×
10.05.2023
223.018.5354

Результат интеллектуальной деятельности: Способ разработки залежи сверхвязкой нефти

Вид РИД

Изобретение

№ охранного документа
0002795283
Дата охранного документа
02.05.2023
Аннотация: Изобретение относится к способу разработки залежи сверхвязкой нефти. Способ разработки залежи сверхвязкой нефти включает строительство горизонтальных добывающей скважины и нагнетательной скважины. В нагнетательной скважине размещают две колонны насосно-компрессорных труб, при этом конец колонны меньшего диаметра располагают в начале горизонтального ствола, а конец колонны большего диаметра - в зоне с нефтенасыщенностью более 60%. Для закачки пара в добывающей скважине размещают одну или две колонны НКТ со смещением конца или концов по горизонтали относительно концов НКТ нагнетательной скважины не менее чем на 10 м. В обе скважины закачивают пар. Останавливают скважины на выдержку для термокапиллярной пропитки. Размещают оптоволоконный кабель и спускаемый на колонне НКТ электроцентробежный насос. Отбор продукции электроцентробежным насосом проводят со съемом термограммы вдоль ствола добывающей скважины. При снижении температуры жидкости ниже максимально допустимой на входе насоса увеличивают закачку пара через нагнетательную скважину, а при повышении температуры на входе насоса снижают закачку пара через нагнетательную скважину и/или переводят насос в периодический режим работы. После стабилизации температуры на входе, насос переводят на постоянный режим работы. До строительства скважин выстраивают единую геологическую модель продуктивного пласта залежи, проектируют расположение горизонтальных скважин в пределах залежи, определяют объем начальных извлекаемых запасов, приходящихся на каждую пару горизонтальных скважин. После строительства горизонтальных скважин, производят спуск эксплуатационных колонн в скважины с заходом в горизонтальные части на длину не менее 50 м и последующий спуск фильтров скважинных щелевых от конца эксплуатационных колонн до забоя скважин. В процессе эксплуатации скважин при достижении температуры на входе насоса более 100°С и снижении объема остаточных извлекаемых запасов нефти менее 50% от объема начальных извлекаемых запасов нефти, извлекают насос и проводят перфорацию не простреленной горизонтальной части эксплуатационной колонны добывающей скважины на протяжении не менее 50 м. Фильтр скважинный щелевой перемещают внутри скважины в сторону поверхности в перфорированную зону и далее спускают насос в данную зону. Технический результат заключается в повышении эффективности разработки насосным оборудованием, в увеличении охвата пласта паровым воздействием, в увеличении нефтеотдачи залежи. 2 ил.

Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке залежи высоковязкой и битумной нефти.

Известен способ разработки залежи сверхвязкой нефти (патент RU № 2675114, МПК Е21В 43/24, опубл. Бюл. №35 от 05.02.2018), включающий строительство пар расположенных друг над другом горизонтальных добывающих и нагнетательных скважин, оснащенных в горизонтальной части соответствующими фильтрами-хвостовиками, прогрев залежи закачкой теплоносителя - пара в обе скважины с прогревом продуктивного пласта и созданием паровой камеры, закачку пара через нагнетательные скважины, отбор продукции за счет парогравитационного дренажа через добывающие скважины и контроль состояния паровой камеры, после выработки участка залежи в одной из пар скважин останавливают закачку пара и отбор жидкости, после снижения температуры в добывающей скважине ниже 80°С из остывшей добывающей скважины извлекают фильтр-хвостовик, из добывающей скважины производят бурение нового горизонтального ствола, оснащаемого впоследствии фильтром-хвостовиком, в направлении не охваченных разработкой участков, производят закачку пара в обе скважины для получения гидродинамической связи между стволами и поддержания необходимой температуры, закачивают пар через нагнетательную скважину и осуществляют отбор продукции за счет парогравитационного дренажа через новый ствол добывающей скважины с контролем состояния паровой камеры.

Недостатком способа является необходимость бурения нового горизонтального ствола, требующего значительных затрат.

