×
21.04.2023
223.018.4fa4

Результат интеллектуальной деятельности: Способ производства прямошовных труб большого диаметра из низколегированной стали

Вид РИД

Изобретение

Аннотация: Изобретение относится к области производства стальных труб большого диаметра для магистральных трубопроводов. Способ производства прямошовных труб большого диаметра из низколегированной стали включает фрезеровку продольных кромок, их подгибку, формовку штрипсового проката в трубную заготовку, ее сварку и последующее экспандирование. После фрезеровки продольных кромок отношение величины нижней фаски к верхней составляет не более 1,45, угол притупления составляет не более 9°. Высота подгибки кромок штрипсового проката перед формовкой составляет: Y”=(1,5-3,5)×S, где Y” – высота подгибки кромок, мм, S – номинальная толщина стенки трубы, мм. После формовки углы Х-образной разделки кромок составляют не менее 60°. Сварку внутреннего шва трубной заготовки осуществляют с погонной энергией 30,0-50,0 кДж/см, а сварку наружного шва – с погонной энергией 32-52 кДж/см. Обеспечивается строительство и безопасная эксплуатация трубопровода с наружным диаметром до 1420 мм и рабочим давлением до 14,71 МПа. 6 з.п. ф-лы, 2 ил., 3 табл.

Изобретение относится к производству труб большого диаметра из низколегированной стали класса прочности К80 (Х100), предназначенных для строительства магистральных нефте-и газопроводов.

Изобретение может быть использовано при изготовлении прямошовных труб большого диаметра на трубоэлектросварочных комплексах методом пошаговой формовки или вальцовки тела трубной заготовки, с последующей автоматической дуговой сваркой под слоем керамического флюса и экспандированием.

Известен способ производства труб большого диаметра, согласно которому изготавливают трубы из стали марки DNV SAWL 485 FD, осуществляют разделку кромок, выполняют корневой шов, после чего выполняют внутренний шов многодуговой сваркой четырьмя сварочными дугами за один проход. Наружный шов выполняют многодуговой сваркой четырьмя сварочными дугами в по крайней мере три прохода. Между проходами поверхность шва очищают от шлаковой корки. Корневой шов, внутренний шов и по крайней мере один проход наружного шва выполняют по центру шва, последние два прохода наружного шва выполняют со смещением относительно центра шва. При этом используют автоматическую многодуговую сварку под слоем флюса сварочной проволокой с легирующими элементами. Многодуговую сварочную головку ориентируют в положение, когда все электрические дуги горят в одну общую сварочную ванну [патент RU 2743082, МПК B23K31/02, B23K33/00, B23K9/18, 2021].

Недостатком данного технического решения является низкая производительность и повышенная себестоимость при массовом производстве, из-за необходимости сваривать наружный шов в три прохода.

Наиболее близким к заявленному изобретению является способ изготовления толстостенной прямошовной трубы дуговой сваркой под флюсом из стали марки Х100. Способ производства включает ультразвуковой контроль стального листа, фрезерование кромок, предварительную гибку кромок, формирование JCO, предварительную сварку, внутреннюю сварку, внешнюю сварку, рентгеновский контроль линии сварки, расширение диаметра стальной трубы, испытание гидростатическим давлением, ультразвуковой контроль линии сварки, рентгеновский контроль конца трубы, снятие фаски, испытание магнитных частиц конца трубы и контроль качества внешнего вида [патент CN103521549B, МПК B21C37/08, B23K9/16, B23K9/18, C22C38/58, 2014].

Недостатком данного технического решения является не достижение требуемых механических свойств сварного соединения труб класса прочности К80, а именно: ударная вязкость на образцах шарпи (KCV) при температуре испытаний -40 ˚С – минимум 87 Дж/см2, а также прочность сварного соединения – не менее 790 МПа.

Технический результат изобретения – разработка способа получения прямошовных труб большого диаметра класса прочности К80, с комплексом механических свойств, обеспечивающим возможность строительства и безопасной эксплуатации трубопровода с наружным диаметром до 1420 мм и рабочим давлением до 14,71 МПа.

