×
10.05.2023
223.018.5399

Результат интеллектуальной деятельности: Способ определения диэлектрических свойств деструктирующих материалов при нагреве

Вид РИД

Изобретение

№ охранного документа
0002795249
Дата охранного документа
02.05.2023
Аннотация: Изобретение относится к технике определения диэлектрических свойств деструктирующих материалов на сверхвысоких частотах. Предложен способ определения диэлектрических свойств деструктирующих материалов при нагреве, который включает настройку резонатора без образца, состоящего из деструктирующего материала, накрытого кварцевым стеклом, и с образцом в резонанс на резонансной частоте, нагрев резонатора с образцом и без образца, измерение температурных изменений длины резонатора, определение температурной зависимости диэлектрической проницаемости и тангенса угла диэлектрических потерь деструктирующего материала. Технический результат заключается в повышении точности определения диэлектрических свойств деструктирующих материалов. 2 ил.

Изобретение относится к технике определения диэлектрических свойств деструктирующих материалов на сверхвысоких частотах.

Известен высокочастотный резонатор для исследований диэлектриков в инертной среде (авторское свидетельство СССР №248805, H01P 7/06, опубликовано 18.07.1969 г.) в котором измерение диэлектрических свойств материалов производится при нагреве образца в замкнутом объеме печи в среде инертного газа и применимо для твердых диэлектриков, не изменяющих своих теплофизических свойств при изменении температуры. Точное измерение диэлектрических свойств материалов, которые выбрасывают пары деструкции с поверхности образца, в таком устройстве невозможно, потому что пары заполняют замкнутый объем резонатора, препятствуя распространению сверхвысокочастотного сигнала, оседают на поверхности трубы резонатора и его торцевой стенке, снижая их электропроводность, что приводит к снижению добротности резонансных колебаний и точности измерений при изменении температуры измерения.

Известно техническое решение, реализованное в «Устройстве для измерения диэлектрических свойств материалов при нагреве» по патенту Российской Федерации №2744487, G01R 27/26, опубликованном 10.03.2021, в котором при измерении диэлектрических характеристик деструктирующего материала в объемном резонаторе при нагреве для исключения влияния попадания паров материала на внутреннюю поверхность резонатора создается поток газа, выводящий продукты горения за пределы объема резонатора. Это позволяет частично устранить снижение электропроводности покрытия резонатора и, как следствие, к частичному устранению снижения его добротности.

Недостатком измерения диэлектрических характеристик деструктирующих материалов при помощи упомянутого устройства является то, что при нагреве скорость движения частичек продуктов деструкции материала значительно превышает скорость потока газа, выводящего продукты деструкции с поверхности образца, который не может полностью предотвратить их попадание в полость резонатора и на внутреннюю поверхность резонатора, что приводит к снижению добротности резонатора и уменьшению точности измерения.

Наиболее близким к заявляемому является техническое решение, описанное в изобретении «Способ измерения параметров диэлектриков при нагреве и устройство для его осуществления» по патенту Российской Федерации №2631014, G01R 27/26, опубликованном 15.09.2017, в котором описан способ измерения параметров диэлектриков при нагреве в объемном резонаторе на фиксированной частоте, включающий возбуждение колебаний в резонаторе через расположенные в верхней торцевой стенке отверстия связи в охлаждаемой части резонатора, настройку резонатора в резонанс при нормальных условиях и при нагреве и измерение собственных параметров пустого резонатора, настройку резонатора в резонанс при нормальных условиях и при нагреве и измерение параметров резонатора с образцом, расчет температурных параметров диэлектриков сравнением собственных температурных параметров пустого резонатора и температурных параметров резонатора с образцом, в котором настройку в резонанс пустого резонатора и резонатора с образцом проводят перемещением верхней торцевой стенки резонатора с отверстиями связи при неизменном положении подвижного нижнего поршня.