Наиболее близким является способ разработки залежи сверхвязкой нефти (патент RU № 2663527, МПК Е21В 43/24, опубл. Бюл. №22 от 07.08.2018), включающий строительство горизонтальных добывающей скважины и нагнетательной скважины, располагаемой выше и параллельно добывающей скважине, создание проницаемой зоны между скважинами за счет нагнетания водяного пара в обе скважины, причем после создания проницаемой зоны подают пар только в нагнетательную горизонтальную скважину, а из добывающей горизонтальной скважины отбирают продукцию, в горизонтальном стволе нагнетательной скважины проводят геофизические исследования по определению нефтенасыщенности вдоль горизонтального ствола, после чего в нагнетательной скважине размещают две колонны насосно-компрессорных труб - НКТ, при этом конец колонны меньшего диаметра располагают в начале горизонтального ствола, а конец колонны большего диаметра - в зоне с нефтенасыщенностью более 60%, а для закачки пара в добывающей скважине размещают одну или две колонны НКТ со смещением конца или концов по горизонтали относительно концов НКТ нагнетательной скважины не менее чем на 10 м, в обе скважины закачивают объем пара, рассчитываемый по формуле:

V=Lф*m,

где V - объем закачиваемого пара в горизонтальную скважину, т;

Lф - длина фильтровой части добывающей скважины, м;

m - коэффициент расхода пара на один погонный метр фильтровой части горизонтальной скважины, т/м,

после окончания закачки расчетного объема пара скважины останавливают на выдержку для термокапиллярной пропитки и остывания ствола добывающей скважины, в которой проводят термобарометрические измерения посредством геофизических исследований, по результатам которых в горизонтальном стволе добывающей скважины выявляют переходные зоны с температурой между большим и меньшим прогревом, а среди выявленных зон определяют зону с изменением угла набора кривизны не более 2 градусов на 10 м, в которой размещают оптоволоконный кабель и спускаемый на колонне НКТ электроцентробежный насос, оснащенный на приеме датчиками температуры и давления, закачку пара через нагнетательную скважину возобновляют, а отбор продукции электроцентробежным насосом проводят со съемом термограммы вдоль ствола добывающей скважины посредством оптоволоконного кабеля и замером температуры на приеме электроцентробежного насоса для контролирования процесса равномерного прогрева добывающей скважины, причем при снижении температуры жидкости ниже максимально допустимой на входе насоса увеличивают закачку пара через нагнетательную скважину, а при повышении температуры на входе насоса снижают закачку пара через нагнетательную скважину и/или переводят насос в периодический режим работы, после стабилизации температуры на входе насоса электроцентробежного, равной максимально допустимой по условиям работы, насос переводят на постоянный режим работы, при длине фильтровой части добывающей скважины менее 700 м в нее спускают одну колонну НКТ, причем коэффициент расхода пара на один погонный метр фильтровой части горизонтальной скважины составляет для нагнетательной скважины 8,3 т/м и для добывающей скважины 6,6 т/м, а суточная закачка пара в нагнетательную скважину составляет 100 т/сут, а в добывающую скважину - 80 т/сут, при длине фильтровой части добывающей скважины более 700 м в нее спускают две колонны НКТ, причем коэффициент расхода пара на один погонный метр фильтровой части горизонтальной скважины составляет для нагнетательной скважины 8,6 т/м и для добывающей скважин 6,4 т/м, а суточная закачка пара в нагнетательную скважину составляет 160 т/сут, а в добывающую скважину - 120 т/сут.

Недостатком способа является перегрев насосного оборудования в зоне «пятки», снижение продуктивности или выход из строя насоса, насос не может обеспечить отбор жидкости в условиях эксплуатации при высоких значениях температуры, так как изменением расхода закачиваемого пара в нагнетательной скважине, рано или поздно, уже не удается повлиять на температуру в зоне расположения насоса, что приводит к значительному снижению продуктивности насоса или его выходу из строя.

Техническими задачами заявляемого способа являются повышение эффективности способа разработки залежи сверхвязкой нефти путем повышения производительности насосного оборудования перемещением его в зону с меньшей температурой, увеличение охвата пласта паровым воздействием с получением дополнительной добычи нефти и, тем самым, увеличение итоговой нефтеотдачи залежи.

Технические задачи решаются способом разработки залежи сверхвязкой нефти, включающим строительство горизонтальных добывающей скважины и нагнетательной скважины, располагаемой выше и параллельно добывающей скважине, создание проницаемой зоны между скважинами за счет нагнетания водяного пара в обе скважины, причем после создания проницаемой зоны подают пар только в нагнетательную горизонтальную скважину, а из добывающей горизонтальной скважины отбирают продукцию, в горизонтальном стволе нагнетательной скважины проводят геофизические исследования по определению нефтенасыщенности вдоль горизонтального ствола, после чего в нагнетательной скважине размещают две колонны насосно-компрессорных труб - НКТ, при этом конец колонны меньшего диаметра располагают в начале горизонтального ствола, а конец колонны большего диаметра - в зоне с нефтенасыщенностью более 60%, а для закачки пара в добывающей скважине размещают одну или две колонны НКТ со смещением конца или концов по горизонтали относительно концов НКТ нагнетательной скважины не менее чем на 10 м, в обе скважины закачивают объем пара, рассчитываемый по формуле:

