×
16.05.2023
223.018.5e79

Результат интеллектуальной деятельности: Способ получения поликристаллических алмазных пленок

Вид РИД

Изобретение

Аннотация: Изобретение относится к области материаловедения и может быть использовано при изготовлении теплоотводов, детекторов ионизирующего излучения, инфракрасных окон, упрочняющих и износостойких покрытий на деталях и режущем инструменте. Сначала готовят суспензию, содержащую наноалмазные порошки, и диспергируют их при ультразвуковом воздействии мощностью 500-1000 Вт. Затем в суспензию помещают подложку, например, выполненную из кремния или материалов на его основе, для осаждения на ней наноалмазных порошков при ультразвуковом воздействии мощностью 250-350 Вт. После этого на подложку осаждают слой графена, содержащий 3-10 монослоев. Поликристаллическую алмазную пленку на подложку наносят методом химического газофазного осаждения (CVD), в процессе которого слой графена стравливается.Получают сплошную однородную плотную поликристаллическую алмазную пленку. 2 з.п. ф-лы.

Изобретение относится к области получения поликристаллических алмазных пленок, которые используются для изготовления теплоотводов, детекторов ионизирующего излучения, инфракрасных окон, упрочняющих и износостойких покрытий на деталях и режущих инструментах.

Поликристаллические алмазные пленки состоят из алмазных кристаллитов, размеры которых, соотношение объемов кристаллической и аморфной фаз существенно влияют на физические свойства таких пленок. Установлено, что уменьшение размеров кристаллитов и соотношения алмазной и аморфной фаз в поликристаллических алмазных пленках позволяет существенно снизить шероховатость ростовой поверхности, что приводит к изменению электрических, оптических и эмиссионных свойств пленок. Как правило, началу роста поликристаллических алмазных пленок (алмазных покрытий) предшествует период, в течение которого на поверхности подложки формируют алмазные затравки («засев»), выполняющие роль центров зародышеобразования алмазной фазы пленки. В качестве алмазных затравок используют преимущественно наноалмазные порошки. Более высокая и равномерная плотность «засева» поверхности подложки алмазными затравками, имеющими минимальный разброс размеров, позволяет снизить размеры кристаллитов алмазных пленок, получать сплошные ультратонкие алмазные пленки с гладкими поверхностями.

Известны различные способы «засева» поверхности подложки наноалмазными порошками.

Наиболее широко используемыми способами обработки поверхности подложки являются способы механического воздействия, в результате которого на поверхности подложки образуются различного рода неровности, которые при необходимости могут быть заполнены наноалмазными зародышевыми порошками.

Известен способ «засева» поверхности кремниевой подложки, заключающийся в физическом истирании поверхности подложки полирующим или шлифовальным материалом, обычно алмазной пастой или алмазными порошками (US 5082522,1992 г.).

В результате на поверхности подложки создаются дефекты в виде царапин, в которых даже после очистки остаются осколки используемого при истирании алмаза. Царапины могут сами по себе служить затравками для дальнейшего осаждения поликристаллической алмазной пленки, но чаще всего в царапины дополнительно втирают наноалмазные порошки. При этом осколки алмаза, остающиеся в царапинах при истирании поверхности подложки и затравочные наноалмазные порошки, втираемые после царапания, существенно отличаются по размерам, что ухудшает качество поверхности поликристаллической алмазной пленки. Кроме того, трудоемкая механическая обработка создает нерегулярные неровности на поверхности подложки, а нанопорошки алмаза при этом неупорядоченно заполняют эти неровности, не обеспечивая необходимой плотности «засева» поверхности подложки наноалмазными порошками. Структура поверхности таких пленок непредсказуема, и область их применения ограничена.

В соответствии с патентом US 5082359 А, опублик. 21.01.1992, для увеличения плотности зародышеобразования с упорядоченной структурой поверхности подложки из кремния неровности создаются по заранее определенной схеме в виде множества разрывов или кратеров субмикронного или микронного размера. Кратеры могут быть сформированы любым известным способом, включая фрезерование, лазерное испарение, химическое или плазменное травление и др. Кратеры заполняют наноалмазными порошками, суспензированными в растворе. Пленки, полученные данным способом, характеризуются контролируемой и регулярной кристаллической микроструктурой и морфологией и имеют такое качество, чтобы их можно было использовать в различных областях, включая инструменты, а также электронные, оптические и медицинские устройства. Кроме того, способ позволяет варьировать расстояние между кристаллитами от получения непрерывной пленки до пленки с дискретными кристаллитами.