К недостаткам данного способа следует также отнести то, что при нагреве образца из деструктирующего материала продукты горения будут попадать в измерительный объем резонатора и искажать распределение поля в резонаторе, а также осаждаясь на внутренней поверхности стенок резонатора, снижать их электропроводность, что в совокупности приводит к изменению собственных характеристик резонатора, снижению его добротности, снижению точности измерения диэлектрических параметров образца деструктирующего материала.

Техническим результатом предлагаемого изобретения является, повышение точности определения диэлектрических свойств деструктирующих материалов в полом цилиндрическом резонаторе при нагреве за счет снижение попадания продуктов горения в измерительный объем резонатора.

Указанная задача решается тем, что предложен способ определения диэлектрических свойств деструктирующих материалов при нагреве, включающий настройку резонатора без образца и с образцом в резонанс на резонансной частоте, нагрев резонатора с образцом и без образца, измерение температурных изменений длины резонатора и определение температурной зависимости диэлектрической проницаемости образца, отличающийся тем, что образец состоит из деструктирующего материала, накрытого кварцевым стеклом, температурную зависимость диэлектрической проницаемости деструктирующего материала рассчитывают по формуле:

,

где - длина волны в свободном пространстве;

с - скорость света;

f - резонансная частота;

- критическая длина волны типа H01 в резонаторе;

R - радиус резонатора;

;

- численное значение корня уравнения для функции Бесселя при рассмотрении распространения волны Н01 в резонаторе;

- постоянная распространения волны Н01 в области расположения деструктирующего материала образца определяется решением трансцендентного уравнения, заданного в неявной заданной форме:

,

где - толщина деструктирующего материала образца при температуре измерения T;

- длина волны в области расположения деструктирующего материала образца с диэлектрической проницаемостью ;

- толщина кварцевого стекла;

- постоянная распространения волны Н01 в области расположения кварцевого стекла;

- длина волны в области расположения кварцевого стекла с диэлектрической проницаемостью ;

- изменение длины незаполненной части резонатора при температуре измерения;

- длина резонатора с образцом при температуре измерения;

- длина резонатора без образца;

- постоянная распространения волны Н01 в незаполненной части резонатора;

- длина волны в незаполненной части резонатора с диэлектрической проницаемостью воздуха ,

и дополнительно определяют температурную зависимость тангенса угла диэлектрических потерь образца по изменению коэффициента передачи резонатора без образца и с образцом, а затем рассчитывают тангенс угла диэлектрических потерь деструктирующего материала образца по формуле:

,

где - тангенс угла диэлектрических потерь кварцевого стекла;

- измеренная температурная зависимость тангенса угла диэлектрических потерь образца.

При проведении высокотемпературных измерений диэлектрической проницаемости и тангенса диэлектрических потерь деструктурирующего материала, выброс продуктов разложения материала происходит при нагреве, в основном, с поверхности нагретого образца, поэтому закрытие поверхности образца беспористым материалом приведет к резкому сокращению выброса продуктов деструкции в полость резонатора, и, как следствие, повышению точности измерений.

Для достижения поставленной задачи в заявляемом способе предлагается производить измерение материала в полом цилиндрическом резонаторе, используя деструктирующий материал, накрытый беспористым материалом со стабильной диэлектрической проницаемостью и известными температурными зависимостями диэлектрических характеристик, непроницаемым для продуктов деструкции. Такой материал будет препятствовать проникновению продуктов деструкции материала в полость резонатора, и соответственно, осаждению их на его стенках. В результате чего не происходит изменения электропроводности покрытий стенок резонатора при нагреве, что позволяет также повысить точность производимых измерений.

Предлагается в качестве такого беспористого материала, обладающего известной температурной зависимостью диэлектрической проницаемости и радиопрозрачностью, использовать кварцевое стекло.

При этом в электродинамической модели в схеме эксперимента образец представляется в виде двухслойного образца (Фиг. 1), состоящего из деструктирующего материала толщиной d2, и кварцевого стекла толщиной d3, при этом незаполненная часть резонатора имеет длину .