V=Lф*m,

где V - объем закачиваемого пара в горизонтальную скважину, т;

Lф - длина фильтровой части добывающей скважины, м;

m - коэффициент расхода пара на один погонный метр фильтровой части горизонтальной скважины, т/м,

после окончания закачки расчетного объема пара скважины останавливают на выдержку для термокапиллярной пропитки и остывания ствола добывающей скважины, в которой проводят термобарометрические измерения посредством геофизических исследований, по результатам которых в горизонтальном стволе добывающей скважины выявляют переходные зоны с температурой между большим и меньшим прогревом, а среди выявленных зон определяют зону с изменением угла набора кривизны не более 2 градусов на 10 м, в которой размещают оптоволоконный кабель и спускаемый на колонне НКТ электроцентробежный насос, оснащенный на приеме датчиками температуры и давления, закачку пара через нагнетательную скважину возобновляют, а отбор продукции электроцентробежным насосом проводят со съемом термограммы вдоль ствола добывающей скважины посредством оптоволоконного кабеля и замером температуры на приеме электроцентробежного насоса для контролирования процесса равномерного прогрева добывающей скважины, причем при снижении температуры жидкости ниже максимально допустимой на входе насоса увеличивают закачку пара через нагнетательную скважину, а при повышении температуры на входе насоса снижают закачку пара через нагнетательную скважину и/или переводят насос в периодический режим работы, после стабилизации температуры на входе насоса электроцентробежного, равной максимально допустимой по условиям работы, насос переводят на постоянный режим работы, при длине фильтровой части добывающей скважины менее 700 м в нее спускают одну колонну НКТ, причем коэффициент расхода пара на один погонный метр фильтровой части горизонтальной скважины составляет для нагнетательной скважины 8,3 т/м и для добывающей скважины 6,6 т/м, а суточная закачка пара в нагнетательную скважину составляет 100 т/сут, а в добывающую скважину - 80 т/сут, при длине фильтровой части добывающей скважины более 700 м в нее спускают две колонны НКТ, причем коэффициент расхода пара на один погонный метр фильтровой части горизонтальной скважины составляет для нагнетательной скважины 8,6 т/м и для добывающей скважин 6,4 т/м, а суточная закачка пара в нагнетательную скважину составляет 160 т/сут, а в добывающую скважину - 120 т/сут.

Новым является то, что до строительства горизонтальных добывающей скважины и нагнетательной скважины выстраивают единую геологическую модель продуктивного пласта залежи, проектируют расположение эксплуатационных горизонтальных парных скважин в пределах залежи, определяют объем начальных извлекаемых запасов, приходящихся на каждую пару горизонтальных скважин, после строительства горизонтальных добывающей скважины и нагнетательной скважины, располагаемой выше и параллельно добывающей скважине, производят спуск эксплуатационных колонн в скважины с заходом в горизонтальные части на длину не менее 50 м и последующий спуск фильтров скважинных щелевых от конца эксплуатационных колонн до забоя скважин, в процессе эксплуатации скважин при достижении температуры на входе насоса более 100°С и снижении объема остаточных извлекаемых запасов нефти менее 50% от объема начальных извлекаемых запасов нефти, приходящихся на пару горизонтальных скважин, извлекают насос и проводят перфорацию ранее не простреленной горизонтальной части эксплуатационной колонны добывающей скважины на протяжении не менее 50 м, далее имеющийся в добывающей скважине фильтр скважинный щелевой перемещают внутри скважины в сторону поверхности в ново-перфорированную зону посредством установки для капитального ремонта скважин, и далее спускают насос в данную зону.

На фиг. 1 и 2 показана схема расположения парных горизонтальных скважин в плане до и после перфорации эксплуатационной колонны и перемещения фильтра скважинного щелевого и насоса.

Способ разработки залежи сверхвязкой нефти осуществляют следующим образом. Продуктивную залежь 1 (фиг. 1, 2) разбуривают сеткой оценочных вертикальных скважин (на фиг. 1, 2 не показано), проводят отбор кернов и геофизические исследования оценочных вертикальных скважин, на основе полученных данных выстраивают единую геологическую модель продуктивной залежи 1 и получают данные о геометрических размерах залежи 1, данные по распределению коэффициентов нефтенасыщенности, проницаемости, пористости, нефтенасыщенных толщин. Далее проектируют расположение эксплуатационных горизонтальных парных скважин 2, 3 в пределах залежи 1 для максимального вовлечения запасов. Определяют объем начальных извлекаемых запасов, приходящихся на каждую пару горизонтальных скважин 2, 3.

