×
16.05.2023
223.018.60a4

Результат интеллектуальной деятельности: МОЩНЫЙ КОНЦЕНТРАТОРНЫЙ ФОТОЭЛЕКТРИЧЕСКИЙ МОДУЛЬ

Вид РИД

Изобретение

Аннотация: Концентраторный фотоэлектрический модуль содержит монолитную фронтальную панель (3), боковые стенки (1) и тыльную панель (2), по меньшей мере один первичный оптический концентратор (4), по меньшей мере один вторичный оптический концентратор в форме фокона (9), меньшим основанием обращенным к фотоэлектрическому элементу (10) с теплоотводящим элементом (11), размещенным на фронтальной поверхности тыльной панели (2). Большее основание фокона (9) закрыто пластиной (12) из силикатного стекла, прикрепленной оптическим силиконом-герметиком к граням большего основания фокона (9). Противолежащие грани большего основания фокона (9) снабжены L-образными лепестками (7), горизонтальные полки (8) которых закреплены на теплоотводящем элементе (11) для образования зазора между меньшим основанием фокона (9) и светочувствительной поверхностью фотоэлектрического элемента (10). Области контактов (16) к фотоэлектрическому элементу (10), к теплоотводящему элементу (11) и пространства между гранями меньшего основания фокона (9) и несветочувствительными поверхностями фотоэлектрического элемента (10) заполнены слоем оптического силикона-герметика (18). Концентраторный фотоэлектрический модуль имеет высокую надежность и длительный срок службы при сохранении высокой эффективности преобразования солнечного излучения в электроэнергию. 6 з.п. ф-лы, 5 ил.

Изобретение относится к области солнечной энергетики, в частности к концентраторным солнечным фотоэлектрическим модулям, применяемым в наземных гелиоэнергетических установках, предназначенных для систем автономного энергоснабжения. Одним из наиболее перспективных методов получения электроэнергии из возобновляемых источников является фотоэлектрическое преобразование концентрированного солнечного излучения с использованием дорогостоящих высокоэффективных многокаскадных фотоэлектрических преобразователей и относительно недорогих оптических концентраторов. Использование высокоэффективных оптических концентраторов, обеспечивающих степень концентрации солнечного излучения свыше 500 крат, позволяет получать высокий КПД преобразования солнечного излучения в электричество при существенном сокращении площади солнечных фотоэлектрических элементов.

Из существующего уровня техники известен фотоэлектрический модуль с наноструктурным фотоэлектрическим элементом (см. патент RU2436192, МПК H01L 31/052, В82В 1/00, опубликован 10.12.2011), содержащий первичный оптический концентратор в виде линзы Френеля (ЛФ), оптическая ось которой проходит через центр фотоактивной области наноструктурного фотоэлектрического элемента и соосный с ним вторичный концентратор. Вторичный концентратор состоит из фронтального оптического элемента в виде части сферы, промежуточного оптического элемента с параллельными фронтальной и тыльной поверхностями и тыльного оптического элемента, выполненного в виде цилиндра.

Фотоэлектрический модуль обладает высокими фотоэлектрическими характеристиками. Недостаток известного модуля состоит в сложности и высокой стоимости изготовления вторичного концентратора с необходимой точностью.

Известен солнечный фотоэлектрический модуль с концентратором (см. патент RU2444809, МПК H01L 31/052, опубликован 10.03.2012), содержащий ЛФ с концентрическим рабочим профилем и установленный в фокальной плоскости фотоэлектрический элемент с устройством охлаждения. Концентратор составлен из последовательного набора секторов исходной концентрической ЛФ, с равномерным распределением концентрированного излучения на кольцеобразной фокальной области. Исходная концентрическая ЛФ состоит из двух зон с рабочими профилями. Рабочие профили чередуются под разным наклоном в фокальной плоскости кольцеобразной фокальной области Исходная линза разрезана по радиусу на определенное количество секторов и представляет собой плоскую ЛФ прямоугольной формы, в которой соседние секторы установлены встречно друг другу с равномерным распределением концентрированного излучения на линейчатом фотоэлектрическом приемнике в фокальной плоскости. Фотоэлектрический приемник выполнен в виде линейки из скоммутированных высоковольтных фотоэлектрических элементов и симметрично установлен на вторичном омегообразном параболоцилиндрическом концентраторе.