Решая электродинамическую задачу с учетом граничных условий для тангенциальных составляющих поля в резонаторе, температурная зависимость диэлектрической проницаемости деструктирующего материала рассчитывается по формуле:

где - длина волны в свободном пространстве;

с - скорость света;

f - резонансная частота;

- критическая длина волны типа H01 в резонаторе;

R - радиус резонатора;

;

- численное значение корня уравнения для функции Бесселя при рассмотрении распространения волны Н01 в резонаторе;

- постоянная распространения волны Н01 в области расположения деструктирующего материала образца определяется решением трансцендентного уравнения, заданного в неявной заданной форме:

где - толщина деструктирующего материала образца при температуре измерения T;

- длина волны в области расположения деструктирующего материала образца с диэлектрической проницаемостью ;

- толщина кварцевого стекла;

- постоянная распространения волны Н01 в области расположения кварцевого стекла;

- длина волны в области расположения кварцевого стекла с диэлектрической проницаемостью ;

- изменение длины незаполненной части резонатора при температуре измерения;

- длина резонатора с образцом при температуре измерения;

- длина резонатора без образца;

- постоянная распространения волны Н01 в незаполненной части резонатора;

- длина волны в незаполненной части резонатора с диэлектрической проницаемостью воздуха .

При нагреве также определяют температурную зависимость тангенса угла диэлектрических потерь образца по изменению коэффициента передачи резонатора без образца и с образцом.

Тангенс угла диэлектрических потерь деструктирующего материала образца рассчитывают по формуле:

где - тангенс угла диэлектрических потерь кварцевого стекла;

- измеренная температурная зависимость тангенса угла диэлектрических потерь образца.

Так как при нагреве из-за изменения теплофизического состояния деструктирующего материала происходит изменение его геометрических размеров, то в расчетном алгоритме используются априорные теплофизические измерения толщины деструктирующего материала образца в виде температурной зависимости .

При нагреве и, соответствующем ему, расширении материалов, из которых изготовлен резонатор, изменяется геометрия его полости, поэтому в алгоритме расчета изменение электрической длины резонатора учитывается в виде априорной зависимости , которая измеряется предварительно для резонатора без образца. Вносимые изменения проводящих свойств покрытий резонатора продуктами деструкции при нагреве, влияющих на величину затухания, используемую при определении температурной зависимости тангенса угла диэлектрических потерь образца, учитываются путем сравнения величин коэффициента передачи в резонаторе без образца при комнатной температуре до и после измерения, использовании скорректированной величины коэффициента передачи в качестве величины коэффициента передачи резонатора без образца от температуры начала деструкции, определении значений температурной зависимости тангенса угла диэлектрических потерь образца по скорректированным данным величины затухания, использовании полученных величин в качестве границы неопределенности измерения температурной зависимости тангенса угла диэлектрических потерь образца в диапазоне температур от начала деструкции до максимальной исследуемой.

На фиг. 1 представлено устройство, реализующее предлагаемый способ. Образец из деструктирующего материала 1, накрытый кварцевым стеклом 2, помещен в объемный резонатор 3 с подвижным поршнем 4, указанным в двух положениях - в резонаторе без образца и в резонаторе с образцом.

Измерения характеристик резонатора производят анализатором цепей. Подвижный поршень перемещают, контролируя его положение измерителем перемещения поршня до установления резонансной длины на резонансной частоте, фиксируя и рассчитывая температурные зависимости диэлектрической проницаемости и тангенса угла диэлектрических потерь посредством устройства управления и отображения информации, которое управляет нагревом резонатора, контролируя температуру на поверхности поршня пирометром.

Для экспериментального подтверждения положительного эффекта от технического решения по предлагаемому способу проведены измерения в полом цилиндрическом резонаторе диаметром 50 мм на частоте ГГц образца из деструктирующего материала толщиной 9,830 мм композиционного состава, состоящего из кварцевой ткани, пропитанной алюмохромофосфатным и фенолформальдегидным связующими и кварцевого стекла толщиной d3=2,4 мм. Расчеты проводились по описанному выше алгоритму. Результаты определения температурной зависимости диэлектрической проницаемости композиционного материала при нагреве до 775°С представлены на фиг. 2a, а температурная зависимость тангенса угла диэлектрических потерь на фиг. 2б.