Осуществляют строительство в продуктивной залежи 1 (фиг. 1) горизонтальных добывающей скважины 2 и нагнетательной скважины 3, располагаемой выше и параллельно добывающей скважине 2. Производят спуск эксплуатационных колонн 4, 5 в скважины 2, 3, соответственно, с заходом в горизонтальные части скважин на длину не менее 50 м и последующий спуск фильтров скважинных щелевых 6, 7 от конца эксплуатационных колонн 6, 7 до забоя скважин 2, 3. Создают проницаемую зону между скважинами 2 и 3 за счет нагнетания водяного пара в обе скважины 2 и 3. После создания проницаемой зоны подают пар только в нагнетательную горизонтальную скважину 3, а из добывающей горизонтальной скважины 2 отбирают продукцию насосом 8 (фиг. 1). В горизонтальном стволе нагнетательной скважины 3 (фиг. 1 и 2) проводят геофизические исследования по определению нефтенасыщенности вдоль горизонтального ствола скважины 3, после чего в нагнетательной скважине размещают две колонны насосно-компрессорных труб – НКТ 9 и 10, при этом конец колонны меньшего диаметра 9 располагают в начале горизонтального ствола, а конец колонны большего диаметра 10 – в зоне с нефтенасыщенностью более 60%. Для закачки пара в добывающей скважине размещают одну или две (на фиг. 1, 2 не показано) и колонны НКТ со смещением конца или концов по горизонтали относительно концов НКТ 9 и 10 нагнетательной скважины 3 не менее чем на 10 м для обеспечения более равномерного прогрева залежи 1. При длине фильтровой части добывающей скважины менее 700 м в нее спускают одну колонну НКТ, а при длине фильтровой части добывающей скважины более 700 м – две колонны НКТ.

В обе скважины 2 и 3 закачивают объем пара, рассчитываемый по формуле:

V=Lф*m,

где V – объем закачиваемого пара в горизонтальную скважину 2 или 3, т;

Lф – длина фильтровой части добывающей скважины 2, м;

m – коэффициент расхода пара на один погонный метр фильтровой части горизонтальной скважины 2 или 3, т/м.

При длине фильтровой части добывающей скважины менее 700 м коэффициент расхода пара (m) на один погонный метр фильтровой части горизонтальной скважины 2 или 3 составляет для нагнетательной скважины 3 - 8,3 т/м и для добывающей скважины 2 - 6,6 т/м, а суточная закачка пара (q) в нагнетательную скважину 3 составляет 100 т/сут, а в добывающую скважину 2 – 80 т/сут.

При длине фильтровой части добывающей скважины более 700 м коэффициент расхода пара (m) на один погонный метр фильтровой части горизонтальной скважины 2 или 3 составляет для нагнетательной скважины 3 - 8,6 т/м и для добывающей скважины 2 - 6,4 т/м, а суточная закачка пара (q) в нагнетательную скважину 3 составляет 160 т/сут, а в добывающую скважину 2 – 120 т/сут. Большие темпы закачки при длине фильтровой части ствола скважин 2 и 3 более 700 м объясняются необходимостью увеличить скорость течения пара для снижения потерь тепла закачиваемого пара в НКТ.

После окончания закачки расчетного объема пара (V), скважины 2 и 3 останавливают на выдержку для термокапиллярной пропитки и остывания ствола добывающей скважины 2, в которой после извлечения одной колонны НКТ или двух колонн НКТ проводят термобарометрические измерения посредством геофизических исследований. По результатам исследований в горизонтальном стволе добывающей скважины 2 выявляют переходные зоны с температурой между большим и меньшим прогревом, а среди выявленных зон определяют зону с изменением угла набора кривизны не более 2 градусов на 10 м, в которой размещают спускаемый на колонне НКТ 11 электроцентробежный насос 4, оснащенный на приеме датчиками температуры и давления (на фиг. 1, 2 не показаны) и оптоволоконный кабель по всей длине фильтра. Закачку пара через нагнетательную скважину 3 (фиг. 1) возобновляют, а отбор продукции электроцентробежным насосом 4 проводят со съемом термограммы вдоль ствола добывающей скважины 2 посредством оптоволоконного кабеля и замером температуры на приеме электроцентробежного насоса 4 для контролирования процесса равномерного прогрева добывающей скважины 2. При снижении температуры жидкости ниже максимально допустимой на входе насоса 4 увеличивают закачку пара через нагнетательную скважину 3. При повышении температуры на входе насоса 4 снижают закачку пара через нагнетательную скважину 3 и/или переводят насос 4 в периодический режим работы. После стабилизации температуры на входе электроцентробежного насоса 4 равной максимально допустимой по условиям работы, насос 4 переводят на постоянный режим работы.

