×
11.05.2023
223.018.53c8

Результат интеллектуальной деятельности: Способ определения емкости датчика и измерительная цепь для его осуществления

Вид РИД

Изобретение

№ охранного документа
0002795381
Дата охранного документа
03.05.2023
Аннотация: Изобретение относится к электроизмерительной технике, а именно к способам для измерения емкости датчика. Способ определения емкости датчика заключается в формировании двух гармонических напряжений на измеряемой и образцовой емкостях датчика, сдвинутых относительно друг друга на 90°. Компенсацию погрешности от конечности комплексного коэффициента усиления усилителя выполняют путем измерения двух входных напряжений, подаваемых на емкости, при равенстве нулю выходного напряжения усилителя, причем такие измерения проводятся дважды с переключением во втором такте входных напряжений с измеряемой емкости на образцовую, а с образцовой на измеряемую, а числовое значение измеряемой емкости определяется по результатам полученных значений напряжений по одному из следующих выражений: где , – мнимые составляющие напряжений на измеряемой и опорной емкостях в первом такте при фазе ω; , – мнимые составляющие напряжений на измеряемой и опорной емкостях во втором такте при фазе ω; , – измеряемая и опорная емкости. Устройство для измерения построено на базе блока формирования гармонических напряжений, микроконтроллера и операционного усилителя. Технический результат при осуществлении изобретения - повышение точности измерений. 2 ил.

Изобретение относится к электроизмерительной технике, а именно к определению емкости емкостного датчика и может быть использовано для преобразования параметров емкостных датчиков в код.

Ожидаемый технический результат при осуществлении изобретения – повышение точности определения емкости емкостного датчика, достигается формированием двух гармонических напряжений на измеряемой и образцовой емкостях датчика, сдвинутых относительно друг друга на 90 градусов, измерении их значений при равенстве нулю выходного напряжения усилителя, причем такие измерения проводятся дважды с переключением во втором такте входных напряжений с измеряемой емкости на образцовую, а с образцовой на измеряемую, а числовое значение измеряемой емкости определяется по результатам полученных значений напряжений.

Известен преобразователь информативного параметра емкостного датчика, в котором для повышения точности преобразования информативного параметра осуществляют два последовательных такта измерения [1]. В первом такте к входу усилителя подключена опорная емкость, на которую от первой обмотки трансформатора подается синусоидальное напряжение и выходное напряжение усилителя пропорционально опорной емкости. Во втором такте к входу усилителя подключается так же измеряемая емкость, на которую от второй обмотки трансформатора подается противофазное синусоидальное напряжение. В данном случае напряжение на выходе усилителя определяется разностью измеряемой и опорной емкостей датчика. Повышение точности преобразования информативного параметра достигается путем логометрической коррекции от результата деления данных напряжений.

К недостаткам аналога относится неполная коррекция погрешности преобразования, а лишь ее снижение вследствие предлагаемого алгоритма. Кроме того, учитывая комплексное значения коэффициента усиления усилителя погрешность преобразования является так же комплексной величиной, и использование предложенного алгоритма является неэффективным для коррекции комплексной погрешности преобразования.

Наиболее близким по техническому существу и достигаемому положительному эффекту к заявляемому способу является преобразователь емкости датчика в частоту, в котором на измеряемую и образцовую емкости датчика, подключенные к входу усилителя, подаются гармонические напряжения, сдвинутые друг относительно друга на 90 градусов [2]. Синфазный и квадратурный фазочувствительные выпрямители выделяют действительную и мнимую составляющие выходного напряжения усилителя, а по сигналу с выхода схемы сравнения изменяется частота генератора до тех пор, пока эти составляющие не станут равны. Значение частоты на выходе генератора зависит от постоянной времени используемого фазовращателя, измеряемой и образцовой емкостей датчика.

Использование прототипа не позволяет скорректировать погрешность преобразования в случае комплексного значения коэффициента усиления используемого операционного усилителя (ОУ). Как известно, в активной полосе частот начиная с нескольких десятков герц и вплоть до частоты единичного усиления f1 логарифмическая амплитудно-частотная характеристика операционного усилителя имеет спад -6 дБ/октава (или -20 дБ/декада), а следовательно, коэффициент усиления является чисто мнимой величиной и рассчитывается из выражения

Модуль коэффициента усиления ОУ равен

- рабочая частота.