Изобретение обеспечивает повышение КПД преобразования и снижение стоимости вырабатываемой энергии, однако достигается этот эффект усложненной конструкцией концентраторов.

Известен солнечный фотоэлектрический концентраторный модуль (см. патент RU2641627, МПК H01L 31/054, опубликован 18.01.2018), содержащий первичный оптический концентратор в виде ЛФ, с линейным размером D, оптическая ось которой проходит через центр фотоактивной области фотоэлектрического элемента, выполненной в виде круга диаметром d, и соосный с ним вторичный концентратор, выполненный в виде четвертьволнового радиального градана диаметром d и высотой h1, установленный на расстоянии h2 от фронтальной поверхности ЛФ, при этом величины h1, h2, и D удовлетворяют определенным соотношениям.

Солнечный фотоэлектрический концентраторный модуль обеспечивает формирование фотоэлектрического модуля с повышенной надежностью, с увеличенным сроком службы и высокой производительностью энергии за счет выравнивания освещенности фотоактивной области и уменьшения локальной концентрации солнечного излучения. Недостатком известного солнечного фотоэлектрического концентраторного модуля является сложность выдерживания всех соотношений между элементами конструкции при изготовлении модуля.

Известен концентраторный фотоэлектрический модуль (см. заявка US2016204736, МПК H02S 0/32; H02S 40/22, опубликована 14.07.2016), состоящий из первичного концентратора, фотоэлектрического элемента и вторичного концентратора. Вторичный концентратор включает в себя вторичную линзу и прозрачное покрытие с коэффициентом преломления выше, чем у воздуха, и ниже, чем у вторичной линзы, причем оно покрывает, по крайней мере, поверхность вторичной линзы в виде тонкой пленки, на которую падает солнечное излучение.

Недостатками известного солнечного фотоэлектрического модуля являются технические сложности изготовления, монтажа и юстировки большого количества оптических деталей и, как следствие этого, высокая стоимость конструкции.

Известен концентраторный фотоэлектрический модуль (см. заявка US20140261627, МПК H01L 31/052, опубликована 18.09.2014), включающий в себя подложку, множество концентраторных фотоэлектрических элементов на поверхности подложки и концентраторную оптику, расположенную над поверхностью подложки и фокусирующую свет на концентраторные фотоэлектрические элементы. На поверхности подложки между концентраторными фотоэлектрическими элементами расположено также множество неконцентраторных фотоэлектрических элементов которые освещаются светом, проходящим вне оси концентраторной оптики.

Известный концентраторный фотоэлектрический модуль достаточно сложен в изготовлении.

Известен концентраторный фотоэлектрический модуль (см. заявка WO2006128417, МПК H01L 31/052, опубликована 07.12.2006), содержащий боковые стенки и фронтальную светопрозрачную панель с первыми фокусирующими солнечное излучение оптическими элементами на ее тыльной стороне, светопрозрачную промежуточную панель со вторыми фокусирующими солнечное излучение оптическими элементами и тыльную панель с солнечными фотоэлектрическими элементами.

Наличие промежуточной светопрозрачной панели увеличивает оптические потери на отражение от этой панели и повышает стоимость известного концентраторного модуля.

Известен концентраторный фотоэлектрический модуль (см. патент RU2352023, МПК H01L 31/052, опубликован 10.04.2009), совпадающий с настоящим техническим решением по наибольшему числу существенных признаков и принятый за прототип. Концентраторный фотоэлектрический модуль включает монолитную фронтальную панель, боковые стенки и тыльную панель, первичные оптические концентраторы и вторичные оптические концентраторы. первичные оптические концентраторы выполнены в форме соприкасающихся друг с другом линз, сформированных в виде тыльной поверхности фронтальной панели. Вторичные оптические концентраторы выполнены в виде фоконов, установленных меньшим основанием на светочувствительных поверхностях фотоэлектрических элементов с теплоотводящими элементами, размещенных на фронтальной поверхности тыльной панели соосно соответствующим первичным оптическим концентраторам.