Как правило, после продолжительного процесса эксплуатации скважин 2, 3, температура в добывающей скважине 2 постепенно растет и достигает значений, близких к предельным значениям работоспособности насоса 8. При достижении температуры на входе насоса более 100°С и снижении объема остаточных извлекаемых запасов нефти менее 50% от начального объема извлекаемых запасов нефти, приходящихся на пару горизонтальных скважин 2, 3, извлекают НКТ 11 с насосом 8, проводят перфорацию ранее не простреленной горизонтальной части эксплуатационной колонны 4 добывающей скважины 2 на протяжении не менее 50 м от конца эксплуатационной колонны 4 в сторону устья скважины 2 с образованием ново-перфорированной зоны 12. Далее имеющийся в добывающей скважине 2 фильтр скважинный щелевой 6 перемещают внутри скважины 2 в сторону устья скважины 2 в данную ново-перфорированную зону 12 посредством установки для капитального ремонта скважин (на фиг. 1, 2 не показано), после чего спускают НКТ 11 с насосом 8, в данную ново-перфорированную зону 12.

При этом носос 8 будет находиться в непрогретой (или менее прогретой) части горизонтального ствола добывающей скважины 2. В разработку будут вовлекаться новые зоны залежи 1 над ново-перфорированной зоной 12 эксплуатационной колонны 4 добывающей скважины 2, с запасами нефти, ранее не охваченными паровым воздействием. При этом горизонтальную часть эксплуатационной колонны 5 нагнетательной скважины 3 не простреливают, чтобы область расположения насоса 8 в ново-перфорированной зоне 12 добывающей скважины 2 оставалась «холодной», и не было прямого воздействия закачиваемого пара.

Пример конкретного выполнения.

Продуктивный пласт Архангельской залежи 1 сверхвязкой нефти Архангельского месторождения разбурили вертикальными оценочными скважинами в количестве 87 штук, провели отбор кернов и геофизические исследования. Произвели оконтуривание залежи 1 сверхвязкой нефти размерами 2,6×2,1 км, высотой от 17 до 33 м, средняя глубина кровли нефтенасыщенного пласта - 185 м, залежь 1 представлена песчаниками и мелко и среднезернистыми песками. Начальная пластовая температура – 8°С, средняя нефтенасыщенная толщина по залежи - 16,4 м, вязкость нефти в пластовых условиях составляет 29372*10-6 м2/с. На основе полученных данных построили единую геологическую модель продуктивной залежи 1 и получили данные по распределению коэффициентов нефтенасыщенности, проницаемости, пористости, нефтенасыщенных толщин. Спроектировали расположение 32 эксплуатационных горизонтальных скважин (16 пар) в пределах залежи на глубине более 10 метров, определили объем начальных извлекаемых запасов, приходящихся на каждую пару горизонтальных скважин (от 62,9 до 156,9 тыс. тонн).

Производят строительство парных одноустьевых горизонтальных скважин. Далее рассмотрим одну пару скважин 2, 3 (начальные извлекаемые запасы – 113,6 тыс. т): добывающая скважина 2 с горизонтальным стволом длиной 817 м на глубине 103 м пробурена долотом диаметром 244,5 мм, в скважину 2 спускают эксплуатационную колонну 4 с заходом в горизонтальную часть на длину 68 м и далее спускают фильтр скважинный щелевой 6 от конца эксплуатационной колонны 4 до забоя скважины 2. Нагнетательная скважина 3 с горизонтальным стволом длиной 812 м на глубине 97 м пробурена долотом диаметром 244,5 мм, в скважину 3 спускают эксплуатационную колонну 5 с заходом в горизонтальную часть на длину 65 м и далее спускают фильтр скважинный щелевой 7 от конца эксплуатационной колонны 5 до забоя скважины 3. В горизонтальном стволе нагнетательной скважины 3 проводят геофизические исследования по определению нефтенасыщенности вдоль горизонтального ствола скважины 3, после чего в нагнетательной скважине размещают две колонны насосно-компрессорных труб – НКТ 9 и 10. В нагнетательной скважине 3 конец первой колонны НКТ 9 диаметром 60 мм на глубину 250 м, конец второй колонны НКТ 10 диаметром 89 мм спускают во вторую половину горизонтального ствола в зону с нефтенасыщенностью 68 % на глубину 655 м. В добывающей скважине 2 конец первой колонны НКТ (не показан) диаметром 60 мм спускают на глубину 340 м, конец второй колонны НКТ диаметром 89 мм спускают во вторую половину горизонтального ствола на глубину 773 м. Далее закачивают пар расчетного объема для освоения и создания гидродинамической связи между парой скважин с коэффициентом расхода пара (m) на один погонный метр фильтровой части горизонтальной скважины 2 или 3 для нагнетательной скважины 3 - 8,6 т/м и для добывающей скважины 2 - 6,4 т/м и с суточным расходом 160 т/сут для нагнетательной скважины и 120 т/сут для добывающей скважины. После окончания закачки расчетного объема пара, скважины 2 и 3 останавливают на выдержку для термокапиллярной пропитки и остывания ствола добывающей скважины 2, в которой после извлечения двух колонн НКТ 8 и 9 проводят термобарометрические измерения посредством геофизических исследований. По результатам исследований в горизонтальном стволе добывающей скважины 2 выявляют переходные зоны с температурой между большим и меньшим прогревом, а среди выявленных зон определяют зону с изменением угла набора кривизны не более 2 градусов на 10 м на глубине 264 м, в которой размещают спускаемый на колонне НКТ 11 электроцентробежный насос 8 марки ЭЦН5А-160-300, оснащенный на приеме датчиками температуры и давления и оптоволоконный кабель по всей длине фильтра. Информация с датчиков по кабелю передается на устье скважины 2.