С учетом сказанного, исходное уравнение для расчета выходной частоты генератора прототипа, без учета емкости кабеля связи, будет иметь вид

где – измеряемая и образцовая емкости датчика, – сопротивление обратной связи усилителя, Uо – комплексное действующее значение опорного напряжения, U1 – комплексное действующее значение выходного напряжения усилителя.

Откуда частота выходного напряжения генератора определяется выражением

Здесь погрешность преобразователя емкости датчика в частоту

которая зависит от рабочей частоты и коэффициента усиления используемого ОУ.

Следовательно, использование прототипа не позволяет скорректировать погрешность преобразования в случае комплексного значения коэффициента усиления используемого ОУ. Кроме того, наличие обратной связи требует настройки преобразователя и дополнительного времени на перестройку частоты для обеспечения равенства синфазной и квадратурной составляющих выходного напряжения усилителя.

Целью предлагаемого способа определения емкости датчика является повышение точности, заключающееся в возможности определения измеряемой емкости датчика при использовании схемы прямого преобразования на любой рабочей частоте.

Это достигается за счет того, что в известном преобразователе емкости датчика в частоту формируются два гармонических напряжения на измеряемой и образцовой емкостях датчика, сдвинутых относительно друг друга на 90 градусов, но в отличии от прототипа осуществляют измерения этих напряжений при равенстве нулю выходного напряжения усилителя, причем такие измерения проводятся дважды с переключением во втором такте входных напряжений с измеряемой емкости на образцовую, а с образцовой на измеряемую, а числовое значение измеряемой емкости определяется по результатам полученных значений напряжений.

Совокупность признаков, позволяющая в заявляемом способе использовать двухтактные измерения подаваемых напряжений при их переключении и равенстве нулю выходного напряжения усилителя, позволяют, в отличие от прототипа, получить существенные преимущества в компенсации погрешности определения емкости датчика.

При практической реализации заявляемого способа предложено процедуры измерения входных напряжений и определение емкости датчика осуществлять на основе микроконтроллера. Последний также управляет всеми режимами работы: процессом формирования двух гармонических напряжений и их переключением; определением моментов времени измерения напряжений, а также расчетом измеряемой емкости датчика по заданному алгоритму.

На фиг.1 приведена схема измерительной цепи, к которой подключается емкостной датчик. Здесь: БФН – блок формирования гармонических напряжений, У – усилитель, выполненный на базе ОУ , МК – микроконтроллер.

Рассмотрим реализацию способа. Прежде всего МК обеспечивает в первом такте работы формирование на выходе БФН двух комплексных напряжений и на измеряемой и опорной емкостях датчика соответственно.

,

где – амплитудное значение напряжений и .

При формировании указанных напряжений осуществляется фазовое управление по шине управления изменением напряжений на выходе БФН. Выходное напряжение ОУ может быть найдено из системы уравнений

Подставим второе уравнение системы (2) в первое и учтем, что коэффициент усиления имеет комплексное значение согласно уравнению (1)

где:

После преобразования выходное напряжение усилителя может быть найдено из выражения

Здесь:

.

После этого производится измерение входных напряжений, поступающих на и , которые так же подаются на входы аналого-цифрового преобразователя AD0 и AD1 микроконтроллера. При этом указанные измерения проводятся при равенстве нулю выходного напряжения усилителя, что фиксируется встроенным в МК компаратором, на один из выводов которого AIN1 подается напряжение с выхода усилителя, а другой – AIN0 соединен с общим проводом, имеющим нулевой потенциал. На фиг 2, а проиллюстрирована векторная диаграмма для данного случая . Анализ векторной диаграммы (фиг.2, а) показывает, что выполняется равенство отрезков, отсекаемых на мнимой оси составляющими выходного напряжения и справедливо выражение

где:

,

U 1, U2 – мнимые составляющие напряжений на измеряемой и опорной емкостях в первом такте при фазе ɷt1.

После этого производится переключение подаваемых напряжений и на будет подаваться , а на . После чего производится повторное измерение входных напряжений при нулевом напряжении с выхода усилителя. Фаза при этом будет иной и равной . Анализ векторной диаграммы на фиг.2, б показывает, что для данного случая будет справедливо следующее выражение

где:

,

U 3, U4 – мнимые составляющие напряжений на измеряемой и опорной емкостях во втором такте при фазе ɷt2.