Из представленных на фиг. 2a, б данных видно, что по предлагаемому способу результаты измерения и характеристики температурных зависимостей определены более точно по сравнению со схематичными результатами определения диэлектрических свойств аналогичного материала, представленными в материалах по прототипу.

Изобретение позволяет обеспечить повышение точности измерений диэлектрических свойств деструктирующих материалов при нагреве методом измерения в объемном резонаторе.


Способ определения диэлектрических свойств деструктирующих материалов при нагреве
Способ определения диэлектрических свойств деструктирующих материалов при нагреве
Способ определения диэлектрических свойств деструктирующих материалов при нагреве
Способ определения диэлектрических свойств деструктирующих материалов при нагреве
Способ определения диэлектрических свойств деструктирующих материалов при нагреве
Способ определения диэлектрических свойств деструктирующих материалов при нагреве
Способ определения диэлектрических свойств деструктирующих материалов при нагреве
Способ определения диэлектрических свойств деструктирующих материалов при нагреве
Способ определения диэлектрических свойств деструктирующих материалов при нагреве
Способ определения диэлектрических свойств деструктирующих материалов при нагреве
Способ определения диэлектрических свойств деструктирующих материалов при нагреве
Способ определения диэлектрических свойств деструктирующих материалов при нагреве
Способ определения диэлектрических свойств деструктирующих материалов при нагреве
Способ определения диэлектрических свойств деструктирующих материалов при нагреве
Способ определения диэлектрических свойств деструктирующих материалов при нагреве
Способ определения диэлектрических свойств деструктирующих материалов при нагреве
Способ определения диэлектрических свойств деструктирующих материалов при нагреве
Способ определения диэлектрических свойств деструктирующих материалов при нагреве
Способ определения диэлектрических свойств деструктирующих материалов при нагреве
Способ определения диэлектрических свойств деструктирующих материалов при нагреве
Способ определения диэлектрических свойств деструктирующих материалов при нагреве
Способ определения диэлектрических свойств деструктирующих материалов при нагреве
Способ определения диэлектрических свойств деструктирующих материалов при нагреве
Способ определения диэлектрических свойств деструктирующих материалов при нагреве
Способ определения диэлектрических свойств деструктирующих материалов при нагреве
Способ определения диэлектрических свойств деструктирующих материалов при нагреве
Способ определения диэлектрических свойств деструктирующих материалов при нагреве
Источник поступления информации: Роспатент

Показаны записи 11-20 из 136.
13.01.2017
№217.015.71c3

Способ образования галтелей клея на кромках ячеек сотового заполнителя

Изобретение относится к авиационной технике, а именно к способам изготовления трехслойных звукопоглощающих панелей, предназначенных для снижения шума в авиационных двигателях. Способ образования галтелей клея на кромках ячеек сотового заполнителя включает наложение клеящей пленки на кромки...
Тип: Изобретение
Номер охранного документа: 0002596772
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.729e

Устройство для формования ударопрочных прозрачных полимерных материалов

Изобретение относится к технике переработки листовых заготовок и может быть использовано в любой отрасли машиностроения, в частности для получения изделий остекления самолетов, вертолетов и других средств с одинарной кривизной поверхности. Техническим результатом изобретения является улучшение...
Тип: Изобретение
Номер охранного документа: 0002598092
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.772f

Способ изготовления композитного элемента жесткости

Изобретение относится к композитным структурам, в частности к технологиям усиления композиционных элементов жесткости, и может применяться в области авиастроения и космической техники. Способ изготовления композитного элемента жесткости включает формирование из препрега пары компонентов, каждый...
Тип: Изобретение
Номер охранного документа: 0002599661
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7941

