×
15.05.2023
223.018.5bcf

Результат интеллектуальной деятельности: Многоканальная волоконно-оптическая система детектирования и измерения параметров сигналов акустической эмиссии

Вид РИД

Изобретение

Аннотация: Использование: для детектирования и измерения параметров сигналов акустической эмиссии посредством волоконно-оптической системы. Сущность изобретения заключается в том, что волоконно-оптическая система детектирования и измерения параметров сигналов акустической эмиссии содержит два лазерных диода, подключенных к мультиплексору DWDM, выход которого подключен к оптоволоконному делителю, каждый выход которого подключен к первому порту оптического циркулятора, а ко второму порту указанного циркулятора подключен волоконно-оптический датчик, представляющий собой волоконный интерферометр, выход оптического циркулятора подключен к DWDM демультиплексору, выходы указанного демультиплексора соединены с входами двух оптоволоконных фотоприемников, причем рабочие длины волн лазерных диодов выбираются так, чтобы разность их значений составляла не менее одного периода стандартной сетки частот DWDM, при этом разность длин плеч интерферометра подбирается таким образом, чтобы при воздействии на него гармонических механических колебаний в рабочем диапазоне частот разность фаз сигналов напряжения на выходах оптоволоконных фотоприемников составляла π/2. Технический результат: обеспечение возможности упрощения конструкции волоконно-оптической системы детектирования и измерения параметров сигналов акустической эмиссии и обеспечение возможности создания системы регистрации, малочувствительной к дрейфу длины резонатора. 2 ил.

Изобретение относится к области волоконно-оптических измерительных систем, используемых для диагностики внутреннего состояния различных конструкций и детектирования внешних ударных воздействий. В системе используется двойное преобразование внешнего воздействия: первичный сенсор осуществляет акустооптическое преобразование (преобразует акустическое колебание в объекте в изменение свойств оптического излучения), далее в блоке-регистраторе осуществляется вторичное преобразование свойств оптического излучения в электрический сигнал. Физически в схеме используется интерференционная методика измерения колебаний фазы оптической волны одновременно в двух спектральных каналах.

Известны различные конструкции датчиков акустической эмиссии (АЭ) и систем на их основе. Наиболее распространены системы, построенные на базе пьезоэлектрических преобразователей АЭ. (RU 2012126743 A, RU 96102359 А). Во всех таких конструкциях сигнал АЭ преобразуется в колебания элемента из пьезокерамики. Возникающее в результате пьезоэлектрического эффекта напряжение на электродах элементы, считывается системой регистрации.

Недостатком пьезоэлектрических преобразователей является необходимость использования металлических проводов для передачи сигнала, что резко снижает помехозащищенность конструкции, особенно в условиях сложной электромагнитной обстановки. Кроме того, пьезоэлектрические ПАЭ обладают сильно неравномерной АЧХ с ярко выраженными резонансами, что затрудняет спектральный анализ широкополосных сигналов.

Существуют распределенные оптические сенсоры акустической эмиссии US 2010315630 (А1). В таких конструкциях используется зависимость рэлеевского либо рамановского рассеяния от внешних воздействий на волокно. Их недостатком является сложность и дороговизна аппаратуры, а также сложность количественного анализа сигналов.

Наиболее близкими с точки зрения конструкции и технической сущности датчиков и системы обработки являются модели US 5832157 А и ЕР 3669146 (А1), взятые за прототип. В обоих случаях датчиков имеет вид интерферометра Фабри-Перо. В первом варианте резонатор формируется в воздушном зазоре между двумя торцами оптического волокна. Вся конструкция собирается в капилляре. Недостатком такой схемы является низкий оптический контраст такого резонатора и сложность его изготовления.

Во втором случае в качестве датчика АЭ используются две волоконные брэгговские решетки, также формирующие резонатор Фабри-Перо. Недостатком данного варианта является частотная зависимость коэффициента отражения зеркал от температуры ВОД.

