×
16.05.2023
223.018.60f8

Результат интеллектуальной деятельности: Термостойкий электропроводный алюминиевый сплав (варианты)

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, в частности к сплаву на основе алюминия, и может быть использовано при получении изделий электротехнического назначения при производстве кабельно-проводниковой продукции для электропроводки зданий и сооружений. Термостойкий электропроводный алюминиевый сплав содержит легирующие элементы в следующем соотношении, мас. %: по первому варианту скандий 0,05-0,2, иттрий 0,18-0,2, остальное - алюминий; по второму варианту скандий 0,18-0,22, иттрий 0,18-0,22, иттербий 0,28-0,32, остальное - алюминий; по третьему варианту скандий 0,05-0,2, эрбий 0,25-0,32, иттербий 0,25-0,35, остальное - алюминий. Техническим результатом изобретения является повышение прочности и электропроводности сплава, а также значительное повышение термической стабильности до температуры 300 °С. 3 н.п. ф-лы, 3 ил., 3 табл.

Изобретение относится к области металлургии, в частности к сплавам на основе алюминия, и может быть использовано при получении изделий электротехнического назначения при производстве кабельно-проводниковой продукции для электропроводки зданий и сооружений.

Известны промышленные алюминиевые сплавы А5Е, А7Е (ГОСТ 11069-2001), ABE (ГОСТ 20967-75) и один из американских аналогов сплав 1350, которые широко применяют при производстве изделий электротехнического назначения. Например, технически чистый алюминий марок А5Е (аналог сплав 1350) и А7Е используют для изготовления токопроводящих кабелей и проводов линий электропередач. Эти сплавы имеют высокую электропроводность и коррозионную стойкость. Сплав ABE, дополнительно легированный магнием для упрочнения закалкой и старением, имеет более высокую прочность.

Недостатками описанных выше сплавов является недостаточная прочность, особенно при повышенных температурах, высокая склонность к разупрочнению при нагревах свыше 100°С.

Известен сплав Al-0.35Sc-0.2Zr (A high-strength, ductile Al-0.35Sc-0.2Zr alloy with good electrical conductivity strengthened by coherent nanosized-precipitates. J. Mater. Sci. Technol. 33 (2017) 215-223), который имеет высокий предел прочности 210 МПа при удлинении 7,6% и электропроводности 60,2%IACS.

Недостатком данного сплава является очень высокое содержание скандия и относительно невысокая пластичность.

Известен алюминиевый сплав следующего состава в мас. %: по крайней мере один легирующий компонент, выбранный из группы La, Се, Nd, Pr 7,0-9,0, железо 0,05-0,1, кремний 0,05-0,1, алюминий - остальное (RU 2616316, опубл. 14.04.2017) с ультрамелкозернистой структурой и высокой прочностью.

Недостатком этого сплава является очень высокое содержание дорогостоящих металлов и низкая электропроводность не более 52,6%IACS.

Известен термостойкий сплав на основе алюминия (ЕР 0787811, опубл. 06.08.1997), содержащий в мас. %: Zr 0,28-0,50, Si 0,16-0,30, Cu 0,1-0,4, Mn 0,15-0,80, сочетающий неплохую прочность и электропроводность (270 МПа и 55%IACS).

Недостатком является очень высокая склонность к разупрочнению при температурах выше 150°С.

Наиболее близким к предлагаемому изобретению является сплав состава в мас. %: цирконий 0,2-0,32; железо 0,15-0,42; кремний 0,02-0,1; титан, хром, ванадий, марганец в сумме 0,01-0,04; магний, медь, цинк в сумме 0,01-0,07; бор 0,001-0,01; один из редких или редкоземельных металлов из группы: ниобий, церий, иттрий, скандий 0,005-0,2; алюминий -остальное (RU 2639284, опубл. 20.12.2017), имеющий неплохую электропроводность (не менее 58,5%IACS).

Недостатком является весьма небольшая прочность до 160 МПа.

Техническим результатом изобретения является повышение прочности и электропроводности сплава до предела прочности не менее 140 МПа при электропроводности не менее 60%IACS и предел прочности не менее 220 МПа при электропроводности не менее 54%IACS, а также значительное повышение термической стабильности вплоть до 300°С.