Технический результат достигается тем, что в способе производства прямошовных труб большого диаметра из низколегированной стали, включающем фрезеровку продольных кромок, их подгибку, формовку штрипсового проката в трубную заготовку, её сварку и последующее экспандирование, согласно изобретения, после фрезеровки продольных кромок отношение величины нижней фаски к верхней составляет не более 1,45, угол притупления составляет не более 9º, высота подгибки кромок штрипсового проката перед формовкой соответствует условию:

где Y” – высота подгибки кромок, мм,

S – номинальная толщина стенки трубы, мм,

после формовки углы Х-образной разделки кромок составляют не менее 60º, при этом сварку внутреннего шва трубной заготовки осуществляют с погонной энергией 30,0 – 50,0 кДж/см, а сварку наружного шва с погонной энергией 32 – 52 кДж/см.

Величина притупления продольных кромок соответствует условию:

где B – величина нижней фаски в мм.

Формовку трубной заготовки осуществляют за 17 – 21 этап.

Осуществляют автоматическую дуговую сварку плавящимся электродом под слоем керамического флюса, при этом состав электрода состоит из следующих элементов, мас.%:

никель 1,5-2,4
марганец 1,2–2,0
хром 0,05-0,7
титан не более 0,03
азот не более 0,012
неизбежные примеси остальное

Величина пластической деформации при экспандировании составляет 0,5 - 1,6%.

Трубу изготавливают из штрипсового проката, содержащего элементы при следующем соотношении, мас.%:

углерод 0,03–0,07
кремний 0,10–0,35
марганец 1,70–2,10
сера не более 0,004
фосфор не более 0,015
хром не более 0,30
никель 0,40–1,00
медь не более 0,50
алюминий 0,02–0,08
титан 0,001–0,03
молибден 0,10–0,50
ванадий не более 0,10
ниобий 0,02 – 0,10
азот не более 0,008
бор не более 0,001
кальций 0,0005–0,006

при необходимости

РЗМ не более 0,002
железо и неизбежные примеси остальное,

Характеристики трубы соответствуют следующим значениям:

Предел текучести в продольном/поперечном направлении – 630-840/690-840 МПа;

Предел прочности в продольном/поперечном направлении – 755-940/790-940 МПа;

Ударная вязкость при температуре -40 °С – не менее 250 Дж/см2 для основного металла и не менее 87 Дж/см2 для сварного соединения;

Испытание падающим грузом (ИПГ) при температуре -40 °С – не менее 85%;

Трещиностойкость (CTOD) при -20 °С – не менее 0,20 мм для основного металла, не менее 0,15 для сварного соединения.

Сущность изобретения.

Соблюдение диапазонов вышеуказанных параметров и сварочных материалов позволяет получать требуемую геометрию трубы, а также обеспечивать комплекс механических свойств сварного соединения.

Отношение величины нижней фаски к верхней должно составлять не более 1,45, а величина притупления С = (B-1,0) ± 2,0 мм, где B – величина нижней фаски в мм, в противном случае при сварке внутреннего или наружного швов будет необходимо увеличивать сварочные токи для заполнения разделки, что приведет к увеличению суммарной погонной энергии и снижению ударной вязкости (KCV) по линии сплавления при -40 °С.

Угол притупления должен составлять не более 9°, в противном случае не удастся обеспечить требуемую геометрию формы заготовки.

Экспериментально установлено, что высота подгибки кромок (Y”) должна находится в пределах (1,5 ÷ 3,5)хS во избежание образования формы свариваемых кромок «сердечком» (переформованные), либо «домиком» (недоформованные), так как в дальнейшем это приводит к изменению величины фасок на трубной заготовке после сборки. При этом, коэффициенты (1,5 ÷ 3,5) получены экспериментальным путем и их выбор в заявленном диапазоне позволяет обеспечить необходимую разделку кромок под сварку и требуемую форму заготовки трубы при сборке.