Однако данный способ не позволяет получить высоко плотный «засев» поверхности подложки, т.к. плотность засева практически зависит от плотности расположения разрывов и кратеров на поверхности подложки, упорядоченное расположение которых не позволяет расположить наноалмазные порошки на достаточно близком расстоянии друг от друга.

В соответствии с патентом JP 3425167 В2, опублик. 07.07.2003 для создания неровностей подложку подвергают анодированию в электролите, содержащем наноалмазные порошки. На подложке образуется слой пористого анодированного кремния, в поры которого внедрены нанолмазные порошки.

Недостаток способа заключается в использовании для создания пористости на подложке не экологического процесса анодирования, а также как и при других процессах механической и химической обработки поверхности подложки, пористость, повреждающая структуру материала подложки, отрицательно влияет на рабочие характеристики поликристаллического алмазного покрытия. Кроме того, на поверхности подложки образуется не регулируемая по размерам и по распределению пористость, и соответственно имеет место не регулируемое зародышеобразование на поверхности подложки.

Существующие способы получения поликристаллических алмазных пленок, требующие механической абразивной обработки, имеют существенный недостаток, заключающийся в том, что истирание повреждает поверхность подложки случайным образом удаляя с нее часть материала, что отрицательно влияет на свойства оптического пропускания. Кроме того, такие процессы обычно являются не воспроизводимыми. Известны способы «засева» наноалмазными порошками поверхности подложки, в которых для осаждения алмазных затравочных порошков не требуется формирование дефектов на поверхности подложки.

Известен способ зарождения алмазной пленки на подложке кремния, заключающийся в нанесении на подложку слоя полимерного прекурсора. («Стимулирование зарождения алмаза на подложках кремния со слоем полимерного прекурсора при осаждении алмазных пленок в СВЧ-плазме», авторы Седов B.C.; Ральченко В.Г.; Хомич А.А.; Сизов А.И.; Звукова Т.М.; Конов В.И.// Сверхтвердые материалы, 2012, №1, С. 49-57). В статье сообщается, что слои полимеров определенного типа, нанесенные на подложку из кремния, образуют «засев» подложки образующимися при отжиге полимеров алмазными зернами с высокой плотностью и с более прочной связью с подложкой. Использование полимерных прекурсоров позволяет производить засев подложек сложной формы и подложек из пористых материалов.

Недостаток способа заключается в том, что в результате термодеструкции прекурсора на поверхности подложки наряду с наноалмазными зернами образуется неалмазная фаза, загрязняющая поверхность подложки и препятствующая получению плотного «засева» поверхности. Кроме того, способ не позволяет контролировать размер затравочных алмазных частиц, т.е. возможно получение на подложках алмазных частиц с большим разбросом размеров, что отрицательно влияет на качество поликристаллической алмазной пленки.

В соответствии с патентом RU 2471886, кл. С23С 18/12 на гладкую поверхность подложки с помощью дозатора наносят суспензию наноалмазного порошка размером 5 -100 нм в спиртосодержащей жидкости, а перед нанесением суспензии на ее поверхность наносят тонкий слой спиртосодержащей жидкости, которая удерживает наноалмазные порошки на поверхности подложки. При этом подложке сообщают вращение для обеспечения равномерного распределения наноалмазного порошка по поверхности подложки.

Недостаток способа заключается в том, что с учетом центробежного распределения наноалмазных порошков способ не позволяет засевать поверхность с равномерным и плотным их распределением по всей поверхности подложки. Кроме того, наноалмазные порошки недостаточно прочно удерживаются спиртосодержащей жидкостью на поверхности подложки и при последующих операциях подготовки подложки и нанесения поликристаллического алмазного слоя возможна значительная потеря зародышей.

Как правило, для получения поликристаллических алмазных пленок используются современные наноалмазные порошки, которые представляют собой образования в виде прочных наноалмазных агрегатов. Учитывая то, что наноалмазные порошки - агрегаты имеют значительный разброс размеров, получить поликристаллическую алмазную пленку с требуемыми характеристиками без дополнительной обработки наноалмазных порошков - агрегатов сложно.