Указанный технический результат достигается в первом варианте изобретения за счет того, что в термостойком электропроводном алюминиевом сплаве, содержащем легирующие элементы, последние состоят из скандия и иттрия при следующем компонентом составе, масс. %:

скандий 0,05-0,2
иттрий 0,18-0,2
остальное алюминий,

при этом структура сплавов состоит из эвтектических частиц фазы Al3Y, размером до 200 нм и дисперсоидов фазы Al3(Y,Sc), размером до 10 нм.

Указанный технический результат достигается во втором варианте изобретения за счет того, что в термостойком электропроводном алюминиевом сплаве, содержащем легирующие элементы, последние состоят из скандия, иттрия и иттербия при следующем компонентом составе, масс. %:

скандий 0,18-0,22
иттрий 0,18-0,22
иттербий 0,28-0,32
остальное алюминий,

при этом структура сплавов состоит из эвтектических частиц фазы Al3(Y,Yb) размером до 200 нм и дисперсоидов фазы Al3(Y,Yb,Sc), размером до 10 нм.

Указанный технический результат достигается в третьем варианте изобретения за счет того, что в термостойком электропроводном алюминиевом сплаве, содержащем легирующие элементы, последние состоят из скандия, эрбия и иттербия при следующем компонентом составе, масс. %:

скандий 0,05-0,2
эрбий 0,25-0,32
иттербий 0,25-0,35
остальное алюминий,

при этом структура сплавов состоит из эвтектических частиц фазы Al3(Er,Yb) размером до 200 нм и дисперсоидов фазы Al3(Er,Yb,Sc), размером до 10 нм.

Изобретение поясняется чертежом, где:

на фиг. 1 представлена микроструктура слитка сплава AlErYbSc и распределение элементов между фазами (растровая и просвечивающая электронная микроскопия)

на фиг. 2 представлены кинетические кривые твердости слитков сплавов в процессе отжига: а - AlYSc02, б - AlYScYb, в - AlErYbSc.

на фиг. 3 представлена тонкая структура сплава AlErYbSc после отжига при 300°С в течение 1 часа.

Осуществление изобретения состоит в следующем.

Для достижения поставленной задачи предлагается следующая технология получения сплава: в расплав алюминия марки А99 при температуре 750-800°С вводятся последовательно легирующие элементы в виде лигатур Al-Sc, Al-Y, Al-Er, Al-Yb. После введения легирующих элементов расплав перемешивают и заливают при температуре 750-800°С.

Отжиг слитков проводят при температурах 300-370°С в течение 1-8 часов. Далее следует обработка давлением и последующий отжиг. Обработка давление включает горячую прокатку при температурах 300-370°С (степень обжатия 50%) и последующую холодную прокатку (общая степень обжатия до 95%). Отжиг после прокатки проводят при температуре 300°С в течение 1-100 часов.

Исследование структуры сплавов проводили с использованием светового, растрового и просвечивающего электронного микроскопов. Оценку механических свойств проводили по результатам измерения твердости методом Виккерса (HV) и испытаний на одноосное растяжение. Электросопротивление измеряли методом «двойного моста» с использованием миллиомметра.

Составы сплавов в рамках заявленного диапазона представлены в таблице 1.

Литая микроструктура представлена фиг. 1 на примере сплава AlErYbSc. При кристаллизации скандий растворяется в алюминиевом твердом растворе полностью, концентрация иттрия, эрбия и иттербия в твердом растворе составляет 0,1-0,25%. Иттрий, эрбий и иттербий совместно или отдельно образуют с алюминием при кристаллизации эвтектическую фазу Al3M размером от 20 до 200 нм, где М - иттрий и/или эрбий и/или иттербий. Кинетические кривые твердости слитков сплавов в процессе отжига при температурах 300, 370, 400, 440°С на примере сплавов AlYSc02 (a), AlYScYb (б), AlErYbSc (в) показаны на фиг. 2. По кинетическим кривым для каждой композиции выбраны режимы отжига перед прокаткой, обеспечивающие максимальный прирост твердости. Режимы отжига слитков представлены в таблице 2. Упрочнение в процессе отжига слитков происходит за счет выделения дисперсоидов L12 фазы Al3M размером до 10 нм, где М - скандий и/или иттрий и/или эрбий и/или иттербий. На фиг. 3 на примере сплава AlYbErSc02 показана тонкая структура с дисперсоидами L12 фазы Al3(Yb,Er,Sc) размером до 9 нм, полученной после отжига при 300°С в течение 1 часа.