Сварку внутреннего шва трубной заготовки осуществляют с погонной энергией 30,0–50,0 кДж/см, а сварку наружного шва с погонной энергией 32–52 кДж/см. Заявленная погонная энергия сварки требуется для заполнения разделки, получения необходимой структуры сварного шва и зоны термического влияния, обеспечения вышеуказанных механический свойств сварного соединения.

Углы Х – образной разделки кромок должны составлять не менее 60°. Указанное значение углов определено экспериментально и необходимо для получения требуемой формы (геометрических параметров) сварного шва.

Химический состав сварочных проволок должен быть следующим.

Содержание никеля в количестве 1,5-2,4 % позволяет увеличить ударную вязкость сварного соединения. Никель измельчает зерно, при этом не ухудшая свариваемость.

Содержание марганца в количестве 1,2–2,0 %, увеличивает прочностные свойства сварного соединения, но при большей концентрации ухудшает свариваемость стали и увеличивает склонность к образованию холодных трещин.

Содержание хрома в количестве 0,05-0,7 % позволяет увеличить прочностные свойства сварного соединения. При повышенных концентрациях хром может вызвать образование тугоплавких оксидов, а также резко повысить твердость в зоне термического влияния из-за образования карбидов хрома.

Титан в количестве не более 0,03 % образует карбиды, препятствуя образованию твердых карбидов хрома, а также увеличивает прочностные свойства сварного шва.

Азот является вредной примесью. Его содержание должно быть ограничено 0,012 %. При его повышенном содержании происходит снижение ударной вязкости в зоне сварного шва.

Химический состав стали должен быть следующим:

углерод 0,03 – 0,07
кремний 0,10 – 0,35
марганец 1,70 – 2,10
сера не более 0,004
фосфор не более 0,015
хром не более 0,30
никель 0,40 – 1,00
медь не более 0,50
алюминий 0,02 – 0,08
Титан 0,001 – 0,03
молибден 0,10 – 0,50
ванадий не более 0,10
ниобий 0,02 – 0,10
азот не более 0,008
бор не более 0,001
кальций 0,0005 – 0,006

при необходимости

РЗМ не более 0,002
железо и неизбежные примеси остальное

Для получения требуемой прочности, содержание углерода должно быть не менее 0,03%, при этом его добавка в количестве более 0,07% приводит к ухудшению пластических свойств стали.

Добавка кремния необходима для раскисления стали при выплавке. Для обеспечения необходимого уровня раскисленности его содержание должно быть не менее 0,10%, но не более 0,35%, для ограничения количества силикатных включений, ухудшающих ударную вязкость и трещиностойкость.

Марганец повышает степень насыщения феррита растворенными элементами, участвующими в механизме дисперсионного твердения. Для обеспечения требуемых механических свойств стали (характеризующих штрипсовый прокат категории прочности К80) содержание марганца должно быть не менее 1,70%. Содержание марганца в количестве более 2,1 % экономически нецелесообразно.

Содержание хрома ограничивается концентрацией 0,3%. В заявляемом диапазоне хром повышает прокаливаемость стали. При содержании более 0,3% хром может приводить к образования хрупких структурных составляющих, снижающих способность стали сопротивляться развитию трещин.

Для повышения устойчивости аустенита в сталь добавляют никель и медь. Для получения необходимого эффекта содержание никеля не должно быть менее 0,40%. Содержание никеля в количестве более 1,0% экономически нецелесообразно.

Сталь содержит медь в количестве не более 0,50%. Наличие меди в стали повышает ее прочность, но, при этом, при превышении заявленной величины, снижает пластичность и ударную вязкость, ослабляя межзеренные границы при медленном охлаждении обогащенной фазой.

Ванадий, ниобий и титан, в заявленных диапазонах, являются сильными карбонитридообразующими элементами. При этом они способствуют получению ячеистой дислокационной микроструктуры стали, обеспечивающей сочетание высоких прочностных характеристик и высокой ударной вязкости.

Для использования дополнительного механизма дисперсионного упрочнения сталь должна быть с добавками титана, ванадия и ниобия, в количестве, суммарно не менее 0,021% и не более 0,23%. При суммарном содержании данных элементов в количестве менее 0,021% не достигается требуемый эффект упрочнения.