Способ тепловых испытаний обтекателей ракет из неметаллических материалов

Изобретение относится к технике наземных испытаний элементов летательных аппаратов и может быть использовано при наземных испытаниях элементов летательных аппаратов. Заявленный способ включает зонный нагрев наружной поверхности изделия за счет контакта с нагревателем. Распределение температуры...
Тип: Изобретение
Номер охранного документа: 0002599460
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.869f

Способ формования изделий из композиционного материала

Изобретение относится к способу формования изделий из композиционного материала. Техническим результатом является снижение трудоемкости, энергоемкости и сокращение производственного цикла изготовления изделия. Технический результат достигается способом формования изделий из композиционного...
Тип: Изобретение
Номер охранного документа: 0002603798
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8d25

Способ изготовления изделий из стеклокерамики литийалюмосиликатного состава

Изобретение относится к производству керамических изделий радиотехнического назначения. Технический результат изобретения заключается в повышении качества изделий из стеклокерамики литийалюмосиликатного состава. Измельчают аморфное стекло мокрым способом до получения водного шликера, формуют...
Тип: Изобретение
Номер охранного документа: 0002604611
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8d83

Радиопрозрачное защитное покрытие изделий из керамики, ситалла, стеклокерамики и способ его получения

Изобретение относится к технологии получения керамических и стеклокерамических изделий, работающих в условиях высоких тепловых и силовых нагрузок при одностороннем нагреве. Предложен состав и способ получения радиопрозрачных, ударопрочных защитных покрытий для изделий радиотехнического...
Тип: Изобретение
Номер охранного документа: 0002604541
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.9b82

Высокотермостойкий радиопрозрачный неорганический стеклопластик и способ его получения

Изобретение относится к радиопрозрачным композиционным материалам. Технический результат – повышение работоспособности аппретирующей пленки, уменьшение кислотности наносимой на стеклоткань суспензии. Высокотермостойкий радиопрозрачный неорганический стеклопластик выполнен на основе фосфатного...
Тип: Изобретение
Номер охранного документа: 0002610048
Дата охранного документа: 07.02.2017
25.08.2017
№217.015.a04f

Способ закрепления датчика измерения перемещения и деформации на объекте

Изобретение относится к измерению деформаций и может быть использовано при испытаниях изделий из хрупких материалов, например керамических обтекателей. Сущность: датчик измерения перемещения и деформации крепится жестким клеем на сухой поверхности односторонней липкой ленты с жесткой основой,...
Тип: Изобретение
Номер охранного документа: 0002606517
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.b7e1

Способ контроля прочности керамических оболочек типа тел вращения

Изобретение относится к испытательной технике и может быть использовано для контроля и исследования прочности керамических оболочек типа тел вращения. Сущность: осуществляют приложение статической нагрузки с помощью камеры из эластичного материала, помещенной внутрь испытуемой оболочки и...
Тип: Изобретение
Номер охранного документа: 0002614920
Дата охранного документа: 30.03.2017
Показаны записи 11-20 из 27.
19.01.2018
№218.016.05e8

Способ измерения параметров диэлектриков при нагреве и устройство для его осуществления

Использование: для измерения параметров диэлектриков при нагреве. Сущность изобретения заключается том, что способ измерения параметров диэлектриков при нагреве в объемном резонаторе на фиксированной частоте включает возбуждение колебаний в резонаторе через расположенные в верхней торцевой...
Тип: Изобретение
Номер охранного документа: 0002631014
Дата охранного документа: 15.09.2017
10.05.2018
№218.016.3a3c

Широкополосная система "антенна-обтекатель"

Изобретение относится к антенно-фидерным устройствам, преимущественно к широкополосным системам «антенна-обтекатель», предназначенным для работы в совмещенных диапазонах. Широкополосная система «антенна-обтекатель» для работы в совмещенных частотных некратных диапазонах содержит обтекатель со...
Тип: Изобретение
Номер охранного документа: 0002647563
Дата охранного документа: 16.03.2018
18.05.2018
№218.016.515f