Закачивают пар через нагнетательную скважину 3 примерно 120 т/сут и отбирают пластовую продукцию посредством электроцентробежного насоса 8 через добывающую скважину 2. Снимают термограммы вдоль ствола добывающей скважины 2 и замеряют температуру и давление на приеме электроцентробежного насоса 8.

Допустимая температура на приеме данного электроцентробежного насоса 8 составляет 115°С. Температура на приеме электроцентробежного насоса 8 составляет 83,9°С. При такой температуре эксплуатируют насос 8 в постоянном режиме. Увеличивают закачку пара через нагнетательную скважину 3 примерно на 15 %.

При температуре в районе электроцентробежного насоса 8 более 95 °С переводят насос 8 в периодический режим работы 80/20 (80 минут эксплуатации/20 минут бездействия и т.д.) и снижают закачку пара в нагнетательной скважине 3 примерно на 20 %.

Добиваются постоянного режима работы электроцентробежного насоса 8 с необходимым расходом для поддержания температуры жидкости на приеме электроцентробежного насоса 8 близкой, но не более 115°С.

После эксплуатации в данном режиме в течение 3 лет температура в зоне расположения насоса 8 по данным оптоволоконного кабеля постепенно повышалась до значения 110°С и даже периодическая эксплуатация насоса 8 и снижение расхода закачиваемого пара не влияли на ее повышение, накопленный отбор составил 71,5 тыс. тонн нефти, начались периодические сбои в работе насоса в результате перегрева, дебит по нефти постепенно упал с 15-18 т/сут до 2-3 т/сут, отбор от начальных извлекаемых запасов составил – 62,9%. После этого извлекли НКТ 11 с насосом 8 из добывающей скважины 2, и с привлечением бригады капитального ремонта скважин провели перфорацию ранее не простреленной горизонтальной части эксплуатационной колонны 4 добывающей скважины 2 на протяжении 50 м от конца эксплуатационной колонны 4 сторону устья скважины 2, далее имеющийся в добывающей скважине 2 фильтр скважинный щелевой 6 диаметром 168 мм перемещают (поднимают) внутри скважины 2 в сторону поверхности в данную ново-перфорированную зону 12 на расстояние 50 м. После этого вновь спускают НКТ 11 с насосом 8, при этом насос 8 размещают в данной ново-перфорированной зоне 12 добывающей скважины 2 на глубине 214 м.

Далее после возобновления добычи продукции температура в зоне расположения насоса 8 была в районе 67°С с постепенным повышением до 80-85°С и фиксацией на данном уровне в течении следующих 2 лет эксплуатации, дебит нефти при этом постепенно вырос с 2,5 т/сут до 12 т/сут. При этом не было зафиксировано ни одного срыва работы насоса 8 и не было необходимости переводить его в периодический режим эксплуатации.

Предлагаемый способ разработки залежи сверхвязкой нефти позволяет повысить эффективность разработки путем (или за счет) повышения производительности насосного оборудования перемещением его в зону с меньшей температурой, а также увеличить охват пласта паровым воздействием с получением дополнительной добычи нефти и, тем самым, увеличить конечную нефтеотдачу залежи.