Известен способ получения поликристаллической алмазной пленки методом CVD, являющийся наиболее близким техническим решением (US 6068883, С23С 16/02, 2000 г.), включающий диспергирование наноалмазных порошков в жидкой среде, погружение в жидкую среду кремниевой подложки и ультразвуковую обработку с мощностью в диапазоне 20-350 Вт, в течение 10-30 мин. Ультразвуковое перемешивание наноалмазных порошков обеспечивает равномерное их распределение на поверхности подложки с плотностью 1×1010 на 1 см2 и сцепление наноалмазных порошков с подложкой в основном за счет сил Ван дер Вальса. При более высокой мощности ультразвука, близкой к верхнему пределу диапазона имело место некоторое внедрение зерен порошка в подложку.

Недостаток способа заключается в том, что ультразвуковая обработка наноалмазных порошков, которые по существу представляют собой прочные агрегаты, при указанной мощности не обеспечивает полного размельчения агрегатов. В результате при «засеве» подложки неоднородными по размерам наноалмазными порошками не может быть получена более высокая плотность «засева». Кроме того, при формировании на «засеянной» подложке поликристаллического алмазного слоя методом CVD создающиеся мощные кавитационные условия в реакторе в момент зажигания плазмы приводят к сдуванию или смещению непрочно связанных с поверхностью подложки наноалмазных порошков. Это также приводит к уменьшению первоначальной плотности «засева» поверхности подложки и нарушению равномерности распределения наноалмазных порошков.

Технической задачей изобретения является обеспечение возможности получения сплошной поликристаллической алмазной пленки с гладкой поверхностью путем «засева» подложки наноалмазными порошками с узким диапазоном размеров и высокой плотностью.

Технический результат заявленного изобретения достигается следующем образом.

Способ получения поликристаллической алмазной пленки включает приготовление суспензии, содержащей наноалмазные порошки, диспергирование наноалмазных порошков в суспензии при ультразвуковом воздействии, помещение в суспензию подложки для осаждения наноалмазных порошков при ультразвуковом воздействии и последующее осаждение на подложку поликристаллической алмазной пленки методом газофазного осаждения. Отличие способа заключается в том, что после осаждения наноалмазных порошков на подложку осаждают слой графена, содержащий 3-10 монослоев графена.

Кроме того, диспергирование наноалмазных порошков в суспензии проводят при ультразвуковом воздействии на суспензию мощностью 500-1000 Вт.

Кроме того, осаждение наноалмазных порошков на подложку проводят при ультразвуковом воздействии мощностью 250-350 Вт.

Сущность способа заключается в следующем.

Несмотря на то, что размер отдельных алмазных частиц в современных наноалмазных порошках обычно составляет несколько нанометров, средний размер порошков в суспензии без дополнительной обработки составляет от сотен нанометров до нескольких микрон из-за их консолидирования в прочные агрегаты. В результате преимущество наноалмазных порошков - создавать большое количество затравочных центров не реализуется. Использование при приготовлении алмазной суспензии ультразвукового воздействия мощностью 500-1000 Вт позволяет эффективно дезагрегировать (разбивать) очень прочные агрегаты на наноалмазные частицы, увеличивая их концентрацию в суспензии и обеспечивая более плотный «засев» подложки. Ультразвуковое воздействие на суспензию мощностью 250-350 Вт при осаждении наноалмазных частиц на подложку сопровождается неупругим столкновением наноалмазных дезагрегированных частиц с поверхностью подложки, приводящим к их внедрению в подложку и удерживанию на ней.

Осаждение на наноалмазные порошки графенового слоя обеспечивает их дополнительное закрепление на поверхности подложки, что позволяет предотвращать их осыпание и смещение в кавитационных условиях, образующихся в начальный период в реакторе для осаждения поликристаллического алмазного слоя.

Способ осуществляется следующим образом.

Для нанесения на кремниевую подложку наноалмазного порошка предварительно готовят суспензию из наноалмазного порошка и жидкости и воздействуют на суспензию ультразвуковыми колебаниями мощностью 500-1000 Вт. После этого мощность ультразвуковых колебаний снижают до 250-350 Вт и в суспензию помещают кремниевую подложку, и обрабатывают ее в течение времени, при котором происходит осаждение наноалмазных частиц, сопровождающееся их внедрением в поверхность подложки. «Засеянную» подложку извлекают из суспензии, моют в деионизированной воде и высушивают. Поверхность подложки наблюдают в электронном микроскопе для определения качества «засева». Затем на подложку с наноалмазными порошками осаждают графеновый слой, содержащий 3-10 монослоев графена. После этого подложку с наноалмазными порошками помещают в реактор для осаждения поликристаллического алмазного слоя. Способ нанесения поликристаллических алмазных пленок не ограничивает материал подложки, это могут быть подложки из кремния, молибдена и др. материалов, но предпочтительно в качестве материала подложки берут кремний.