Числовое значение емкости датчика определяется из решения системы уравнений (3) и (4) по одному из следующих выражений

или

Для подтверждения заявляемого свойства предложенного способа преобразования в программе Mathcad было проведено моделирование процесса преобразования. Результаты приведены ниже.

Источники информации

1. Патент РФ на изобретение №1822986, кл. G 01 R 27/26, опубл. 23.06.1993.

2. Патент РФ на изобретение №1827647, кл. G 01 R 27/26, опубл. 15.07.1993.


Способ определения емкости датчика и измерительная цепь для его осуществления
Способ определения емкости датчика и измерительная цепь для его осуществления
Способ определения емкости датчика и измерительная цепь для его осуществления
Способ определения емкости датчика и измерительная цепь для его осуществления
Способ определения емкости датчика и измерительная цепь для его осуществления
Способ определения емкости датчика и измерительная цепь для его осуществления
Способ определения емкости датчика и измерительная цепь для его осуществления
Способ определения емкости датчика и измерительная цепь для его осуществления
Способ определения емкости датчика и измерительная цепь для его осуществления
Источник поступления информации: Роспатент

Показаны записи 11-12 из 12.
23.05.2023
№223.018.6f3c

Способ получения мелкодисперсного порошка тугоплавкого материала

Изобретение относится к производству порошков для изготовления твёрдосплавных изделий методами порошковой металлургии. Способ получения мелкодисперсного порошка тугоплавкого материала включает подачу разрушаемого электрода-анода из металла получаемого порошка к поверхности вращающегося...
Тип: Изобретение
Номер охранного документа: 0002746197
Дата охранного документа: 08.04.2021
17.06.2023
№223.018.7ecc

Подвеска ведущих колес грузовой платформы с повышенными эксплуатационными свойствами

Изобретение относится к области машиностроения, в частности к подвескам транспортного средства. Подвеска состоит из двух поперечных рычагов, подрамника, поворотного кулака со ступичным подшипником, шаровых опор, упругого элемента. Тяги, которые шарнирно связаны с поворотным рычагом,...
Тип: Изобретение
Номер охранного документа: 0002774205
Дата охранного документа: 16.06.2022
Показаны записи 1-4 из 4.
10.04.2016
№216.015.2df1

Система светосигнальных огней автомобиля

Изобретение относится к области автомобильной светотехники. Система светосигнальных огней автомобиля содержит фонарь в корпусе со светодиодами, размещенными на плате. Источники света выполнены на RGB светодиодах. Управляющий режимами работы системы микроконтроллер соединен с платой по...
Тип: Изобретение
Номер охранного документа: 0002579375
Дата охранного документа: 10.04.2016
09.06.2018
№218.016.5ff3

Адаптивная система головного освещения автомобиля

Изобретение относится к автомобильной светотехнике и может быть использовано на автомобилях в качестве адаптивной системы головного освещения дорожного полотна. Адаптивная система фар головного освещения содержит эллипсоидный отражатель, конденсорную линзу и светодиод. Для изменения положения...
Тип: Изобретение
Номер охранного документа: 0002656976
Дата охранного документа: 07.06.2018
26.06.2019
№219.017.91ec

Способ измерения уровня жидкости

Изобретение относится к измерительной технике и может быть использовано для измерения уровня жидкостей в закрытых резервуарах. Техническим результатом является повышение точности измерения уровня. В способе измерения уровня жидкости, заключающемся в излучении зондирующего акустического импульса...
Тип: Изобретение
Номер охранного документа: 0002692409
Дата охранного документа: 24.06.2019
06.07.2020
№220.018.2fee

Интегрирующий аналого-цифровой преобразователь напряжения

Изобретение относится к информационно-измерительной технике, в частности, к устройствам измерения электрического напряжения. Техническим результатом является повышение точности преобразования напряжения в код за счет оценки составляющей погрешности от краевых эффектов в многотактных...
Тип: Изобретение
Номер охранного документа: 0002725678
Дата охранного документа: 03.07.2020
+ добавить свой РИД