетического спектра, от тепловых до быстрых. После облучения определяют выживаемость клеток, например, с помощью колониеобразующего метода. Строят кривую зависимости выживаемости клеток от дозы γ-излучения и проводят линию аппроксимации. Кривая 2 на Фиг. 1 показывает возможную зависимость выживаемости клеток от дозы γ-излучения при их облучении смешанным излучением.

Далее определяют дозы γ-излучения при облучении γ-излучением и смешанным излучением, приводящие к одинаковому эффекту, например, к 10%-ной выживаемости клеток. Из Фиг. 1 видно, что облучение γ-квантами дозой Dγ standard=1,5 Гр приводит к 10%-ной выживаемости клеток (точка A на Фиг. 1). При облучении смешанным излучением 10%-ая выживаемость клеток достигается при дозе γ-излучения Dγ mixed=1,2 Гр (точка В на Фиг. 1).

Применив формулу Dn=Dγ standard-Dγ mixed, получим, что поглощенная доза ядер отдачи Dn=0,3 Гр экв. Поделив Dn на Dγ standard, получим, что быстрые и тепловые нейтроны за счет ядер отдачи дают вклад в поглощенную дозу, равную 25% от дозы γ-излучения, что может быть использовано при планировании БНЗТ.

Техническим результатом предлагаемого изобретения является измерение необходимой для планирования БНЗТ поглощенной дозы ядер отдачи - суммы доз быстрых нейтронов и тепловых нейтронов.

Источник поступления информации: Роспатент

Показаны записи 11-20 из 59.
29.12.2017
№217.015.fc8c

Способ регистрации малых количеств органических нано- и микрочастиц в биологических тканях

Изобретение относится к области аналитической химии, в частности к масс-спектрометрическим способам измерения концентрации частиц в биологических тканях, и раскрывает способ регистрации органических нано- или микрочастиц в биологических тканях методом ускорительной масс-спектрометрии (УМС)....
Тип: Изобретение
Номер охранного документа: 0002638820
Дата охранного документа: 15.12.2017
19.01.2018
№218.016.0193

Статическое устройство для определения распределения интенсивности поля инфракрасной поверхностной электромагнитной волны вдоль её трека

Изобретение относится к области оптических измерений и касается статического устройства для определения распределения интенсивности поля инфракрасной поверхностной электромагнитной волны (ПЭВ) вдоль ее трека. Устройство включает в себя источник монохроматического излучения, первый фокусирующий...
Тип: Изобретение
Номер охранного документа: 0002629909
Дата охранного документа: 04.09.2017
19.01.2018
№218.016.01d2

Способ определения показателя преломления монохроматической поверхностной электромагнитной волны инфракрасного диапазона

Изобретение относится к области оптических измерений и касается способа определения показателя преломления монохроматической поверхностной электромагнитной волны инфракрасного диапазона. Способ включает в себя генерацию волны на плоской поверхности образца, размещение на пути волны плоского...
Тип: Изобретение
Номер охранного документа: 0002629928
Дата охранного документа: 04.09.2017
19.01.2018
№218.016.0e6f

Способ приготовления микроволокнистого катализатора

Изобретение относится к области химической промышленности, к новым способам синтеза катализаторов, которые могут использоваться, в частности, для глубокого окисления (дожигания) СО, органических и галогенорганических соединений, окисления сероводорода и диоксида серы, восстановления оксидов...
Тип: Изобретение
Номер охранного документа: 0002633369
Дата охранного документа: 12.10.2017
19.01.2018
№218.016.0eb3

Способ определения размеров газовых кластеров в сверхзвуковом газовом потоке

Использование: для обработки материалов и осаждения покрытий. Сущность изобретения заключается в том, что способ определения размеров газовых кластеров в сверхзвуковом газовом потоке включает истечение газа из звукового или сверхзвукового сопла, формирование кластерного пучка с помощью конусной...
Тип: Изобретение
Номер охранного документа: 0002633290
Дата охранного документа: 11.10.2017
20.01.2018
№218.016.0f4a

