×
15.05.2023
223.018.5ca7

Результат интеллектуальной деятельности: Суборбитальный космический корабль и способ его торможения в атмосфере

Вид РИД

Изобретение

Аннотация: Группа изобретений относится к управлению и конструкции космических кораблей (КК) многократного применения с вертикальным взлетом и посадкой, которые могут быть использованы для космического туризма, высотных парашютных прыжков и др. Суборбитальный КК содержит раму, посадочные опоры, двигательную установку, систему управления, кресла экипажа и две группы щитков с приводами, шарнирно соединенных с рамой. В сложенном состоянии одна группа щитков образует головной обтекатель, а другая – боковую поверхность КК. Количество щитков в группах одинаково, причем в раскрытом состоянии щитки одной группы располагаются между щитками другой группы в проекции на направление полета. Кресла экипажа выполнены катапультными, а группа щитков, образующих головной обтекатель, установлена над ними с зазором. При торможении КК, перед входом в атмосферу щитки раскрывают на максимальные углы, затем при нарастании перегрузки щитки плавно складывают до минимального угла раскрытия, выдерживают паузу и затем вновь плавно раскрывают на максимальные углы. Программу управления получают в результате предполетного математического моделирования процесса спуска. Техническим результатом является снижение пикового значения перегрузки при спуске КК в атмосфере. 2 н. и 1 з.п. ф-лы, 3 ил.

Изобретение относится к ракетно-космической технике, точнее к суборбитальным космическим транспортным кораблям многократного применения с вертикальным взлетом и посадкой, и может быть использовано для космического туризма, высотных парашютных прыжков и иных целей.

Известны корабли и ракетные ступени многократного применения, отличающиеся способом посадки - с помощью крыльев или парашютов (например, патенты РФ № 2442727, 20.02.2012, МПК: B64G 1/14 (2006.01); № 2441815, 10.02.2012, МПК: B64G 1/14 (2006.01); №2333868, 20.09.2008, МПК: B64G 1/16 (2006.01). В этих кораблях для взлета используются одни устройства - ракетные двигатели, а для посадки - другие устройства - крылья или парашюты.

Известны также многоразовые корабли и ракетные ступени, осуществляющие вертикальные взлет и посадку с помощью только ракетных двигателей (патенты РФ № 2309088, 27.10.2007, МПК: B64G 1/14 (2006.01); 2318704 С2, 10.03.2008, МПК: B64G 1/14 (2006.01). Они не имеют специальных аэродинамических поверхностей для стабилизации спуска в атмосфере, поэтому при управляемом спуске необходимо расходовать дополнительное топливо для работы двигателей ориентации.

Известен суборбитальный космический корабль с тормозными поверхностями по патенту US 8408497 (В2), 02.04.2013, МПК: B64G 1/62 (2006.01). Этот корабль производит стабилизируемый спуск в атмосфере с помощью тормозных щитков, расположенных в верхней части цилиндрического корпуса корабля. Недостатком этого корабля является избыточность элементов конструкции, поскольку щитки не являются частью корпуса.

Наиболее близким к предлагаемому техническому решению является одноступенчатый многоразовый космический корабль и способ его управления при спуске (US 5873549 (A), 23.02.1999, МПК: B64G 1/14 (2006.01); B64G 1/24 (2006.01); B64G 1/28(2006.01); B64G 1/62 (2006.01).

Корабль включает раму, посадочные опоры, двигательную установку, систему управления, полезную нагрузку, внешнюю неподвижную обшивку и две группы щитков, каждый из которых шарнирно соединен с рамой и снабжен приводом, подключенным к системе управления. Неподвижная обшивка вместе со щитками образует аэродинамическую поверхность корабля. Каждый щиток своей верхней или нижней кромкой шарнирно соединен с рамой и имеет привод для отклонения щитка на некоторый угол. Щитки предназначены для управления ориентацией, и частично для торможения корабля при его спуске в атмосфере. При движении корабля вверх носом вперед используются задние щитки, а при движении вниз кормой вперед - передние щитки. Суммарная площадь щитков существенно меньше общей поверхности корабля.