Известный концентраторный фотоэлектрический модуль-прототип имеет высокую эффективность преобразования солнечного излучения в электроэнергию. Недостатками известного концентраторного фотоэлектрического модуля являются сложность изготовления и монтажа вторичных оптических концентраторов на светочувствительных поверхностях фотоэлектрических элементов. Возникающие при этом механические напряжения и отсутствие герметизации торцевой области фотоэлектрического элемента и мест монтажа фотоэлектрического элемента при длительной эксплуатации приводят к его деградации и к снижению эффективности преобразования солнечного излучения.

Задачей настоящего технического решения является разработка концентраторного фотоэлектрического модуля, который бы имел высокую надежность и длительный срок службы при сохранении высокой эффективности преобразования солнечного излучения в электроэнергию.

Поставленная задача решается тем, что концентраторный фотоэлектрический модуль включает монолитную фронтальную панель, боковые стенки и тыльную панель, по меньшей мере один первичный оптический концентратор и по меньшей мере один вторичный оптический концентратор в форме фокона. Первичный оптический концентратор выполнен в форме линзы, сформированной в виде тыльной поверхности фронтальной панели. Фокон меньшим основанием обращен к светочувствительной поверхности фотоэлектрического элемента с теплоотводящим элементом, размещенном на фронтальной поверхности тыльной панели, соосно соответствующему первичному оптическому концентратору. Новым в концентраторном фотоэлектрическом модуле является то, что противолежащие грани большего основания фокона снабжены L-образными лепестками для образования зазора между меньшим основанием фокона и светочувствительной поверхностью фотоэлектрического элемента, горизонтальные полки L-образных лепестков закреплены на фронтальной поверхности теплоотводящего элемента, выполненного в виде теплопроводящей алюмооксидной панели, большее основание фокона закрыто пластиной из силикатного стекла, прикрепленной оптическим силиконом-герметиком к граням большего основания фокона, а области контактов к фотоэлектрическому элементу, к теплопроводящей алюмооксидной панели и пространства между гранями меньшего основания фокона и несветочувствительными поверхностями фотоэлектрического элемента закрыты слоем оптического силикона-герметика.

Линза первичного оптического концентратора может быть выполнена из силикона на фронтальной панели из силикатного стекла.

Линза первичного оптического концентратора может быть выполнена в виде линзы Френеля (ЛФ).

Теплопроводящая алюмооксидная панель может быть выполнена толщиной (0,2-1,0) мм и с двух сторон покрыта слоем меди.

Фотоэлектрический элемент может быть выполнен из трехкаскадной GaInP/GaAs/Ge гетероструктуры.

Фокон может быть выполнен в виде полой усеченной пирамиды или полого усеченного конуса.

Фокон может быть выполнен из анодированного алюминиевого листа толщиной (0,3-1,0) мм с зеркально полированной внутренней поверхностью.

Сущность настоящего технического решения поясняется чертежами, где:

на фиг. 1 приведен в аксонометрии поперечное сечение многоэлементного варианта настоящего концентраторного фотоэлектрического модуля;

на фиг. 2 схематично изображены в аксонометрии фокон и фотоэлектрический элемент, установленные на фронтальной поверхности теплоотводящей алюмооксидной панели;

на фиг. 3 показан в разрезе фокон и фотоэлектрический элемент, установленные на фронтальной поверхности теплоотводящей алюмооксидной панели, закрепленной на тыльной панели;

на фиг. 4 приведена фотография одноэлементного концентраторного фотоэлектрического модуля, в котором в качестве первичного концентратора использована ЛФ, а электрогенерирующая панель содержит фотоэлектрический элемент на основе трехкаскадной GaInP/GaAs/Ge гетероструктуры с фоконом из анодированного алюминиевого листа толщиной 0,5 мм, установленные на теплоотводящей алюмооксидной панели.