Волоконный задающий генератор

Изобретение относится к лазерной технике. Волоконный задающий генератор содержит источник накачки и резонатор, состоящий из двух волоконных частей - активной нелинейной петли и длинной линейной части, соединяющихся посредством четырехпортового волоконного ответвителя; активная петля образует...
Тип: Изобретение
Номер охранного документа: 0002633285
Дата охранного документа: 11.10.2017
13.02.2018
№218.016.22d6

N-[3-оксолуп-20(29)-ен-28-оил]-2,2,6,6-тетраметилпиперидин-4-иламин, обладающий цитотоксической активностью в отношении опухолевых клеток человека

Изобретение относится к N-[3-оксолуп-20(29)-ен-28-оил]-2,2,6,6-тетраметилпиперидин-4-иламину структурной формулы обладающему цитотоксической активностью в отношении опухолевых клеток человека. Технический результат: получено новое соединение, обладающее способностью подавлять рост опухолевых...
Тип: Изобретение
Номер охранного документа: 0002641900
Дата охранного документа: 23.01.2018
10.05.2018
№218.016.38dd

Способ анализа спектрально-временной эволюции излучения

Способ анализа спектрально-временной эволюции излучения включает в себя получение сигнала оптического гетеродина, измерение интенсивности сигнала, получение аналитической формы сигнала при помощи гильбертова дополнения. Далее вычисляют автокорреляционную функцию методом быстрого преобразования...
Тип: Изобретение
Номер охранного документа: 0002646940
Дата охранного документа: 12.03.2018
10.05.2018
№218.016.3ac3

Композиция, обладающая иммуностимулирующим действием для сублингвального применения

Изобретение относится к фармацевтической промышленности и медицине, в частности иммунологии, и представляет собой композицию, обладающую иммуностимулирующим действием для сублингвального применения, состоящую из двуспиральной РНК бактериофага Ф6 в количестве 0,5±0,1 мг, одноцепочечной дрожжевой...
Тип: Изобретение
Номер охранного документа: 0002647455
Дата охранного документа: 15.03.2018
10.05.2018
№218.016.4304

Способ измерения пространственно-временной эволюции излучения

Изобретение относится к методам спектроскопии высокого разрешения и пространственно-временного анализа оптического излучения со сложной структурой и относительно быстрой эволюцией. Оно может быть использовано при проведении научных и прикладных исследований лазерных систем, в том числе...
Тип: Изобретение
Номер охранного документа: 0002649643
Дата охранного документа: 04.04.2018
Показаны записи 11-13 из 13.
22.12.2019
№219.017.f0cb

Способ определения поглощенной дозы от тепловых нейтронов при бор-нейтронозахватной терапии злокачественных опухолей

Изобретение относится к ядерной медицине, а именно к нейроонкологии, и может быть использовано для определения поглощенной дозы от тепловых нейтронов при бор-нейтронозахватной терапии злокачественных опухолей. Вводят пациенту препарат адресной доставки бора. Облучают потоком эпитепловых...
Тип: Изобретение
Номер охранного документа: 0002709682
Дата охранного документа: 19.12.2019
04.05.2020
№220.018.1b64

Способ получения композиции для бор-нейтронозахватной терапии злокачественных опухолей (варианты)

Группа изобретений относится к области медицины, а именно к способу получения композиции для бор-нейтронозахватной терапии злокачественных опухолей, содержащей наночастицы бора размером менее 100 нм, характеризующемуся тем, что порошок элементного бора помещают в воду и обрабатывают в течение...
Тип: Изобретение
Номер охранного документа: 0002720458
Дата охранного документа: 30.04.2020
07.06.2020
№220.018.2534

Способ получения пучка эпитепловых нейтронов

Изобретение относится к ядерной медицине, в частности к нейроонкологии, и может быть применено при проведении бор-нейтронозахватной терапии (БНЗТ) злокачественных опухолей для определения поглощенной дозы. Способ получения пучка эпитепловых нейтронов, включающий облучение пучком протонов...
Тип: Изобретение
Номер охранного документа: 0002722965
Дата охранного документа: 05.06.2020
+ добавить свой РИД