Прототип способа торможения этого корабля в атмосфере состоит в раскрытии щитков во время спуска, что приводит к увеличению аэродинамической силы сопротивления, а также в контроле величины перегрузки и времени.

Недостатком конструкции является то, что в качестве тормозных щитков используется малая часть внешней аэродинамической поверхности корабля, а также то, что щитки двух групп раскрываются попеременно. Вследствие этого, суммарной площади раскрытых щитков достаточно для стабилизации корабля, но недостаточно для влияния на величину перегрузки при торможении в атмосфере.

Недостатком способа торможения корабля является то, что положение щитков после их раскрытия не меняется. Поэтому при прохождении зоны максимальной перегрузки значение этой перегрузки снизить невозможно.

Задача изобретения состоит в устранении указанных недостатков.

Техническим результатом изобретения является снижение пикового значения перегрузки при спуске корабля в атмосфере за счет большой относительной площади тормозных щитков и активного управления этой площадью.

Технический результат достигается тем, что в суборбитальном космическом корабле, включающем раму, посадочные опоры, двигательную установку, систему управления, кресла экипажа и хотя бы одну из двух групп тормозных щитков, каждый из которых шарнирно соединен с рамой и снабжен приводом, в сложенном состоянии одна группа щитков образует головной обтекатель, а другая группа - боковую поверхность корабля, при этом все щитки соединены с рамой своей нижней кромкой, количество щитков в обеих группах одинаково, а в раскрытом состоянии щитки одной группы располагаются между щитками другой группы в проекции на направление полета.

Кроме того, кресла экипажа выполнены катапультными, а группа щитков, образующих головной обтекатель, установлена над ними с зазором, обеспечивающим возможность катапультирования во всем диапазоне углов раскрытия упомянутых щитков.

Технический результат достигается также за счет того, что в способе торможения суборбитального космического корабля в атмосфере, состоящем в раскрытии тормозных щитков во время спуска и контроле величины перегрузки по акселерометру и времени по таймеру, перед входом в атмосферу щитки раскрывают на максимальные углы, затем, при нарастании перегрузки до величины А, щитки плавно складывают в течение времени Т1 до минимального угла раскрытия, выдерживают паузу в течение времени Т2, а затем вновь плавно раскрывают в течение времени Т3 до максимального угла раскрытия, при этом величины A, T1, Т2 и Т3 получают перед полетом по результатам математического моделирования процесса спуска, а углы максимального раскрытия щитков выбирают из условия обеспечения одновременно максимального значения площади их проекции на направление полета и стабилизации спуска корабля.

Сущность изобретения поясняется графическими материалами (фиг. 1-3).

На фигуре 1 схематически показана конструкция предлагаемого корабля.

На фигуре 2 приведены графики зависимости величины перегрузки от времени спуска с высоты 110 км со сложенными щитками (кривая 11), с полностью раскрытыми щитками (кривая 12), и с переменной площадью проекции щитков (кривая 13).

В таблице (фиг. 3) приведены значения параметров полета, которые соответствуют графику 13 на фиг. 2.

Корабль включает в себя раму 1, посадочные опоры 2, двигательную установку, состоящую из маршевого двигателя 3 и двигателей ориентации 4, систему управления (на фигурах не показана), кресла экипажа 5, тормозные щитки одной (далее - верхней) группы в сложенном бив раскрытом 7 состоянии, тормозные щитки другой (далее - нижней) группы в сложенном 8 и в раскрытом 9 состоянии, а также приводы 10 щитков. Верхняя группа щитков в положении 6 образует головной обтекатель. Нижняя группа щитков в положении 8 образует боковую поверхность корабля. Все щитки соединены с рамой 1 своей нижней кромкой, количество щитков в обеих группах одинаково, а в раскрытом состоянии щитки 7 одной группы располагаются между щитками 9 другой группы в проекции на направление полета.