Добавки молибдена придают стали мелкозернистую структуру, повышают прочность при равных показателях пластичности. Молибден в количестве менее 0,10% не оказывает значительного влияния на свойства стали. Его содержание более 0,50% значительно повышает стоимость стали, что экономически нецелесообразно.

Азот необходим для выделения мелкодисперсных нитридов и для сдерживания роста аустенитных зерен. При содержании азота свыше 0,008% увеличивается его концентрация в твердом растворе, что ухудшает ударную вязкость и трещиностойкость стали при низких температурах.

Алюминий раскисляет и модифицирует сталь, связывает азот в нитриды. Для снижения содержания кислорода в расплавленной стали необходимо добавлять не менее 0,02% алюминия. При его содержании более 0,08% снижаются вязкопластические свойства стали.

Для улучшения низкотемпературной ударной вязкости в зоне термического влияния, а также повышения способности к прокаливаемости, добавляют бор в количестве не более 0,001%.

Сера и фосфор являются вредными примесями, поэтому обозначенные значения содержаний серы (не более 0,004%) и фосфора (не более 0,015%) необходимы для получения высоких значений ударной вязкости при низких температурах.

При содержании серы свыше 0,004% в стали образуются сульфидные включения, значительно снижающие ударную вязкость и трещиностойкость.

Фосфор относится к числу элементов, обладающих наибольшей склонностью к ликвации и образованию сегрегации по границам зерен, и, как следствие, отрицательно влияющих на ударную вязкость стали и трещиностойкость. В связи с этим, верхний предел содержания фосфора устанавливают в количестве не более 0,015%.

Для повышения способности к прокаливаемости в сталь добавляют бор в количестве не более 0,001%.

Кальций и редкоземельные металлы (РЗМ) являются элементами применяемыми для регулирования формы сульфидов. Они позволяют сдерживать формирование соединений MnS, вытянутых в направлении прокатки, и улучшают свойства стали в направлении толщины листа, в частности, повышают сопротивление образованию продольных трещин. С другой стороны, для снижения количества оксидов, верхнюю границу содержания в стали кальция и РЗМ устанавливают в количестве не более 0,006% и 0,002% соответственно.

Техническое решение поясняется Фиг. 1 и Фиг. 2.

Фиг. 1

А – верхняя фаска, мм

В – нижняя фаска, мм

С – притупление, мм

S – толщина стенки, мм

α1 – угол наклона нижней фаски, град.

α2 – угол наклона верхней фаски, град.

α3 – угол притупления, град.

Фиг. 2

D – ширина листа, мм

S – толщина листа

х3 – величина смещения нижнего инструмента, относительно верхнего, мм

Y” – высота подгибки кромок, мм.

При этом, верхний угол Х-образной разделки кромок определяется по формуле:

а, нижний угол Х-образной разделки кромок определяется по формуле:

Пример.

Предлагаемый способ опробован при изготовлении партии труб с наружным диаметром 1220 мм и толщиной стенки 20 мм из стали класса прочности К80.

Разделка кромок под сварку для данного типоразмера выполнена из расчета выполнения сборочного, внутреннего и наружного швов за один проход. Параметры подгибки кромок и формовки трубной заготовки подобраны таким образом, чтобы обеспечить необходимую геометрию трубы и выдержать необходимую форму X-образной фаски под сварку.

Для обеспечения высокой производительности и удовлетворительного формирования шва сварка выполнялась четырьмя дугами. Параметры режимов сварки под слоем флюса определены таким образом, чтобы обеспечить оптимальное формирование сварного соединения, а также необходимое и достаточное тепловложение, необходимое для получения требуемой структуры и механических характеристик сварного шва.

Было проведено 8 экспериментов, в ходе которых опробованы 4 комбинации технических параметров при производстве трубы (табл.1), а также 2 комбинации проволок, обеспечивающих необходимый химический состав сварного шва (табл.2). Результаты механических испытаний приведены в табл.3.