Способ разработки залежи сверхвязкой нефти
Способ разработки залежи сверхвязкой нефти
Способ разработки залежи сверхвязкой нефти
Источник поступления информации: Роспатент

Показаны записи 81-90 из 432.
29.12.2017
№217.015.f2e0

Способ защиты внутренней зоны соединений труб с внутренним покрытием (варианты)

Изобретение относится к области трубопроводного транспорта и может быть использовано при строительстве и ремонте трубопроводов, транспортирующих агрессивные среды. Способ включает размещение в месте соединения концов трубопровода внутренней защитной втулки. На конце одной из труб, в которую...
Тип: Изобретение
Номер охранного документа: 0002637786
Дата охранного документа: 07.12.2017
29.12.2017
№217.015.f3ae

Устройство для сброса нефтяного газа из затрубного пространства

Изобретение относится к нефтегазодобывающей промышленности, в частности к добыче насосом из скважин нефти с высоким содержанием газа. Технический результат - упрощение устройства и обеспечение возможности использования при работе с электропогружными насосами и погружными плунжерными –...
Тип: Изобретение
Номер охранного документа: 0002637683
Дата охранного документа: 06.12.2017
29.12.2017
№217.015.f400

Трубная головка

Изобретение относится к горному делу, в частности к устьевому оборудованию для эксплуатации скважин. Трубная головка включает корпус со ступенчатым осевым каналом, боковыми исследовательским каналом и линией сбора, трубодержатель, установленный в осевом канале корпуса, для подвески лифтовой...
Тип: Изобретение
Номер охранного документа: 0002637681
Дата охранного документа: 06.12.2017
29.12.2017
№217.015.f7cc

Противотурбулентные присадки для снижения гидродинамического сопротивления углеводородных жидкостей в трубопроводах и способ их получения

Изобретение относится к неагломерирующим противотурбулентным присадкам, способу их получения и может быть использовано для снижения гидродинамического сопротивления в трубопроводе при турбулентном режиме течения углеводородов. Способ включает использование сверхвысокомолекулярных...
Тип: Изобретение
Номер охранного документа: 0002639301
Дата охранного документа: 21.12.2017
29.12.2017
№217.015.fbf8

Способ разбуривания скважинного оборудования с применением гибкой трубы

Изобретение относится к области ремонта скважин, в частности к способу для разбуривания скважинного оборудования. Способ включает сборку колонны труб с винтовым забойным двигателем - ВЗД и фрезой-долотом, спуск в скважину колонны труб с ВЗД и фрезой-долотом до достижения разбуриваемого...
Тип: Изобретение
Номер охранного документа: 0002638672
Дата охранного документа: 15.12.2017
29.12.2017
№217.015.fe75

Способ термопенокислотной обработки прискважинной зоны карбонатного коллектора

Изобретение относится к нефтедобывающей промышленности. Технический результат - расширение области применения технологии за счет реагентов, устойчивых к высоким температурам, с одновременным снижением стоимости обработки за счет снижения количества используемой техники. Способ...
Тип: Изобретение
Номер охранного документа: 0002638668
Дата охранного документа: 15.12.2017
29.12.2017
№217.015.feb4

Устройство для поинтервального гидроразрыва пласта

Изобретение относится к нефтегазодобывающей промышленности и может быть применено для проведения поинтервального кислотного гидроразрыва пласта. Устройство для проведения поинтервального гидроразрыва пласта содержит колонну насосно-компрессорных труб с полым цилиндрическим корпусом, снизу...
Тип: Изобретение
Номер охранного документа: 0002638673
Дата охранного документа: 15.12.2017
19.01.2018
№218.016.0333

Способ разработки залежи нефти в слоистых коллекторах разветвленной горизонтальной скважиной

Изобретение относится к нефтегазодобывающей промышленности, а именно к технологии отбора продукции из продуктивных пластов разветвленной горизонтальной скважиной. Технический результат - повышение эффективности способа за счет обеспечения равномерной выработки двух или более пластов и...
Тип: Изобретение
Номер охранного документа: 0002630321
Дата охранного документа: 07.09.2017
19.01.2018
№218.016.033b

Способ строительства многозабойной скважины и устройство для его осуществления

Группа изобретений относится к области бурения многозабойных скважин, в частности к устройствам для создания механического соединения обсадных колонн основного и дополнительного стволов с сохранением проходного диаметра основного ствола скважины. Способ включает вскрытие окна в обсадной колонне...
Тип: Изобретение
Номер охранного документа: 0002630332
Дата охранного документа: 07.09.2017
19.01.2018
№218.016.034d

Способ разработки залежи нефти в карбонатных коллекторах, осложненной эрозионным врезом

Изобретение относится к нефтяной промышленности и может найти применение при разработке залежи нефти в карбонатных коллекторах, осложненной эрозионным врезом. Способ включает уточнение контура нефтеносности залежи и борта вреза, определение нефтенасыщенной толщины продуктивных терригенных...
Тип: Изобретение
Номер охранного документа: 0002630324
Дата охранного документа: 07.09.2017
Показаны записи 81-90 из 125.
24.05.2019
№219.017.5f05

Способ разработки месторождения сверхвязкой нефти методом парогравитационного дренирования совместно с растворителем