В качестве системы обработки в обоих случаях предложено применять либо качающийся по длине волны лазер, либо спектрометр, либо внешнюю линию задержки. Недостатком данных схем являются сложность их реализации и ограничение в быстродействие. Характерные частоты сканирования спектрометра или длины волны лазера не превышают единиц килогерц.

По сравнению с прототипом новое устройство имеет ряд преимуществ:

- простота конструкции;

- источники света работают в стационарном режиме без модуляции;

- большой динамический диапазон;

- калибровка датчиков непосредственно в устройстве;

- нерезонансный характер АЧХ системы ВОД + схема обработки.

Задача изобретения состоит в реализации технического решения, позволяющего упростить конструкцию волоконно-оптической системы детектирования и измерения параметров сигналов акустической эмиссии и создать систему регистрации, малочувствительную к дрейфу длины резонатора.

Поставленная задача решается тем, что волоконно-оптическая система детектирования и измерения параметров сигналов акустической эмиссии содержит два лазерных диода, подключенных к мультиплексору DWDM, выход которого подключен к оптоволоконному делителю, каждый выход которого подключен к первому порту оптического циркулятора, а ко второму порту указанного циркулятора подключен волоконно-оптический датчик, представляющий собой волоконный интерферометр, выход оптического циркулятора подключен к DWDM демультиплексору, выходы указанного демультиплексора соединены с входами двух оптоволоконных фотоприемников, причем рабочие длины волн лазерных диодов выбираются так, чтобы разность их значений составляла не менее одного периода стандартной сетки частот DWDM, при этом разность длин плеч интерферометра подбирается таким образом, чтобы при воздействии на него гармонических механических колебаний в рабочем диапазоне частот разность фаз сигналов напряжения на выходах оптоволоконных фотоприемников составляла π/2.

Изобретение иллюстрируется чертежом, на фиг. 1 которого приведена когерентная схема с квадратурным каналом, а на фиг. 2 представлена зависимость чувствительности датчика при изменении длины резонатора.

Два лазерных диода 1 подключены к мультиплексору DWDM 2. Выход мультиплексора 2 подключен к оптоволоконному делителю 1×N3. Каждый выход делителя 3 подключен к первому порту оптического циркулятора 4, а ко второму порту циркулятора 4 подключен волоконно-оптический датчик акустической эмиссии (ВОД АЭ) 5, представляющий собой двухлучевой интерферометр с необходимой разностью длин плеч.

Разность длин плеч интерферометра подбирается таким образом, чтобы удовлетворялось условие квадратуры с нужной точностью. Выход циркулятора 4 подключен к DWDM демультиплексору 6, а выходы демультиплексора 6 соединены со входами двух оптоволоконных фотоприемников 7. Рабочие длины волн лазерных диодов 1 выбираются так, чтобы разность их значений составляла не менее одного периода стандартной сетки частот DWDM.

Свет от двух лазерных диодов 1 и 2, сдвинутых по длине волны на один либо несколько периодов стандартной сетки частот DWDM, с помощью мультиплексора DWDM 2 объединяется в одно оптическое волокно. Далее, с помощью оптоволоконного делителя 1×N 3 свет делится на нужное число каналов. Свет, отраженный от ВОД АЭ 5, поступает на DWDM демультиплексор 6 и разводится на два фотоприемника 7, по одному на каждый спектральный канал.

Опишем принцип действия двухволновой системы для регистрации малых акустических импульсов. Коэффициент отражения от любого двухлучевого интерферометра имеет следующую зависимость:

где k=2π/λ, где λ - длина волны, n - показатель преломления, d - длина резонатора.

Пусть имеется два источника с небольшим сдвигом длины волны. Каждый фотоприемник принимает сигнал на своей длине волны. Тогда напряжения на выходах фотоприемников, которые пропорциональны отраженной от резонатора мощности света, будут иметь вид:

Отметим, что в данном случае приведены выражения для нормированных значений напряжения, что всегда можно реализовать на практике предварительной калибровкой каналов.