На фиг. 5 изображен 32-х элементный концентраторный фотоэлектрический модуль, в котором в качестве первичных концентраторов использована линзовая панель, состоящая из 32 ЛФ, а электрогенерирующая панель содержит 32 фотоэлектрических элемента с фоконами, установленными на 32-х теплоотводящих алюмооксидных панелях.

Настоящий концентраторный фотоэлектрический модуль (см. фиг. 1-фиг. 3) в многоэлементном варианте содержит боковые стенки 1, тыльную панель 2, например, из алюминия и монолитную фронтальную панель 3, например, из силикатного стекла, на тыльной поверхности которой путем литья под давлением, например, из силикона сформированы соприкасающихся друг с другом первичные оптические концентраторы 4. Первичные оптические концентраторы 4 могут быть выполнены в форме квадратных плосковыпуклых линз или квадратных ЛФ, а также в форме правильных шестиугольных плоско-выпуклых линз (см. фиг. 1). Вторичные оптические концентраторы выполнены в виде закрепленных L-образными лепестками 7 с горизонтальными полками 8 фоконов 9, установленных меньшим основанием с зазором над светочувствительными поверхностями фотоэлектрических элементов 10, например, выполненных из трехкаскадной GaInP/GaAs/Ge гетероструктуры с теплоотводящими элементами 11, выполненными в виде теплопроводящих алюмооксидных панелей, например, толщиной (0,2-1,0) мм. Фокон 9 может быть выполнен, например, в виде полой усеченной пирамиды или полого усеченного конуса. Закрепленные горизонтальными полками 8 L-образных лепестков 7 фоконы 9 расположены с зазором над светочувствительными поверхностями фотоэлектрических элементов 10 с теплоотводящими элементами 11 (см. фиг. 3), размещенных на фронтальной поверхности тыльной панели 2, соосно соответствующим первичным оптическим концентраторам 4. Высота фоконов 9 может быть в пределах (5-25) мм. Диаметр большего основания фоконов 9 может быть (3-20) мм. Диаметр меньшего основания фоконов 9 может быть (1-5) мм. Первичные оптические концентраторы 4 могут иметь фокусное расстояние в пределах (8-25) см. Вторичные оптические концентраторы в виде фоконов 9 могут быть выполнены, например, из анодированного алюминиевого листа толщиной (0,3-1,0) мм с зеркально полированной внутренней поверхностью. При этом большие основания фоконов 9 (см. фиг. 3) закрыты пластинами 12, выполненными из силикатного стекла, например, с антиотражающими покрытиями 13, 14 на обеих сторонах пластины 12. В боковых противолежащих стенках 1 фотоэлектрического модуля выполнены отверстия 15 для сообщения с окружающей средой внутреннего пространства модуля. Несветочувствительные поверхности фотоэлектрического элемента 10, области контактов 16 к фотоэлектрическому элементу 10 и контактов 17 к теплоотводящему элементу 11, зазоры между между гранями меньшего основания фокона 9 и несветочувствительными поверхностями фотоэлектрического элемента 10 закрыты слоем 18 силикона-герметика. Таким образом, фотоэлектрические элементы 10, прикрепленные к теплоотводящему элементу 11, герметизированы от воздействия внешней среды. Пластины 12 прикреплены слоем 19 оптического силикона-герметика к граням большего основания фокона 9. Горизонтальные полки 8 L-образных лепестков 7 прикреплены к поверхности теплоотводящего элемента 11 слоем 20 силикона. Теплопроводящие элементы 11 с одной или с двух сторон покрыты слоем 21 меди. Теплоотводящие элементы 11 прикреплены к фронтальной поверхности тыльной панели 2 слоем 22 силикона.