Изобретение относится к способам разработки месторождения сверхвязкой нефти. Технический результат - повышение эффективности извлечения сверхвязкой нефти методом парогравитационного дренирования совместно с растворителем, сокращение материальных затрат при совместной закачке пара и...
Тип: Изобретение
Номер охранного документа: 0002688713
Дата охранного документа: 22.05.2019
24.05.2019
№219.017.60a3

Способ разработки месторождения тяжелой нефти или битума с регулированием закачки теплоносителя в скважину

Изобретение относится к нефтяной промышленности. Технический результат - повышение эффективности работы паровой камеры за счет равномерной выработки запасов тяжелой нефти или битума путем прогрева на начальном этапе в большей степени начальной зоны прогрева продуктивного пласта, исключение...
Тип: Изобретение
Номер охранного документа: 0002469185
Дата охранного документа: 10.12.2012
24.05.2019
№219.017.60a6

Способ разработки месторождения тяжелой нефти или битума с регулированием закачки теплоносителя в скважину

Изобретение относится к нефтяной промышленности и может найти применение при разработке месторождения тяжелой нефти или битума. Обеспечивает повышение эффективности способа за счет постепенной выработки запасов и исключения прямого прорыва теплоносителя в добывающую скважину. Сущность...
Тип: Изобретение
Номер охранного документа: 0002469187
Дата охранного документа: 10.12.2012
26.05.2019
№219.017.6120

Способ разработки залежи высоковязкой нефти

Изобретение относится к нефтедобывающей промышленности. Технический результат - повышение эффективности разработки месторождения тяжелой нефти или битума за счет равномерности прогрева паровой камеры путем изменения интервалов закачки теплоносителя и/или отбора продукции. Способ разработки...
Тип: Изобретение
Номер охранного документа: 0002689102
Дата охранного документа: 23.05.2019
26.05.2019
№219.017.6198

Состав для удаления отложений неорганических солей в скважине (варианты)

Предложение относится к нефтедобывающей промышленности, в частности к составам для удаления отложений неорганических солей в скважине и нефтепромысловом оборудовании при добыче вязкой и сверхвязкой нефти. Технический результат - повышение эффективности состава для удаления отложений...
Тип: Изобретение
Номер охранного документа: 0002688992
Дата охранного документа: 23.05.2019
29.05.2019
№219.017.68ec

Способ извлечения высоковязкой нефти и битума из пласта

Изобретение относится к области разработки нефтяных месторождений с применением тепла, в частности к разработке месторождений высоковязких нефтей, сложенных слабосцементированными нефтесодержащими породами. Технический результат - повышение коэффициента нефтеизвлечения высоковязкой нефти с...
Тип: Изобретение
Номер охранного документа: 0002435949
Дата охранного документа: 10.12.2011
29.05.2019
№219.017.68ee

Способ разработки залежей высоковязких нефтей и битумов

Изобретение относится к нефтедобывающей промышленности, а именно к способам разработки залежей высоковязких нефтей и битумов с горизонтальной добывающей и вертикальными нагнетательными скважинами при тепловом воздействии на пласт. Способ включает строительство горизонтальной добывающей и...
Тип: Изобретение
Номер охранного документа: 0002435947
Дата охранного документа: 10.12.2011
29.05.2019
№219.017.68ef

Способ разработки залежи высоковязкой и тяжелой нефти с термическим воздействием

Изобретение относится к разработке нефтяных месторождений, в частности к способам теплового воздействия на залежь, содержащую высоковязкую нефть. Обеспечивает повышение эффективности способа за счет снижения стоимости и контроля обводненности добываемой продукции. Сущность изобретения: способ...
Тип: Изобретение
Номер охранного документа: 0002435948
Дата охранного документа: 10.12.2011
06.06.2019
№219.017.7400

Способ разработки залежи сверхвязкой нефти

Изобретение относится к нефтедобывающей промышленности. Технический результат – снижение обводненности продукции, увеличение дебита скважины, снижение энергетических затрат, повышение коэффициента извлечения нефти. Способ разработки сверхвязкой нефти включает строительство горизонтальных...
Тип: Изобретение
Номер охранного документа: 0002690588
Дата охранного документа: 04.06.2019
06.06.2019
№219.017.7477

Способ разработки залежи высоковязкой нефти с водонасыщенными зонами

Изобретение относится к нефтедобывающей промышленности. Технический результат - расширение функциональных возможностей за счет стабильности водоизолирующего состава при высоких температурах не менее 180°С, качественная изоляция водонасыщенных зон пласта, снижение материальных затрат. Способ...
Тип: Изобретение
Номер охранного документа: 0002690586
Дата охранного документа: 04.06.2019
+ добавить свой РИД