В составе корабля отсутствует герметичная капсула для экипажа, кресла экипажа 5 выполнены катапультными, а группа щитков 6, образующих головной обтекатель, установлена над ними с зазором, обеспечивающим возможность катапультирования во всем диапазоне углов раскрытия этих щитков.

Предложенный корабль работает следующим образом.

Перед взлетом члены экипажа находятся в катапультных креслах 5 в защитных скафандрах с индивидуальными парашютами. Все щитки находятся в сложенном состоянии. При взлете и подъеме корабль движется с ускорением под действием маршевого двигателя 3 по траектории, близкой к вертикальной. Ориентация корабля относительно центра масс осуществляется двигателями ориентации 4. Система управления корабля в течение всего полета осуществляет контроль параметров движения и управление исполнительными органами по заданной программе. В состав системы управления входят датчики позиционирования, например, GPS-ГЛОНАСС, ориентации, например, гироскопического типа, акселерометр инерционного типа, радиовысотомер и контроллер с заложенной в него программой полета и встроенным таймером. Щитки в положении 6 осуществляют функцию головного обтекателя, обеспечивая снижение силы сопротивления воздуха и защиту экипажа от скоростного напора. После набора скорости и отключения маршевого двигателя 3 (на высоте ориентировочно 40-50 км при скорости 1-1,5 км/с) корабль совершает баллистический полет до высоты порядка 100 км. На этом участке ориентация корабля также производится двигателями ориентации 4. Остаточное количество топлива в баках корабля должно быть достаточно для выполнения посадки.

На высоте, близкой к максимальной, с помощью приводов 10 производится раскрытие всех щитков из положения 6 в положение 7, и из положения 8 в положение 9, что соответствует максимальной площади поверхности торможения. Корабль под действием силы гравитации прекращает подъем и начинает спуск к земле с нарастающей скоростью. На высоте порядка 50-60 километров, когда скоростной напор воздуха становится достаточным для воздействия на корабль, щитки в положении 7 и 9 начинают выполнять функцию стабилизации полета, разворачивают корабль в положение двигателем 3 к земле и в дальнейшем поддерживают это положение. Стабилизация обеспечивается тем, что в раскрытом положении щитков, во всем диапазоне углов их раскрытия центр аэродинамического давления воздуха находится выше центра масс корабля.

Щитки производят также торможение корабля в атмосфере, причем сила торможения может меняться от минимальной, когда щитки сложены и находятся в положении 6 и 8, до максимальной, когда они полностью раскрыты и находятся в положении 7 и 9. Это свойство позволяет уменьшать величину максимальной перегрузки, действующей на корабль и экипаж, следующим образом. Перед входом в атмосферу щитки раскрывают на максимальный допустимый угол, в положение 7 и 9, т.е. угол, соответствующий максимальной площади поверхности торможения, при котором устойчивая стабилизация корабля еще сохраняется. При снижении система управления измеряет текущую величину перегрузки с помощью акселерометра. При нарастании перегрузки и достижении ею заданного значения А щитки плавно складывают, отклоняя вверх в положение 6 и 8 до достижения минимальной площади миделя корабля. Время сложения равно заранее заданной величине Т1. Далее выдерживают паузу в течение времени Т2, а затем вновь плавно раскрывают щитки до максимальной площади, в положение 7 и 9 в течение времени Т3. Величины A, T1, Т2, Т3 заранее, до полета, выбирают, моделируя процесс снижения на математической модели. Меняя эти параметры на модели, добиваются минимально возможного значения перегрузки. Эффект снижения перегрузки достигается из-за того, что в течение действия максимального скоростного напора воздуха площадь осевой проекции корабля, т.е. проекции, перпендикулярной направлению полета корабля, является наименьшей, и сила сопротивления, а с ней и пиковое значение перегрузки снижаются, хотя длительность действия этой сниженной перегрузки увеличивается, как показано на фиг. 2, график 13. Величины A, T1, Т2 и Т3 вводятся в программу контроллера и используются им в полете для выдачи команд на приводы щитков. Текущие значения перегрузки измеряются акселерометром, а времени - таймером.