Жидкая среда представляет собой суспензию наноалмазных порошков в жидкости. В качестве жидкости можно использовать ацетон, изопропиловый спирт, этиловый спирт, воду. Концентрация алмазных порошков в суспензии должна обеспечивать необходимое количество алмазной фазы для получения «засева» подложки с необходимой плотностью и обеспечить эффективную дезагрегацию наноалмазных порошков в суспензии.

Для «засева» подложки предпочтительно использовать наноалмазные порошки размером 4-10 нм, которые являются оптимальными для получения высокой плотности «засева» подложки и получения пленки с гладкой поверхностью.

Диспергирование наноалмазного порошка до наночастиц проводят ультразвуковым воздействием на суспензию мощностью 500-1000 Вт. При более низкой мощности ультразвуковых колебаний не происходит достаточно эффективного измельчения очень прочных агрегатов наноалмазного порошка. Более высокая мощность ультразвуковых колебаний требует разработки специального оборудования и приводит к значительному удорожанию процесса, что в совокупности с невысоким дополнительным положительным эффектом делает этот процесс экономически не целесообразным.

«Засев» подложки осуществляют при воздействии на суспензию ультразвуковыми колебаниями мощностью 250-350 Вт. При меньшей мощности ультразвуковых колебаний большей частью происходит обработка поверхности подложки наноалмазными порошками, оставляя на поверхности царапины, но, не способствуя их внедрению, при котором наноалмазные порошки удерживались бы на поверхности подложки при последующих этапах получения поликристаллической алмазной пленки. Более высокая мощность ультразвукового воздействия может привести к появлению трещин в подложке.

Слой графена представляет собой гексагональную решетку химически связанных атомов углерода толщиной в один атом. Графен обладает высокой адгезией с кремниевой подложкой и прочно удерживает наноалмазные частицы на подложке в кавитационных условиях, предшествующих осаждению поликристаллической алмазной пленки, предупреждая их смещение и осыпание.

Толщина графенового слоя составляет 3-10 графеновых монослоев. Такая толщина графенового слоя достаточна для надежного удержания наноалмазного порошка в агрессивных условиях. В графеновом слое, содержащем более 10 монослоев, отсутствует необходимость с практической и экономической точек зрения. Графеновый слой в последствии при осаждении поликристаллической алмазной пленки стравливается. Пример осуществления.

В контейнере готовили суспензию из деионизированной воды. Наноалмазные порошки зернистостью 4-6 нм вводили в суспензию в количестве 0,002 грамм на объем ОД л и воздействовали на контейнер ультразвуковыми колебаниями мощностью 500 Вт в течение 4 мин. Подложку из кремния диаметром 25 мм промывали, сушили обдуванием и погружали в контейнер. Контейнер с размещенной в нем подложкой подвергали воздействию ультразвуковых колебаний мощностью 250 Вт в течение 20 мин. Подложка, обработанная ультразвуковыми колебаниями, была промыта и высушена продувкой. Поверхность подложки наблюдали с помощью сканирующего электронного микроскопа. Было обнаружено, что наноалмазные порошки были равномерно распределены по кремниевой подложке и плотность «засева» составляла 5×1011 частиц/см2. Затем подложку помещали в реактор для осаждения на нее графенового слоя. Графеновый слой получали эпитаксиальным наращиванием монослоев графена известным методом газофазного осаждения. Осаждение слоя проводили до образования на поверхности подложки графенового покрытия толщиной в 3-10 монослоев. Покрытую графеном подложку помещали в реактор для получения поликристаллической алмазной пленки. В реактор вводили газовую смесь, включающую водород, создавали плазму, и проводили предварительное травление водородом подложки с затравочными наноалмазными порошками и графеновым слоем. Затем вводили рабочую смесь водорода и метана и создавали плазму с требуемыми технологическими параметрами, в которой в результате разложения метана на нагретую подложку осаждалась алмазная пленка, а присутствующий в плазме водород окончательно стравливал графеновый слой, который был уже предварительно подтравлен при начальном зажигании водородной плазмы.