Способ оптимизации радиотехнических характеристик антенного обтекателя со стенкой из многокомпонентного материала

Способ оптимизации радиотехнических характеристик антенного обтекателя со стенкой из многокомпонентного материала, включающий определение толщины стенки, настроенной на рабочий частотный диапазон обтекателя, его изготовление и измерение радиотехнических характеристик на стенде, отличающийся...
Тип: Изобретение
Номер охранного документа: 0002653185
Дата охранного документа: 07.05.2018
01.09.2018
№218.016.81ac

Способ измерения диэлектрических свойств материала и устройство для его осуществления

Изобретение относится к измерению диэлектрической проницаемости и тангенса угла диэлектрических потерь материалов. В свободном пространстве образец материала располагают под углом Брюстера, в диапазоне частот измеряют мощность и фазу прошедшей волны и по изменению фазы прошедшей волны в полосе...
Тип: Изобретение
Номер охранного документа: 0002665593
Дата охранного документа: 31.08.2018
29.12.2018
№218.016.aca0

Проволочный нагреватель для цилиндрической печи

Изобретение относится к области электротермии, в частности к конструкциям нагревателей для нагрева цилиндрических печей. Техническим результатом является повышение равномерности теплового потока и снижение тепловых потерь для достижения высоких температур нагрева при оптимальной токовой...
Тип: Изобретение
Номер охранного документа: 0002676293
Дата охранного документа: 27.12.2018
01.03.2019
№219.016.cd4a

Широкополосный обтекатель

Изобретение относится к антенно-фидерным устройствам, преимущественно к широкополосным антенным обтекателям. Задачей изобретения является снижение искажений, вносимых обтекателем, в поле падающей волны в рабочем диапазоне частот. В широкополосном обтекателе, содержащем стенку из...
Тип: Изобретение
Номер охранного документа: 0002364998
Дата охранного документа: 20.08.2009
01.03.2019
№219.016.ce98

Устройство для определения диэлектрической проницаемости образца материала при воздействии внешних факторов

Изобретение относится к измерениям диэлектрической проницаемости материалов при воздействии внешних факторов, преимущественно к устройствам измерения диэлектрической проницаемости при нагреве. Устройство, содержащее излучающий генератор, передающую линейно поляризованную антенну, камеру для...
Тип: Изобретение
Номер охранного документа: 0002453856
Дата охранного документа: 20.06.2012
01.03.2019
№219.016.cefb

Широкополосная система "антенна-обтекатель"

Изобретение относится к антенно-фидерным устройствам преимущественно к широкополосным системам «антенна-обтекатель» для работы в совмещенных диапазонах. Техническим результатом является снижение пеленгационных ошибок в системе «антенна-обтекатель», работающей в совмещенных диапазонах....
Тип: Изобретение
Номер охранного документа: 0002459324
Дата охранного документа: 20.08.2012
20.05.2019
№219.017.5cf1

Широкополосная система "антенна-обтекатель"

Изобретение относится к антенно-фидерным устройствам, преимущественно к широкополосным системам «антенна-обтекатель». Широкополосная система «антенна-обтекатель» содержит пеленгующую антенну и обтекатель со стенкой из диэлектрического материала, снабженный узлом крепления к летательному...
Тип: Изобретение
Номер охранного документа: 0002688034
Дата охранного документа: 17.05.2019
24.05.2019
№219.017.5e83

Способ измерения удельного сопротивления материалов в полосе сверхвысоких частот и устройство для его осуществления

Изобретение относится к измерительной технике сверхвысоких частот и предназначено для измерения удельного сопротивления материалов. Сущность: в измеряемом частотном диапазоне волноводный резонатор с подвижным торцевым поршнем последовательно настраивают в резонанс на ряде фиксированных частот....
Тип: Изобретение
Номер охранного документа: 0002688579
Дата охранного документа: 21.05.2019
+ добавить свой РИД