Для оценки величины перегрузок при разных углах раскрытия щитков было проведено математическое моделирование процесса спуска при следующих исходных данных:

- траектория спуска - вертикальная;

- высота начала спуска - 110 км;

- площадь миделя корабля при сложенных щитках - 5 м2;

- площадь осевой проекции полностью раскрытых щитков - 20 м2;

- площадь миделя корабля при полностью раскрытых щитках - 25 м2;

- масса корабля при снижении - 2500 кг;

- зависимость плотности воздуха от высоты соответствует стандартной атмосфере;

- коэффициент сопротивления Сх=0,8.

Для оценки площади щитков принято, что корабль имеет диаметр 2,5 м, высота боковой поверхности - 2,5 м, длина образующей конуса головного обтекателя - 3 м. При этом суммарная площадь щитков равна 30 м2, а с учетом их наклона и частичного взаимного затенения - 20 м2.

Для уменьшения взаимного затенения щитков в раскрытом состоянии, количество щитков в обеих группах одинаково, а щитки одной группы располагаются между щитками другой группы в проекции на направление полета.

Результаты расчетов приведены на фигуре 2, на которой показаны графики величины перегрузки, действующей на корабль в зависимости от времени спуска при трех положениях щитков. Кривая 11 (вариант 1) соответствует полностью закрытым щиткам (площадь миделя корабля 5 м2), кривая 12 (вариант 2) - полностью раскрытым и зафиксированным щиткам (площадь миделя корабля 25 м2), кривая 13 (вариант 3) - переменной площади щитков (площадь миделя уменьшается от 25 до 5 м2, а затем опять увеличивается до 25 м2).

Из графиков (фиг. 2) видно, что максимальная перегрузка в первом варианте равна 3,9 g, во втором варианте 3,3 g, в третьем - 2,3 g. Таким образом, предлагаемый способ позволяет снизить максимальное значение перегрузки более чем в два раза (если считать от «земного» уровня 1 g) в сравнении с вариантом неуправляемых при спуске щитков малой площади, т.е. с прототипом.

По результатам моделирования выяснилось, что в случае с приведенными выше исходными данными щитки следует начинать складывать при перегрузке А=1,7 g, время сложения Т1=28 секунд. Вновь раскладывать щитки следует после паузы в течение времени Т2=13 секунд, время раскрытия щитков Т3=25 секунд. Максимальная перегрузка при этом составляет 2,3 g. В таблице на фиг. 3 приведены значения высоты, скорости, площади миделя и перегрузки в зависимости от времени от начала спуска.

В случае, если для торможения использовать щитки только верхней группы, их следует начинать складывать при перегрузке А=2 g, время сложения Т1=20 секунд, пауза Т2=10 секунд, время раскрытия Т3=20 секунд. Максимальная перегрузка при этом составляет 2,7 g.

Приведенные выше параметры управления щитками зависят от высоты начальной точки спуска, массы корабля, плотности воздуха по высотам. Эти параметры, выбранные на этапе математического моделирования, перед полетом должны быть введены в программу контроллера корабля.

Щитки в положении 7 и 9 производят также аэродинамическое управление кораблем при его движении по нисходящей траектории с целью приведения его в точку старта, или другую заданную точку посадки. Для этого по командам системы управления производится отклонение одного или нескольких щитков вверх на заданный угол с помощью привода. При этом обтекание корабля становится несимметричным, полная аэродинамическая сила отклоняется от вертикали в нужную сторону, что приводит к изменению траектории спуска в этом же направлении. Поскольку траектория подъема и спуска изначально выбирается близкой к вертикальной, кораблю для возврата к точке старта требуется сравнительно небольшая величина аэродинамического качества (0,1-0,3) для компенсации ветрового смещения и неточностей управления.

Описанным выше образом осуществляется аэродинамическое управление кораблем по осям тангажа и рыскания. Поскольку корабль является осесимметричным объектом, такого управления достаточно для приведения корабля в точку посадки.