В результате на подложке было сформировано поликристаллическое алмазное покрытие, которое представляло собой сплошную однородную плотную поликристаллическую пленку с гладкой поверхностью, полученной в результате того, что наноалмазные порошки были эффективно дезагрегированы при воздействии на них высокомощных ультразвуковых колебаний, и благодаря графеновому слою практически не были потеряны в реакторе в начальный период осаждения поликристаллического алмазного слоя.

Источник поступления информации: Роспатент

Показаны записи 71-80 из 322.
25.08.2017
№217.015.b442

Способ получения нанотрубок нитрида бора

Изобретение относится к технологии получения керамических наноматериалов, а именно дискретных нанотрубок нитрида бора, применяющихся в качестве упрочняющей фазы для полимерных и металлических матриц. Способ включает приготовление реакционной смеси из бороксидного соединения и катализатора,...
Тип: Изобретение
Номер охранного документа: 0002614012
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b447

Термостойкая ткань из полимерных волокон и изделие, выполненное из этой ткани

Группа изобретений относится к текстильной промышленности, в частности к производству защитной одежды специального назначения. Термостойкая ткань образована переплетением основных и уточных нитей комбинированным полотняным переплетением, по основе основным репсом и по утку уточным репсом. Ткань...
Тип: Изобретение
Номер охранного документа: 0002614002
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b451

Способ получения нанокерамики методом совмещения самораспространяющегося высокотемпературного синтеза и искрового плазменного спекания

Изобретение относится к области керамического материаловедения, в частности к технологии получения нанокерамики. Техническим результатом предлагаемого изобретения является снижение энергозатрат, исключение применения различных активаторов спекания, повышение физико-механических свойств...
Тип: Изобретение
Номер охранного документа: 0002614006
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b45b

Акустооптический преобразователь поляризации лазерного излучения (варианты)

Акустооптическое устройство преобразования поляризации лазерного излучения состоит из первой и второй акустооптических ячеек, в которых происходит коллинеарная или неколлинеарная дифракция. Первая ячейка осуществляет деление входного пучка на два пучка, один из двух выходных пучков которой...
Тип: Изобретение
Номер охранного документа: 0002613943
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b479

Пневматическая флотационная машина

Изобретение относится к области обогащения полезных ископаемых и может быть использовано при переработке минерального сырья, содержащего цветные, черные, редкие, благородные металлы, а также неметаллические полезные ископаемые, и при очистке сточных вод от твердых частиц и нефтепродуктов....
Тип: Изобретение
Номер охранного документа: 0002614170
Дата охранного документа: 23.03.2017
25.08.2017
№217.015.b4be

Исполнительный орган проходческого щитового комплекса для сооружения многополосных автодорожных и железнодорожных тоннелей и бесколонных станций метрополитена

Изобретение относится к исполнительному органу проходческого щитового комплекса для сооружения многополосных автодорожных и железнодорожных тоннелей и бесколонных станций метрополитена. Технический результат заключается в обеспечении проходки тоннелей оптимальной овальной формы поперечного...
Тип: Изобретение
Номер охранного документа: 0002614176
Дата охранного документа: 23.03.2017
25.08.2017
№217.015.b4d9

Способ измельчения смеси карбоната стронция и оксида железа в производстве гексаферритов стронция

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов стронция. Технический результат - повышение коэрцитивной силы по намагниченности гексаферрита стронция больше 235 кА/м и повышение активности при измельчении смеси исходных...
Тип: Изобретение
Номер охранного документа: 0002614171
Дата охранного документа: 23.03.2017
25.08.2017
№217.015.b6e3

Катализатор и способ осуществления реакции фишера-тропша с его использованием

Изобретение относится к катализаторам и к способу синтеза Фишера-Тропша. Катализатор на основе комплексных солей кобальта для синтеза Фишера-Тропша содержит частицы кобальта, при этом в качестве комплексной соли кобальта выбирают фталоцианиновый комплекс кобальта (CHNCo), а в качестве...
Тип: Изобретение
Номер охранного документа: 0002614420
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b964

Устройство для измерения отношения напряжения мостовых датчиков

Предлагаемое изобретение относится к измерительной технике, в частности к мостовым схемам измерения. Устройство измерения отношения напряжения мостовых датчиков содержит рабочий (измерительный) мост 1, измерительная диагональ которого через последовательно соединенные усилитель 2, селектируемый...
Тип: Изобретение
Номер охранного документа: 0002615167
Дата охранного документа: 04.04.2017
25.08.2017
№217.015.ba00