Результаты механических испытаний показывают, что соблюдение заявленных технических параметров производства (эксперименты 2 - 6), позволяет достигать необходимый уровень механических свойств трубы класса прочности К80.

Таблица 1

Технические параметры при производстве труб.

Комбинация параметров B, мм C, мм А, мм α1 α2 α3 Yʺ,мм Q ВШ, кДж/см Q НШ, кДж/см Кол-во шагов формовки Величина экспандирования
1 7,5 6,5 6,0 37,5 37,5 2 29 33,7 43,5 21 1,0
2 (согласно изобретению) 7,0 6,5 6,5 35 37,5 2 46 39,9 40,8 21 1,0
3 (согласно изобретению) 7,8 6,5 5,7 37,5 40 2 66 35,4 41,7 19 1,0
4 9,5 6,5 4,0 40 45 5 53 30,4 54,3 19 1,0

Таблица 2

Массовая доля химических элементов в сварочных материалах.

Комбинация сварочных материалов Ni,% Mn,% Cr,% Ti,% N, %
1 1,9 1,8 0,6 0,02 0,010
2 2,2 1,3 0,12 0,04 0,009

Таблица 3

Результаты механических испытаний сварного шва

№ экспери-мента (Комбинация параметров) -(сварочный материал) σв , МПа (поперек) σв , МПа (вдоль) KCV-20, центр шва, Дж/см2 KCV-20, линия сплавления Дж/см2 KCV-40, центр шва, Дж/см2 KCV-40, линия сплавления Дж/см2 CTOD-20, центр шва, мм
1 1-1 843 851 91 135 63 76 0,09
2 (согласно изобретению) 1-2 821 835 212 254 109 187 0,26
3 (согласно изобретению) 2-1 837 846 134 261 103 250 0,21
4 (согласно изобретению) 2-2 807 829 228 317 137 269 0,37
5 (согласно изобретению) 3-1 829 835 168 259 115 196 0,18
6 (согласно изобретению) 3-2 823 830 198 287 147 210 0,24
7 4-1 744 751 76 84 44 63 0,03
8 4-2 782 795 83 91 34 57 0,04
Примечание:
σв – предел прочности, МПа;
KCV-20 – ударная вязкость при температуре испытаний минус 20oC, приведено среднее значение по трем образцам;
KCV-40 – ударная вязкость при температуре испытаний минус 20oC, приведено среднее значение по трем образцам;
CTOD-20 - раскрытие вершины трещины при температуре испытаний минус 20oC, приведено минимальное значение по трем образцам.

Источник поступления информации: Роспатент

Показаны записи 21-30 из 129.
10.09.2015
№216.013.79a9

Высокопрочная хладостойкая сталь

Изобретение относится к области металлургии и может быть использовано при производстве толстолистового проката из стали высокой прочности, хладостойкости и улучшенной свариваемости для применения в судостроении, топливно-энергетическом комплексе, транспортном и тяжелом машиностроении,...
Тип: Изобретение
Номер охранного документа: 0002562734
Дата охранного документа: 10.09.2015
27.09.2015
№216.013.7e38

Способ производства горячеоцинкованного проката повышенной прочности из низколегированной стали для холодной штамповки

Изобретение относится к технологии производства горячеоцинкованного проката повышенной прочности из низколегированной стали, предназначенного для изготовления деталей автомобиля методом штамповки. Способ включает выплавку стали, разливку, горячую прокатку, охлаждение водой, смотку полос в...
Тип: Изобретение
Номер охранного документа: 0002563909
Дата охранного документа: 27.09.2015
27.09.2015
№216.013.7e3a

Способ производства рулонного проката на непрерывном широкополосном стане

Изобретение относится к области обработки металлов давлением, в частности к технологии горячей прокатки на непрерывном широкополосном стане. Для повышения уровня стабильности механических свойств рулонного горячекатаного проката осуществляют прокатку непрерывнолитой заготовки в черновой и...
Тип: Изобретение
Номер охранного документа: 0002563911
Дата охранного документа: 27.09.2015
27.09.2015
№216.013.7f5d