На заключительном этапе посадки включается маршевый двигатель 3 и производится торможение корабля. При снижении скорости перед землей до практически нулевой, производится приземление на посадочные опоры 2. Ориентация корабля при этом осуществляется двигателями ориентации 4.

Поскольку в предлагаемом корабле щитки занимают всю площадь головного обтекателя и боковой поверхности, их суммарная площадь гораздо больше, чем в прототипе, что позволяет эффективно использовать их для управления перегрузкой.

Предлагаемый способ торможения суборбитального корабля позволяет существенно, более чем в 2 раза в сравнении с прототипом, снизить максимальную перегрузку при спуске.

Основным назначением предлагаемого корабля является суборбитальный космический туризм. В процессе полета члены экипажа должны физически почувствовать особенности космического пространства, поэтому экипаж находится вне герметичной капсулы, непосредственно в открытом космическом пространстве, в скафандрах. Это позволяет дополнить восприятие полета ощущением космического вакуума, который проявляется в повышении жесткости и упругости скафандра, яркого солнечного света и перепадов температур на освещенной и теневой стороне скафандра. Состояние невесомости продолжается около 3 минут, за это время члены экипажа могут отстегнуться от кресла и плавать не только над креслом, но и на некотором расстоянии от корабля при условии, что они подготовлены к этому и соединены с кораблем с помощью фала.

Другим назначением корабля является проведение высотных парашютных прыжков. В настоящее время достигнутая высота парашютного прыжка составляет 41,4 км (Алан Юстас, 25.10.2014 г.). Прыжок произведен с аэростата. Дальнейшее существенное увеличение высоты прыжка возможно только с помощью ракетных систем. Предлагаемый корабль позволяет расширить диапазон высот практически до 100 км. Спортсмен в скафандре с парашютом может покинуть корабль в любой точке траектории после окончания работы маршевого двигателя. Он может воспользоваться катапультным креслом или просто оттолкнуться от корабля ногами, и в течение действия невесомости удалиться от корабля на безопасное расстояние.

Члены экипажа могут по своему выбору приземляться на парашюте или в корабле.

При аварии корабля на старте, при посадке или в любой другой точке траектории экипаж может покинуть корабль с помощью катапультных кресел и приземлиться на индивидуальных парашютах.

Для обеспечения перечисленных возможностей в предлагаемом корабле кресла экипажа выполнены катапультными, а щитки, образующие головной обтекатель, установлены над ними с зазором, обеспечивающим возможность катапультирования во всем диапазоне углов раскрытия этих щитков.

Практическая реализация предложенного корабля может основываться на применении отработанных и надежных основных агрегатов, применяемых в авиации и космонавтике: жидкостного ракетного двигателя многоразового запуска тягой 7-10 тонн, двигателей ориентации, системы управления, катапультных кресел К36 или их облегченных аналогов, скафандров «Сокол». Щитки могут быть изготовлены из дюралюминия или углепластика. Максимальная скорость корабля при снижении не превышает 1 км/с, поэтому тепловые нагрузки будут незначительными. Приводы каждой группы щитков могут быть электрическими, например, типа «винт-гайка» с вертикальным винтом на оси двигателя, и гайкой, шарнирно связанной штоками с каждым щитком. Такая конструкция обеспечивает синхронное и симметричное отклонение щитков. Для аэродинамического управления кораблем винт должен отклоняться от вертикали в двух взаимно-перпендикулярных направлениях.

Источник поступления информации: Роспатент

Показаны записи 21-30 из 111.
29.05.2018
№218.016.55a4

Щелевая антенна

Изобретение относится к антенной технике, в частности к щелевым антеннам резонаторного типа с полунаправленной диаграммой направленности, и может быть использовано в технике связи, особенно на борту космического объекта. Технический результат - уменьшение габаритов антенны и ее двухчастотное...
Тип: Изобретение
Номер охранного документа: 0002654346
Дата охранного документа: 17.05.2018
29.05.2018
№218.016.55ca