При работе настоящего концентраторного фотоэлектрического модуля, ориентированного перпендикулярно солнечным лучам, первичные оптические концентраторы 4, а также вторичные оптические концентраторы в виде фоконов 9 концентрируют солнечный свет и фокусируют его на светочувствительных поверхностях фотоэлектрических элементов 10. При разориентации оптической оси фотоэлектрического концентраторного модуля от направления на Солнце большая часть лучей отражается от внутренних боковых зеркальных граней фокона 9 и фокусируется на поверхности фотоактивной области фотоэлектрического элемента 10, обеспечивая улучшение разориентационной характеристики концентраторного фотоэлектрического модуля. Фотоэлектрические элементы 10 преобразуют энергию квантов света в электрическую, создавая разность потенциалов на своих контактах. Вырабатываемая модулем электроэнергия подается к внешнему потребителю или накопителю энергии.

Сообщение с окружающей средой внутреннего пространства концентраторного фотоэлектрического модуля через отверстия 15 в стенках 1 фотоэлектрического модуля, в котором расположены фотоэлектрические элементы 10, исключает возникновение перепадов давления между внутренним объемом фотоэлектрического модуля и атмосферой, таким образом не допуская возникновения сильных механических напряжений в конструкции. Заполнение зазоров между гранями меньшего основания фокона 9 и несветочувствительными поверхностями фотоэлектрического элемента 10 слоем 18 эластичного силикона-герметика позволяет снизить механические напряжения в фотоэлектрических элементах 10 при изменениях температуры, по сравнению с установкой фоконов 9 меньшими основаниями на светочувствительных поверхностях фотоэлектрических элементов 10 без зазора. Герметизация внутреннего объема фокона 9, мест пайки контактов 16, контактов 17 и несветочувствительных поверхностей фотоэлектрического элемента 10 слоем силикона 18 позволяет защитить фотоэлектрический элемент 10 от воздействия окружающей среды, обеспечить увеличение его срока службы, а также увеличение надежности сборки и снижение деградации концентраторного фотоэлектрического модуля в целом. Установка на входное отверстие фокона 9 стеклянной пластины 12 и заполнение зазоров между торцами пластины и гранями фокона оптическим силиконом-герметико 19 позволяет защитить внутренний объем фокона 9 и светочувствительную поверхность фотоэлектрического элемента 10 от загрязнений и влаги, увеличивая их срок службы. Двухстороннее просветляющее покрытие 13, 14 на стеклянной пластине 12 позволяет минимизировать оптические потери на отражение падающего солнечного излучения от фронтальной и тыльной поверхностей стеклянной пластины 12. Все это приводит к повышению надежности, увеличению срока службы концентраторного фотоэлектрического модуля и увеличению эффективности преобразования солнечного излучения при длительной эксплуатации фотоэлектрического модуля.

Пример 1. В Физико-техническом институте им. А.Ф. Иоффе был изготовлен фотоэлектрический концентраторный модуль, показанный на фиг. 4, в котором в качестве первичного концентратора была использована линза Френеля с размерами входной апертуры (80×80) мм2 и фокусным расстоянием 150 мм. В качестве фотоэлектрического элемента был использован трехкаскадный фотоэлемент (3×3) мм2 на основе наногетероструктуры GaInP/GaAs/Ge, смонтированный на алюмооксидной плате. Фокон в виде усеченной пирамиды был выполнен из анодированного алюминия с высокоотражающим и просветляющим покрытиями с общим коэффициентом отражения не менее 96% и долей диффузной составляющей отражения не более 3%. Фотоэлектрический элемент установлен на расстоянии 155 мм от линзы Френеля. Высота и угол наклона граней усеченной пирамиды составили 18 мм и 22°, соответственно. Большее основание фокона было закрыто стеклянной пластиной толщиной 1 мм, прикрепленной оптическим силиконом-герметиком. Зазоры между гранями меньшего основания фокона и несветочувствительными поверхностями фотоэлектрического элемента закрыты слоем ластичного силикона-герметика. Расстояние между меньшим основанием фокона и фотоэлектрическим элементом было установлено равным 150 мкм. Выходная апертура фокона имела форму квадрата со стороной 2,6 мм. За счет использования фокона допустимая погрешность позиционирования фотоэлектрического элемента при монтаже на фотоприемной панели модуля увеличивается с ±0,2 мм (без фокона) до величины ±1,2 мм (с фоконом). Сектор углов разориентации от направления на Солнце, в котором выходная мощность модуля составляла не менее 0,9 от максимального значения, составил ±0,85°. КПД модуля с установленным фоконом составил 34%, что на 3% выше, чем без фокона.