В таблице 3 представлены результаты испытаний на одноосное растяжение и электропроводность деформированных листов в нагартованном и отожженном при 300°С состояниях.

Таблица 3. Характеристики механических свойств на растяжение и электропроводность

Для достижения предела прочности не менее 140 МПа при электропроводности не менее 60% IACS в отожженном состоянии термостойкий электропроводный алюминиевый сплав содержит следующие компоненты, масс. %: скандий 0,05 и иттрий 0,2 или скандий 0,05 и эрбий 0,25 и иттербий 0,35, остальное алюминий

Для достижения предела прочности не менее 190 МПа при электропроводности не менее 60% IACS в отожженном состоянии термостойкий электропроводный алюминиевый сплав содержит следующие компоненты, масс. %: скандий 0,18 и иттрий 0,18, остальное алюминий.

Для достижения предела прочности не менее 220 МПа при электропроводности не менее 54% IACS в отожженном состоянии термостойкий электропроводный алюминиевый сплав содержит следующие компоненты, масс. %: скандий 0,2 и иттрий 0,2 и иттербий 0,3 или скандий 0,2, эрбий 0,32 и иттербий 0,25, остальное алюминий.

Предлагаемое изобретение представляет новый термостойкий электропроводный алюминиевый сплав, который сочетает высокую прочность и электропроводность при очень высокой термической стабильности вплоть до 300°С. Предлагаемый сплав позволит повысить срок эксплуатации изделий электротехнического назначения, что определяется его вышеуказанными свойствами.

Источник поступления информации: Роспатент

Показаны записи 281-290 из 322.
21.11.2019
№219.017.e456

Способ лечения онкологических заболеваний с помощью инъекций лекарственного препарата

Изобретение относится к области медицины, а именно, к онкологии и может быть использовано при лечении опухолей. Способ включает введение водосодержащей суспензии липосом одинакового диаметра с инкапсулированным противоопухолевым лекарственным препаратом. Перед введением суспензии липосом...
Тип: Изобретение
Номер охранного документа: 0002706427
Дата охранного документа: 19.11.2019
01.12.2019
№219.017.e8e8

Способ интенсификации дегазации угольного пласта

Изобретение относится к горной промышленности и может быть использовано для дегазации угольных пластов с целью повышения безопасности работ в угольных шахтах, а также для добычи метана из угольных пластов с последующим использованием его в промышленности. Для реализации способа бурят...
Тип: Изобретение
Номер охранного документа: 0002707825
Дата охранного документа: 29.11.2019
01.12.2019
№219.017.e90e

Тест-система для визуального полуколичественного иммунохроматографического анализа

Изобретение относится к устройствам для иммунохроматографического анализа и может быть использовано в биотехнологии и медицинской диагностике для полуколичественного визуального определения биологически активных веществ. Раскрыта тест-система для визуального полуколичественного...
Тип: Изобретение
Номер охранного документа: 0002707526
Дата охранного документа: 27.11.2019
12.12.2019
№219.017.ec05

Гибридная металлополимерная конструкция медицинского назначения

Изобретение относится к медицине. Гибридная металлополимерная конструкция для замещения костных дефектов трубчатых костей содержит сплошной внешний слой из сверхвысокомолекулярного полиэтилена и пористый слой из сверхвысокомолекулярного полиэтилена с размером пор 50-1000 мкм. Конструкция...
Тип: Изобретение
Номер охранного документа: 0002708528
Дата охранного документа: 09.12.2019
12.12.2019
№219.017.ec3f

Способ получения трехмерных изделий сложной формы со структурой нативной трабекулярной кости на основе высоковязкого полимера