Способ внепечной обработки стали

Изобретение относится к области черной металлургии, в частности, к способам обработки жидкого металла в ковше. В способе осуществляют выпуск плавки из сталеплавильного агрегата, ввод раскислителей и жидкого шлака предыдущей плавки. Во время слива металла из сталеплавильного агрегата в стальковш...
Тип: Изобретение
Номер охранного документа: 0002564202
Дата охранного документа: 27.09.2015
27.09.2015
№216.013.7f60

Способ производства особонизкоуглеродистой стали

Изобретение относится к области черной металлургии, в части производства особонизкоуглеродистых сталей с внепечной обработкой и разливкой на установках непрерывной разливки стали. Способ включает выпуск металла в сталь-ковш, который осуществляют при температуре металла не менее 1630°C,...
Тип: Изобретение
Номер охранного документа: 0002564205
Дата охранного документа: 27.09.2015
27.09.2015
№216.013.8008

Способ производства трубной стали

Изобретение относится к области черной металлургии, в частности к производству трубных сталей с внепечной обработкой и разливкой на установках непрерывной разливки стали. Выпуск металла в сталь-ковш осуществляют в течение 4-8 мин при температуре металла не мене 1650°С, во время выпуска...
Тип: Изобретение
Номер охранного документа: 0002564373
Дата охранного документа: 27.09.2015
27.11.2015
№216.013.9470

Способ производства низколегированного хладостойкого свариваемого листового проката повышенной коррозионной стойкости

Изобретение относится к металлургии. Способ производства низколегированного хладостойкого свариваемого листового проката повышенной коррозионной стойкости включает выплавку стали, непрерывную разливку в слябы, нагрев слябов и горячую прокатку. Выплавляют сталь, содержащую, мас. %: углерод -...
Тип: Изобретение
Номер охранного документа: 0002569619
Дата охранного документа: 27.11.2015
27.11.2015
№216.013.9472

Способ производства ниобийсодержащей стали

Изобретение относится к области черной металлургии, в частности к способу производства ниобийсодержащей стали. Cпособ включает выплавку металла в сталеплавильном агрегате, выпуск металла в сталь-ковш. Обеспечивают толщину слоя шлака в сталь-ковше не более 200 мм и подают металл на установку...
Тип: Изобретение
Номер охранного документа: 0002569621
Дата охранного документа: 27.11.2015
10.12.2015
№216.013.967c

Способ производства горячеоцинкованного проката повышенной прочности

Изобретение относится к области металлургии, конкретно к технологии производства горячеоцинкованного проката с минимальным пределом текучести 350 МПа из низколегированной стали, предназначенного для изготовления металлоконструкций. Cпособ включает выплавку стали, разливку, горячую прокатку,...
Тип: Изобретение
Номер охранного документа: 0002570144
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.96fc

Способ прокатки низколегированного штрипса для магистральных труб на толстолистовом реверсивном стане

Изобретение относится к области обработки металлов давлением, в частности к технологии листовой прокатки на реверсивном толстолистовом стане. Способ включает нагрев непрерывнолитой заготовки, ее черновую продольную прокатку до заданной толщины, черновую поперечную прокатку с разбивкой...
Тип: Изобретение
Номер охранного документа: 0002570272
Дата охранного документа: 10.12.2015
Показаны записи 21-30 из 76.
10.04.2015
№216.013.4068

Способ производства сверхнизкоуглеродистой холоднокатаной стали для глубокой вытяжки и последующего однослойного эмалирования

Изобретение относится к области металлургии, в частности к производству cверхнизкоуглеродистых холоднокатаных сталей для глубокой вытяжки изделий и последующего однослойного эмалирования и может быть использовано при изготовлении деталей бытовой техники, посуды, санитарно-гигиенических...
Тип: Изобретение
Номер охранного документа: 0002547976
Дата охранного документа: 10.04.2015
27.04.2015
№216.013.477f