Пример 2. Изготовлен концентраторный фотоэлектрический модуль, показанный на фиг. 5, в котором в качестве первичного концентратора была использована линзовая панель, состоящая из 32 линз Френеля с размерами входной апертуры (120×120) мм2 и фокусным расстоянием 220 мм. В качестве фотоэлектрических элементов использовались трехкаскадные фотоэлементы на основе наногетероструктуры GaInP/GaAs/Ge, смонтированные на алюмооксидных платах. Фоконы в виде усеченных пирамид были выполнены из анодированного алюминия с высокоотражающим и просветляющим покрытиями с общим коэффициентом отражения не менее 96% и долей диффузной составляющей не более 3%. Фотоэлектрические элементы были установлены на расстоянии 225 мм от линзы Френеля. Высота и угол наклона граней фоконов составили 15 мм и 19°, соответственно. Большие основания фоконов закрыты стеклянными пластинами толщиной 0,5 мм. Расстояния между выходной апертурой фоконов и фотоэлектрическими элементами установлены равными 200 мкм. Выходная апертура фоконов имела форму квадрата со стороной 4 мм. В соответствии с приведенными выше соотношениями были достигнуты следующие значения параметров концентраторного фотоэлектрического модуля: допустимая погрешность позиционирования фотоэлементов при монтаже фотоприемной панели модуля увеличивается с ±0,2 мм (без фоконов) до величины ±1 мм (с фоконами), сектор углов разориентации, в котором выходная мощность модуля составляла не менее 0,9 от максимального значения, составил ±0,8°; КПД модуля с установленными фоконами составил 32%, что на 3% выше, чем без фоконов.

Результатом технического решения стала разработка концентраторных фотоэлектрических модулей с повышенной надежностью, увеличенным сроком службы и высокой эффективностью преобразования солнечного излучения.

Источник поступления информации: Роспатент

Показаны записи 21-30 из 114.
20.04.2015
№216.013.42cf

Способ рентгеноспектрального определения размеров наночастиц в образце

Использование: для рентгеноспектрального определения размеров наночастиц в образце. Сущность изобретения заключается в том, что выполняют последовательное облучение в режиме прохождения и в режиме отражения исследуемой области образца пучками монохроматизированных рентгеновских лучей с...
Тип: Изобретение
Номер охранного документа: 0002548601
Дата охранного документа: 20.04.2015
20.07.2015
№216.013.64d4

Лазер-тиристор

Использование: для получения управляемой последовательности мощных лазерных импульсов. Сущность изобретения заключается в том, что лазер-тиристор содержит катодную область (1), включающую подложку n-типа проводимости (2), широкозонный слой n-типа проводимости (3), анодную область (4),...
Тип: Изобретение
Номер охранного документа: 0002557359
Дата охранного документа: 20.07.2015
20.08.2015
№216.013.7371

Композиционный материал, поглощающий излучение в ближней ик области спектра

Изобретение относится к композиционным материалам, поглощающим инфракрасное излучение в ближней инфракрасной области, и может быть использовано, например, в оптических фильтрах и специальных панелях сложной формы. Композиционный материал включает переплетенные базальтовые волокна с диаметром от...
Тип: Изобретение
Номер охранного документа: 0002561123
Дата охранного документа: 20.08.2015
27.08.2015
№216.013.7491