Изобретение относится к способу получения трехмерных изделий сложной формы. Техническим результатом является наибольшее соответствие полученного изделия структуре нативной трабекулярной кости. Технический результат достигается способом получения трехмерных изделий сложной формы, который...
Тип: Изобретение
Номер охранного документа: 0002708589
Дата охранного документа: 09.12.2019
19.12.2019
№219.017.ef4f

Способ обработки технически чистого титана большой пластической деформацией

Изобретение относится к области получения наноструктурного технически чистого титана с повышенными механическими и коррозионными свойствами и способу его обработки и может быть использовано в различных областях техники, в том числе в химической промышленности. Способ обработки технически...
Тип: Изобретение
Номер охранного документа: 0002709416
Дата охранного документа: 17.12.2019
27.12.2019
№219.017.f2a1

Способ безуглеродного селективного извлечения цинка и свинца из пыли электросталеплавильного производства и устройство для его реализации

Изобретение относится к технологии и устройству для селективного получения цинка и свинца (или их оксидов) из пыли металлургического производства и отходов производства цинка аналогичного состава. Непрерывное безуглеродное селективное извлечение цинка и свинца из пыли электросталеплавильного...
Тип: Изобретение
Номер охранного документа: 0002710250
Дата охранного документа: 25.12.2019
13.01.2020
№220.017.f4b4

Способ выплавки среднеуглеродистого ферромарганца

Изобретение относится к черной металлургии и может быть использовано при выплавке среднеуглеродистого ферромарганца. В способе осуществляют расплавление марганцевого концентрата и дефосфорацию марганецсодержащего оксидного расплава путем продувки расплава газообразным монооксидом углерода, при...
Тип: Изобретение
Номер охранного документа: 0002710706
Дата охранного документа: 09.01.2020
17.01.2020
№220.017.f6a9

Импульсный стабилизатор напряжения с защитой от перегрузок по току

Предлагаемое изобретение относится к электротехнике и может быть использовано при создании блоков питания радиоаппаратуры и регулируемых микроэлектроприводов постоянного тока. Техническим результатом данного изобретения является повышение надежности функционирования и КПД за счет исключения...
Тип: Изобретение
Номер охранного документа: 0002711138
Дата охранного документа: 15.01.2020
27.01.2020
№220.017.fad5

Способ выплавки передельного малофосфористого марганцевого шлака с получением товарного низкофосфористого углеродистого ферромарганца

Изобретение относится к черной металлургии и может быть использовано при выплавке передельного малофосфористого марганцевого шлака с получением товарного низкофосфористого углеродистого ферромарганца. В способе осуществляют расплавление марганцевого концентрата в электропечи и последующую...
Тип: Изобретение
Номер охранного документа: 0002711994
Дата охранного документа: 23.01.2020
Показаны записи 1-3 из 3.
27.01.2015
№216.013.20f6

Способ получения лигатуры алюминий-фосфор

Изобретение относится к цветной металлургии и может быть использовано для получения сплавов на основе алюминия. Способ включает получения лигатуры алюминий-фосфор в виде таблеток состава, мас.%: фосфор 1,5-3,5, железо 6,0-16, алюминий остальное. При этом осуществляют перемешивание алюминиевых...
Тип: Изобретение
Номер охранного документа: 0002539886
Дата охранного документа: 27.01.2015
29.12.2017
№217.015.f732

Композиционный материал на основе алюминиевого сплава, армированный карбидом бора, и способ его получения

Изобретение относится к области металлургии, преимущественно к плавке и литью сплавов цветных металлов, и предназначено для изготовления композиционных материалов на основе алюминиевого сплава с низким коэффициентом термического расширения для деталей автомобилестроения. Композиционный материал...
Тип: Изобретение
Номер охранного документа: 0002639088
Дата охранного документа: 19.12.2017
11.10.2018
№218.016.8fcd

Коррозионно-стойкий материал с повышенным содержанием бора

Изобретение относится к области металлургии, а именно к коррозионно-стойким нейтроно-поглощающим сплавам на основе железа, используемым для изготовления стеллажей уплотненного хранения топлива. Сплав содержит углерод, марганец, кремний, хром, бор, титан, цирконий и железо при следующем...
Тип: Изобретение
Номер охранного документа: 0002669261
Дата охранного документа: 09.10.2018
+ добавить свой РИД