Пусть d=d0+Δd, где d0 - текущая длина резонатора, Δd - малые колебания длины резонатора, вызванные прохождением акустической волны, причем Δd<<d0. Тогда выражение (2) можно переписать как:

где Δλ - сдвиг по длине волны между каналами.

Учитывая малость сдвига длины волны и малость колебаний резонатора, вызванных сигналами АЭ, выражение для сигналов можно, путем несложных преобразований, привести к виду:

В выражении (4) видно, что сигналы на фотоприемниках отличаются слагаемым под косинусом, которое не зависит от Δd. В результате всегда можно подобрать такую Δλ, чтобы выполнялось условие:

В этом случае (4) примет вид:

Используя то, что Δd<<d0, выражение (6), раскладывая синус и косинус, можно преобразовать:

Отсюда

В реальных условиях требование (5) выполняется с конечной точностью, причем дрейф длины резонатора приводит к колебаниям значения Δϕ. Однако небольшие отклонения Δϕ от π/2 будут приводить к небольшим колебаниям чувствительности, что обеспечивает конечный рабочий диапазон такой схемы. На фиг. 2 приведена зависимость глубины модуляции (изменения чувствительности) γ при изменении d0.

Уменьшение чувствительности датчика вдвое происходит при изменении оптической длины резонатора примерно на 42 мкм, что соответствует относительной деформации (для датчика 7 мм)

Таким образом, предложенная методика должна позволить создать систему регистрации, малочувствительную к дрейфу длины резонатора.

В качестве ВОД АЭ может быть использован любой ВОД, представляющий собой двухлучевой интерферометр, либо

низкодобротный многолучевой. При этом для устойчивой работы системы необходимо производить отбор ВОД таким образом, чтобы ВОД, используемые на одном элементе конструкции и обрабатываемые одной системой, отличались друг от друга по разности длин плеч менее, чем на 10% от максимальной допустимой деформации.

Отбор датчиков может быть осуществлен с помощью той же измерительной системы за счет подачи небольшого возбуждения и проверки выполнения условия квадратуры по фазовому сдвигу регистрируемых колебаний в спектральных каналах.

Волоконно-оптическая система детектирования и измерения параметров сигналов акустической эмиссии, содержащая два лазерных диода, подключенных к мультиплексору DWDM, выход которого подключен к оптоволоконному делителю, каждый выход которого подключен к первому порту оптического циркулятора, а ко второму порту указанного циркулятора подключен волоконно-оптический датчик, представляющий собой волоконный интерферометр, выход оптического циркулятора подключен к DWDM демультиплексору, выходы указанного демультиплексора соединены с входами двух оптоволоконных фотоприемников, причем рабочие длины волн лазерных диодов выбираются так, чтобы разность их значений составляла не менее одного периода стандартной сетки частот DWDM, при этом разность длин плеч интерферометра подбирается таким образом, чтобы при воздействии на него гармонических механических колебаний в рабочем диапазоне частот разность фаз сигналов напряжения на выходах оптоволоконных фотоприемников составляла π/2.
Источник поступления информации: Роспатент

Показаны записи 1-10 из 10.
10.03.2015
№216.013.3110

Система контроля технического состояния конструкций летательного аппарата (варианты)

Изобретение относится к области авиации, в частности к системам контроля состояния летательных аппаратов в процессе эксплуатации. Система контроля технического состояния конструкций летательного аппарата содержит датчики технического состояния лопастей винта вертолета или консолей крыла...
Тип: Изобретение
Номер охранного документа: 0002544028
Дата охранного документа: 10.03.2015
10.07.2015
№216.013.5ca5

Устройство для индикации срыва потока на лопастях несущего винта вертолета

Изобретение относится к области авиации, в частности к системам индикации об опасных режимах полета. Устройство для индикации срыва потока на лопастях вертолета содержит блок волоконно-оптической коммутации, блок источника света, блок хранения информации, блок электропитания, блок анализа...
Тип: Изобретение
Номер охранного документа: 0002555258
Дата охранного документа: 10.07.2015
25.08.2017
№217.015.9f56