Способ модификации поверхности пористого кремния

Изобретение относится к области химической модификации поверхности пористого кремния и, в частности, может найти применение для создания биосовместимого и способного к полной биодеградации носителя медицинских препаратов, обеспечивающего их целевую доставку и пролонгированное действие в...
Тип: Изобретение
Номер охранного документа: 0002561416
Дата охранного документа: 27.08.2015
20.11.2015
№216.013.92aa

Тонкопленочный солнечный элемент

Тонкопленочный солнечный элемент содержит светопрозрачную подложку (1), на которую последовательно нанесены светопрозрачная электропроводящая пленка (2), p-слой (3) из микрокристаллического гидрогенизированного кремния в виде твердого раствора SiC:H, где 0,7<х<0,95, с оптической шириной...
Тип: Изобретение
Номер охранного документа: 0002569164
Дата охранного документа: 20.11.2015
10.12.2015
№216.013.97c3

Способ определения ориентации nv дефектов в кристалле

Изобретение относится к нанотехнологиям и может быть использовано в области разработки материалов на основе алмаза для магнитометрии, квантовой оптики, биомедицины, а также в информационных технологиях, основанных на квантовых свойствах спинов и одиночных фотонов. Способ определения ориентации...
Тип: Изобретение
Номер охранного документа: 0002570471
Дата охранного документа: 10.12.2015
27.02.2016
№216.014.c07e

Способ получения кристаллических алмазных частиц

Изобретение относится к нанотехнологиям материалов. Способ получения кристаллических алмазных частиц включает пропитку порошка наноалмазов, полученных детонационным синтезом, предельным ациклическим углеводородом или одноосновным спиртом в концентрации от 22 мас. % до 58 мас. %, выдержку...
Тип: Изобретение
Номер охранного документа: 0002576055
Дата охранного документа: 27.02.2016
27.03.2016
№216.014.c751

Концентраторный солнечный фотоэлектрический модуль

Изобретение относится к области солнечной энергетики. Фотоэлектрический модуль (1) содержит боковые стенки (2), фронтальную панель (3) с линзами Френеля (4) на ее внутренней стороне, светопрозрачную тыльную панель (5), солнечные фотоэлементы (б) с байпасными диодами, планки (11), выполненные из...
Тип: Изобретение
Номер охранного документа: 0002578735
Дата охранного документа: 27.03.2016
27.02.2016
№216.014.ce4c

Способ изготовления фотопреобразователя на основе gasb

При изготовлении фотопреобразователя согласно изобретению на тыльной стороне подложки GaSb n-типа проводимости выращивают методом эпитаксии высоколегированный контактный слой n-GaSb, а на лицевой стороне подложки - буферный слой n-GaSb. Наносят на лицевую поверхность подложки диэлектрическую...
Тип: Изобретение
Номер охранного документа: 0002575972
Дата охранного документа: 27.02.2016
27.02.2016
№216.014.ce65

Способ изготовления гетероструктурного солнечного элемента

Способ изготовления гетероструктурного солнечного элемента включает выращивание полупроводниковой гетероструктуры на германиевой подложке, создание омических контактов со стороны тыльной поверхности германиевой подложки и со стороны фронтальной поверхности гетероструктуры, нанесение...
Тип: Изобретение
Номер охранного документа: 0002575974
Дата охранного документа: 27.02.2016
Показаны записи 21-30 из 60.
25.08.2017
№217.015.a5d3

Способ изготовления фотоэлемента на основе gaas

Способ изготовления фотопреобразователя на основе GaAs включает выращивание методом жидкофазной эпитаксии на подложке n-GaAs базового слоя n-GaAs, легированного оловом или теллуром, толщиной 10-20 мкм и слоя p-AlGaAs, легированного цинком, при х=0,2-0,3 в начале роста и при х=0,10-0,15 в...
Тип: Изобретение
Номер охранного документа: 0002607734
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a9ae