Способ испытаний изделий на суммарную негерметичность

Изобретение относится к области исследования устройств на герметичность. Сущность: изделие помещают в вакуумную камеру с подключенным к ней течеискателем. Вакуумируют вакуумную камеру. Подают в вакуумную камеру эталонный поток пробного газа. Измеряют приращение парциального давления пробного...
Тип: Изобретение
Номер охранного документа: 0002654340
Дата охранного документа: 17.05.2018
29.05.2018
№218.016.57ca

Способ определения временной привязки производимых с космического аппарата снимков земной поверхности

Изобретение относится к космической технике и может быть использовано для определения временной привязки снимков земной поверхности с космического аппарата (КА). В способе определения временной привязки производимых с КА снимков земной поверхности осуществляют генерацию на борту значения...
Тип: Изобретение
Номер охранного документа: 0002654883
Дата охранного документа: 23.05.2018
29.05.2018
№218.016.584e

Способ оценки состояния солнечной батареи космического аппарата с инерционными исполнительными органами

Изобретение относится к системам электроснабжения космических аппаратов (КА) с помощью солнечных батарей (СБ). Способ включает ориентацию СБ на Солнце, измерение на последовательных витках орбиты угла между направлением на Солнце и нормалью к плоскости орбиты КА, а также тока СБ в моменты...
Тип: Изобретение
Номер охранного документа: 0002655089
Дата охранного документа: 23.05.2018
09.06.2018
№218.016.5b10

Способ контроля производительности солнечной батареи космического аппарата на бестеневых орбитах

Изобретение относится к эксплуатации солнечных батарей (СБ) космического аппарата (КА). Способ включает ориентацию нормали к рабочей поверхности СБ на Солнце (под углом α) и измерение тока СБ. На последовательных витках орбиты измеряют угол β между направлением на Солнце и плоскостью орбиты КА...
Тип: Изобретение
Номер охранного документа: 0002655561
Дата охранного документа: 28.05.2018
09.06.2018
№218.016.5b16

Герметизированное устройство

Изобретение относится к машиностроению и может быть использовано при испытаниях полостей устройств авиационной и ракетной техники, а также в других областях техники. Сущность: устройство содержит корпус (1) с внутренней полостью (2) и расточкой (3). В расточке (3) установлена крышка (4),...
Тип: Изобретение
Номер охранного документа: 0002655675
Дата охранного документа: 29.05.2018
09.06.2018
№218.016.5b37

Устройство осевой фиксации коаксиальных деталей и способы осевой фиксации и расфиксации коаксиальных деталей

Изобретение относится к машиностроению, а именно к устройствам осевой фиксации деталей в отверстиях. Техническим результатом изобретения является повышение надежности устройства осевой фиксации путем обеспечения стойкости проволочного фиксатора к вибрации и ударным осевым нагрузкам, а также...
Тип: Изобретение
Номер охранного документа: 0002655910
Дата охранного документа: 29.05.2018
09.06.2018
№218.016.5b6c

Герметизированное устройство

Изобретение относится к машиностроению и может быть использовано, например, при испытаниях полостей устройств авиационной и ракетной техники. Сущность: устройство содержит корпус (1), с наружного торца (2) которого имеется расточка (3), сообщенная с внутренней полостью (4) корпуса (1). На...
Тип: Изобретение
Номер охранного документа: 0002655743
Дата охранного документа: 29.05.2018
09.06.2018
№218.016.5bcd

Способ зондирования верхней атмосферы

Изобретение относится к космической технике и может быть использовано для зондирования верхней атмосферы. Сущность: измеряют и прогнозируют орбиту космического аппарата. Определяют момент времени начала зондирования верхней атмосферы. Выпускают с космического аппарата на тросе капсулу с научной...
Тип: Изобретение
Номер охранного документа: 0002655645
Дата охранного документа: 29.05.2018
09.06.2018
№218.016.5dc3