Внутритрубный снаряд-дефектоскоп

Изобретение относится к области метрологии, в частности к средствам неразрушающего контроля. Внутритрубный снаряд-дефектоскоп содержит цилиндрический гермоконтейнер, опорные элементы в виде эластичных манжет, датчики, расположенные снаружи по периметру гермоконтейнера и соединенные с...
Тип: Изобретение
Номер охранного документа: 0002606205
Дата охранного документа: 10.01.2017
10.05.2018
№218.016.452d

Комплекс для сейсморазведки в транзитных зонах на основе мультилинейной цифровой кабельной антенны

Изобретение относится к области гидро- и геоакустики и может быть использовано в транзитной зоне вода-суша в качестве цифровой кабельной антенны для проведения исследований, мониторинга и сейсморазведки месторождений углеводородов в транзитных зонах и обеспечения инженерно-геофизических работ....
Тип: Изобретение
Номер охранного документа: 0002650097
Дата охранного документа: 06.04.2018
20.12.2018
№218.016.a99f

Конструкция высокопрочных датчиков

Изобретение относится к области авиационной техники, диагностики технического состояния конструкций из полимерных композиционных, металлических и гибридных материалов с использованием волоконно-оптических акустических средств встроенного контроля. Конструкция высокопрочного датчика деформации...
Тип: Изобретение
Номер охранного документа: 0002675411
Дата охранного документа: 19.12.2018
27.05.2019
№219.017.6207

Резонансный акустический уровнемер

Изобретение относится к области ультразвуковой измерительной техники и предназначено для автоматического дистанционного измерения уровней жидкости различных типов в производственных и транспортных емкостях в нефтехимической, химической, горнодобывающей, пищевой и других отраслях промышленности....
Тип: Изобретение
Номер охранного документа: 0002443981
Дата охранного документа: 27.02.2012
06.07.2019
№219.017.a6ef

Устройство для индикации срыва потока и флаттера и контроля технического состояния автомата перекоса вертолета

Изобретение относится к области авиации. Устройство содержит волоконно-оптические тензодатчики, размещенные на поверхностях контролируемых невращающихся деталей автомата перекоса вертолета, подключаемые к волоконно-оптическому соединителю, соединенному с помощью волоконно-оптического кабеля с...
Тип: Изобретение
Номер охранного документа: 0002693762
Дата охранного документа: 04.07.2019
12.04.2023
№223.018.42b7

Способ обнаружения и локализации повреждений в тонкостенных конструкциях с помощью волн лэмба

Использование: для обнаружения и локализации повреждений в тонкостенных конструкциях. Сущность изобретения заключается в том, что на неповрежденную конструкцию с помощью фиксирующего устройства монтируют раму с 8-ю пьезоэлектрическими преобразователями (ПП), установленными в вершинах квадрата и...
Тип: Изобретение
Номер охранного документа: 0002757056
Дата охранного документа: 11.10.2021
16.05.2023
№223.018.6158

Волоконно-оптический кольцевой датчик акустической эмиссии

Группа изобретений относится к волоконно-оптическому датчику и способу его изготовления. Заявленный датчик состоит из двух катушек с оптическим волокном, расположенных одна над другой и механически соединенных между собой эластичным герметиком, при этом каждая катушка подключена свободным...
Тип: Изобретение
Номер охранного документа: 0002741270
Дата охранного документа: 22.01.2021
23.05.2023
№223.018.6c59

Волоконно-оптический датчик и способ его формования на исследуемом объекте

Изобретение относится к волоконно-оптическим датчикам и их изготовлению. Волоконно-оптический датчик состоит из оптоволоконного чувствительного элемента, расположенного внутри оптического волокна с акрилатным покрытием, отвержденной клеевой подложки из высокотемпературного влагостойкого...
Тип: Изобретение
Номер охранного документа: 0002730436
Дата охранного документа: 24.08.2020
+ добавить свой РИД