Способ измельчения смеси карбоната бария и оксида железа в производстве гексаферритов бария

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов бария. Технический результат - повышение активности при измельчении смеси исходных ферритообразующих компонентов в производстве гексаферрита бария, обеспечивающей снижение...
Тип: Изобретение
Номер охранного документа: 0002615565
Дата охранного документа: 05.04.2017
Показаны записи 21-28 из 28.
25.06.2018
№218.016.6625

Твердосплавная микрофреза с алмазным износостойким покрытием

Изобретение относится к области металлургии, преимущественно к модификации изделий из твердых сплавов, применяемых в машиностроении для холодной и горячей механической обработки неметаллов, металлов и металлических сплавов, например, фрезерованием. Твердосплавная микрофреза с алмазным...
Тип: Изобретение
Номер охранного документа: 0002658567
Дата охранного документа: 21.06.2018
18.05.2019
№219.017.5376

Сверло для получения отверстий с задней подрезкой

Изобретение относится к сверлу для изготовления отверстия с задней подрезкой, в частности в облицовочных панелях из керамики, камня, бетона и других хрупких материалов, которые крепятся на фасадах здания с помощью расширяемого анкера. В сверле, содержащем закрепленную на хвостовике со смещением...
Тип: Изобретение
Номер охранного документа: 0002687589
Дата охранного документа: 15.05.2019
19.06.2019
№219.017.88ed

Алмазное трубчатое сверло

Сверло содержит трубчатый корпус и прерывистую рабочую часть с прерывистой режущей кромкой в виде алмазосодержащего покрытия на трубчатом корпусе. Для повышения работоспособности трубчатых сверл малого диаметра при обработке глубоких отверстий рабочая часть сверла выполнена ориентированной в...
Тип: Изобретение
Номер охранного документа: 0002419519
Дата охранного документа: 27.05.2011
19.06.2019
№219.017.8921

Алмазное тонкостенное сверло

Сверло содержит трубчатый корпус с образующими утоненную часть корпуса кольцевыми проточками, выполненными на наружной и внутренней его поверхностях, и рабочую часть, полученную нанесением на корпус гальванических алмазосодержащих слоев. Для повышения работоспособности и стойкости за счет...
Тип: Изобретение
Номер охранного документа: 0002423206
Дата охранного документа: 10.07.2011
19.06.2019
№219.017.8ac8

Алмазный инструмент на гальванической связке

Изобретение относится к алмазным инструментам, изготавливаемым с использованием процессов закрепления алмазных зерен на корпусе инструмента электроосаждением металлической связки, - инструментам на гальванической связке. Такими инструментами могут быть отрезные круги, трубчатые сверла,...
Тип: Изобретение
Номер охранного документа: 0002437752
Дата охранного документа: 27.12.2011
01.07.2020
№220.018.2d27

Способ измерения переходного контактного сопротивления омического контакта

Изобретение относится к области технологии изготовления изделий микроэлектроники, в частности к контролю контактных сопротивлений омических контактов к полупроводниковым слоям на технологических этапах производства. Сущность: способ измерения переходного контактного сопротивления, заключающийся...
Тип: Изобретение
Номер охранного документа: 0002725105
Дата охранного документа: 29.06.2020
01.07.2020
№220.018.2d42

Способ определения теплопроводности алмазных материалов

Изобретение относится к области теплофизических измерений и может быть использовано для определения тепловых характеристик алмазных материалов, таких как природные и синтетические монокристаллы, алмазные поликристаллические материалы в интервале температур от 25 до 300°С. Изобретение может быть...
Тип: Изобретение
Номер охранного документа: 0002725109
Дата охранного документа: 29.06.2020
16.05.2023
№223.018.602d

Лазер с устройствами юстировки

Изобретение относится к области квантовой электроники и лазерной техники, в частности к твердотельным ВКР-лазерам, и может быть применено в нелинейной оптике, аналитической спектроскопии, оптическом приборостроении, медицине, экологии, фотодинамической терапии. Лазер с источником накачки,...
Тип: Изобретение
Номер охранного документа: 0002749046
Дата охранного документа: 03.06.2021
+ добавить свой РИД