Способ производства рулонного проката из высокопрочной хладостойкой стали

Изобретение относится к области металлургии и может быть применено для получения штрипсов с категорией прочности К60 (Х70), используемых при строительстве магистральных нефтегазопроводов. Для обеспечения хладостойкости проката при температурах до -20°C, улучшения свариваемости и получения...
Тип: Изобретение
Номер охранного документа: 0002549807
Дата охранного документа: 27.04.2015
27.04.2015
№216.013.4780

Способ производства толстолистового проката из малоуглеродистой стали на реверсивном стане

Изобретение относится к области обработки металлов давлением, в частности к технологии листовой прокатки на реверсивном толстолистовом стане. Способ включает нагрев, черновую и чистовую прокатку с промежуточным охлаждением и завершающее ускоренное охлаждение. Снижение неравномерности...
Тип: Изобретение
Номер охранного документа: 0002549808
Дата охранного документа: 27.04.2015
20.05.2015
№216.013.4d62

Способ производства полос из низколегированной свариваемой стали

Изобретение относится к области металлургии и используется для изготовления сварных нефте- и газопроводов, пригодных к эксплуатации в условиях Крайнего Севера. Для повышения коррозионной стойкости, хладостойкости и выхода годного горячекатаного полосового проката прокатку в черновой группе...
Тип: Изобретение
Номер охранного документа: 0002551324
Дата охранного документа: 20.05.2015
10.07.2015
№216.013.5e5a

Способ подготовки рабочих валков дрессировочного стана

Изобретение относится к прокатному производству и может быть использовано при подготовке рабочих валков клетей дрессировочных станов для производства холоднокатаного проката с повышенными требованиями к качеству и микрогеометрии поверхности, в том числе применяемого в автомобилестроении. Способ...
Тип: Изобретение
Номер охранного документа: 0002555695
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.6039

Способ производства полосы на широкополосном стане горячей прокатки

Изобретение относиться к прокатному производству и может быть использовано при производстве широких горячекатаных полос. Способ включает нагрев слябов и их горячую прокатку в черновых и чистовых клетях. Повышение точности геометрических размеров по толщине полос, прокатываемых на непрерывном...
Тип: Изобретение
Номер охранного документа: 0002556174
Дата охранного документа: 10.07.2015
10.08.2015
№216.013.6d9f

Способ нанесения наружного трехслойного покрытия на магистральную трубу

Изобретение относится к производству магистральных труб большого диаметра для прокладки трубопроводов. Сначала наружную поверхность трубы обезжиривают, после чего трубу подвергают сушке и дробеметной очистке. После осуществляют индукционный нагрев трубы до температуры не менее 200°С и наносят...
Тип: Изобретение
Номер охранного документа: 0002559621
Дата охранного документа: 10.08.2015
27.08.2015
№216.013.752a

Способ производства толстолистового проката из низколегированной стали

Изобретение относится к области металлургии, в частности к производству листового проката на реверсивном толстолистовом стане, и может быть использовано при изготовлении проката для труб с толщиной стенки 11-25 мм. Для получения толстолистового проката категории прочности до Х80 с повышенной...
Тип: Изобретение
Номер охранного документа: 0002561569
Дата охранного документа: 27.08.2015
10.09.2015
№216.013.7794

Способ производства холоднокатаного высокопрочного проката для холодной штамповки

Изобретение относится к области металлургии, конкретнее к технологии производства холоднокатаного проката повышенной прочности из низколегированной стали с высокими показателями пластичности, и может быть использовано для изготовления деталей, применяемых в автомобилестроении. Для повышения...
Тип: Изобретение
Номер охранного документа: 0002562201
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7796

Способ производства холоднокатаного высокопрочного проката для холодной штамповки

Изобретение относится к области металлургии, к технологии производства холоднокатаного проката повышенной прочности из низколегированной стали с высокими показателями пластичности и может быть использовано для изготовления деталей, применяемых в автомобилестроении. Для повышения прочностных...
Тип: Изобретение
Номер охранного документа: 0002562203
Дата охранного документа: 10.09.2015
+ добавить свой РИД