Коаксиальный электрохимический компрессор водорода

Изобретение относится к электрохимии, в том числе к «зеленой энергетике», и может использоваться в транспортных энергосистемах и космосе. Компрессор водорода включает корпус с входным и выходным штуцерами, а также пакет электроизолированных мембранно-электродных блоков, состоящих из...
Тип: Изобретение
Номер охранного документа: 0002656219
Дата охранного документа: 01.06.2018
Показаны записи 11-18 из 18.
30.11.2018
№218.016.a19f

Электролизная ракетная двигательная установка и способ её эксплуатации

Изобретение относится к двигательным установкам (ДУ) космических аппаратов и может быть использовано в кислородно-водородных двигательных установках с электролизным производством этих газов на космическом аппарате (КА). Электролизная ракетная двигательная установка включает электролизер воды с...
Тип: Изобретение
Номер охранного документа: 0002673640
Дата охранного документа: 28.11.2018
05.12.2018
№218.016.a333

Способ создания реактивной тяги пилотируемого космического аппарата

Изобретение относится к ракетно-космической технике и может использоваться при разработке реактивных двигательных установок (ДУ), предназначенных для маневрирования пилотируемых космических аппаратов (КА). Способ создания реактивной тяги пилотируемого космического аппарата, включающий...
Тип: Изобретение
Номер охранного документа: 0002673920
Дата охранного документа: 03.12.2018
11.03.2019
№219.016.d620

Боковая ручка управления (варианты)

Изобретение относится к средствам управления самолетом по тангажу и крену. Боковая ручка управления самолетом с двумя вращательными степенями свободы включает рукоятку 11, основание 2 с двумя электроприводами (1а) поперечного канала и (1б) продольного канала, имеющими форму цилиндров и...
Тип: Изобретение
Номер охранного документа: 0002681462
Дата охранного документа: 06.03.2019
20.03.2019
№219.016.e33e

Способ эксплуатации пилотируемой орбитальной станции

Изобретение относится к управлению полётом и жизнеобеспечению экипажей космических аппаратов (КА), преимущественно орбитальных станций. Способ включает выделение углекислого газа из воздуха обитаемых отсеков КА путем адсорбции, а также последующую десорбцию, охлаждение (с частичным сжижением) и...
Тип: Изобретение
Номер охранного документа: 0002673215
Дата охранного документа: 22.11.2018
19.04.2019
№219.017.3089

Электрохимический генератор и способ его эксплуатации

Изобретение относится к энергогенерирующим устройствам и может быть использовано в энергетических установках с электрохимическими генераторами. Согласно изобретению электрохимический генератор включает батарею топливных элементов, магистрали топлива и окислителя с клапанами подачи и продувки и...
Тип: Изобретение
Номер охранного документа: 0002322731
Дата охранного документа: 20.04.2008
20.04.2023
№223.018.4bab

Магнитоплазменный электрореактивный двигатель

Изобретение относится к космической технике, точнее к электрореактивным двигателям, и может быть использовано в космических аппаратах. Магнитоплазменный электрореактивный двигатель содержит корпус, хотя бы по одному кольцевому магниту и радиочастотной антенне, подключенной к генератору...
Тип: Изобретение
Номер охранного документа: 0002764496
Дата охранного документа: 17.01.2022
15.05.2023
№223.018.5ca8

Суборбитальный космический корабль и способ его торможения в атмосфере

Группа изобретений относится к управлению и конструкции космических кораблей (КК) многократного применения с вертикальным взлетом и посадкой, которые могут быть использованы для космического туризма, высотных парашютных прыжков и др. Суборбитальный КК содержит раму, посадочные опоры,...
Тип: Изобретение
Номер охранного документа: 0002759358
Дата охранного документа: 12.11.2021
17.06.2023
№223.018.7ed8

Способ создания аккумулятора тепла

Изобретение относится к устройствам для хранения тепла и может быть использовано в автономном солнечном электротеплоснабжении бытовых и производственных помещений, преимущественно лунной базы. Способ создания аккумулятора тепла, преимущественно для лунной базы, состоит в создании полости в...
Тип: Изобретение
Номер охранного документа: 0002774728
Дата охранного документа: 22.06.2022
+ добавить свой РИД