Солнечный концентраторный модуль

Солнечный концентраторный модуль (1) содержит боковые стенки (2), фронтальную панель (3) с линзами (4) Френеля на внутренней стороне фронтальной панели (3), тыльную панель (9) с фоконами (6) и солнечные элементы (7), снабженные теплоотводящими основаниями (8). Теплоотводящие основания (8)...
Тип: Изобретение
Номер охранного документа: 0002611693
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.a9ce

Система управления платформой концентраторных солнечных модулей

Система управления платформой концентраторных солнечных модулей содержит платформу (6) с концентраторными каскадными солнечными модулями, оптический солнечный датчик (24), выполненный в виде CMOS матрицы, подсистему (7) азимутального вращения, подсистему (8) зенитального вращения, включающую...
Тип: Изобретение
Номер охранного документа: 0002611571
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.aa69

Метаморфный фотопреобразователь

Изобретение относится к полупроводниковой электронике и может быть использовано для создания солнечных элементов. Метаморфный фотопреобразователь включает подложку (1) из GaAs, метаморфный буферный слой (2) и по меньшей мере один фотоактивный p-n-переход (3), выполненный из InGaAs и включающий...
Тип: Изобретение
Номер охранного документа: 0002611569
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.aaa3

Способ изготовления наногетероструктуры со сверхрешеткой

Изобретение относится к электронной технике, в частности к способам создания наногетероструктур для фотопреобразующих и светоизлучающих устройств. Способ изготовления наногетероструктуры со сверхрешеткой включает выращивание на подложке GaSb газофазной эпитаксией из металлоорганических...
Тип: Изобретение
Номер охранного документа: 0002611692
Дата охранного документа: 28.02.2017
26.08.2017
№217.015.e151

Система слежения за солнцем концентраторной энергоустановки

Изобретение относится к области солнечной энергетики и может найти применение, например, при создании установок с фотоэлектрическими модулями. Система слежения за Солнцем концентраторной энергоустановки включает подсистему (1) азимутального вращения и подсистему (2) зенитального вращения....
Тип: Изобретение
Номер охранного документа: 0002625604
Дата охранного документа: 17.07.2017
13.02.2018
№218.016.20f8

Солнечный фотоэлектрический концентраторный модуль

Солнечный фотоэлектрический концентраторный модуль содержит первичный оптический концентратор (3) в виде линзы Френеля, с линейным размером D, оптическая ось (4) которой проходит через центр (5) фотоактивной области фотоэлемента (1), выполненной в виде круга диаметром d, и соосный с ним...
Тип: Изобретение
Номер охранного документа: 0002641627
Дата охранного документа: 18.01.2018
04.04.2018
№218.016.36e8

Фотопреобразователь лазерного излучения

Изобретение относится к полупроводниковой электронике. Фотопреобразователь лазерного излучения включает подложку (1) из n-GaAs, на которую последовательно нанесены слой (2) тыльного барьера из n-AlGaAs, базовый слой (3) из n-GaAs, эмиттерный слой (4) из p-GaAs, слой (5) широкозонного окна из...
Тип: Изобретение
Номер охранного документа: 0002646547
Дата охранного документа: 05.03.2018
08.07.2018
№218.016.6e98

Способ изготовления гетероструктуры ingaasp/inp фотопреобразователя

Способ изготовления гетероструктуры InGaAsP/InP фотопреобразователя включает последовательное выращивание методом газофазной эпитаксии из металлоорганических соединений на подложке InP в потоке очищенного водорода при пониженном давлении при температуре эпитаксии буферного слоя InP из...
Тип: Изобретение
Номер охранного документа: 0002660415
Дата охранного документа: 06.07.2018
26.10.2018
№218.016.9620

Оптоволоконный фотоэлектрический свч модуль

Изобретение относится к области радиотехники, в частности к радиофотонике, и может быть использовано при конструировании систем возбуждения антенн и антенных решеток для связи, радиолокации и радиоэлектронной борьбы. Оптоволоконный фотоэлектрический СВЧ модуль включает симметричный...
Тип: Изобретение
Номер охранного документа: 0002670719
Дата охранного документа: 24.10.2018
+ добавить свой РИД