×
20.04.2023
223.018.4e8a

Результат интеллектуальной деятельности: Способ астроориентации орбитального космического аппарата (варианты)

Вид РИД

Изобретение

Аннотация: Группа изобретений относится к области ориентации орбитального космического аппарата (КА) с использованием звездного датчика. В предлагаемом способе применен алгоритм, в котором используется вектор конечного поворота (ВКП) Эйлера. По баллистическим данным, показаниям звездного датчика и блока гироскопических датчиков угловых скоростей рассчитывают компоненты ВКП и его производные, которые передают непосредственно на исполнительные органы КА. Этим обеспечивают качественное управление поворотом КА для совмещения связанной и орбитальной систем координат (ОСК). Для программного поворота КА относительно ОСК вводят программную систему координат (ПСК) в форме программных углов и программных угловых скоростей КА относительно ОСК, обеспечивая улучшение качества переходных процессов. В этом варианте компоненты ВПК рассчитывают относительно ПСК. Техническим результатом является повышение точности ориентации КА относительно ОСК. 5 ил.

Изобретение относится к области космической техники и может быть использовано для ориентирования космического аппарата (КА) относительно орбитальной (ОСК) и программной (ПСК) систем координат с использованием датчика звезд (ДЗ).

Известены способы орбитальной ориентации КА, приведенные в книге авторов В.Н. Бранец, И.П. Шмыглевский «Применение кватернионов в задачах ориентации твердого тела». Москва, Наука 1973 г., 320 с. (см. стр. 205-226), где рассматриваются только общетеоретические аспекты ориентации КА.

Известен способ, изложенный в статье «Система ориентации и стабилизации космического аппарата по информации с астродатчиков», Электронный журнал «Труды МАИ». Выпуск №38, в котором изложены результаты летных испытаний, но не недостаточно раскрыты существенные признаки способа.

В книге авторов О.Н. Анучин, И.Э. Комарова, Л.Ф. Перфильев «Бортовые системы навигации и ориентации искусственных спутников Земли» - СПб.: ГНЦ РФ ЦНИИ «Электроприбор», 2004 г. приводится большое количество методов ориентации твердого тела без конкретизации рабочего алгоритма астроориентации.

В книге Системы астрономической ориентации космических аппаратов/ В.И. Кочетков - Москва.: Машиностроение, 1980 рассматриваются способы астрокоррекции для систем с гиростабилизированными платформами, что малопригодно для систем ориентации современных КА.

Наиболее близким способом, который может быть принять за прототип, является способ, изложенный в патенте RU 2610766. Способ содержит общие признаки с предлагаемым техническим решение, которые заключаются в расчете по данным аппаратуры спутниковой навигации матрицы А положения ОСК относительно инерциальной системы координат (ИСК), фиксированное измерение датчиком звезд (ДЗ) положения связанной системы координат (ССК) относительно ИСК и получение от блока гироскопических измерителей угловых скоростей (БИУС) данных о проекциях абсолютной угловой скорости КА ωg(p,q,r) на оси ССК.

Недостатком способа является то, что ДЗ измеряет положение КА относительно ИСК только вначале процесса ориентации, а сама ориентация выполняется относительно «замороженной» ОСК, что приводит к большим ошибкам ориентации КА относительно изменяющейся во времени ОСК по завершению процесса ориентации. Ошибки могут достигать десятков градусов, т.к. ошибка на одном цикле включения пропорциональна величине орбитальной угловой скорости КА и расчетного времени приведения КА к ОСК. По этой причине применяют повторные включения режима приведения, что снижает общую погрешность ориентации, но все же не достигают требуемой точности, которая для современных систем ориентации должна находиться на уровне нескольких угловых секунд по углу и на уровне 0,001-0,0001°/с по угловой скорости в номинальном и программном положениях.

Техническим результатом предлагаемого технического решения является повышение точности ориентации КА относительно ОСК.

В отличие от известного способа астроориентации, который включает расчет по данным аппаратуры спутниковой навигации (АСН) матрицы А положения орбитальной системы координат (ОСК) относительно инерциальной системы координат (ИСК), фиксированное определение датчиком звезд (ДЗ) матрицы - Мro ориентации связанной системы координат (ССК) относительно ИСК и измерение блоком гироскопических измерителей угловых скоростей (БИУС) текущей абсолютной угловой скорости КА в проекциях на оси связанной системы координат (ССК) - ωg(p,q,r) с последующей корректировкой положения ССК относительно ОСК, выполняют новые операции. Принимают данные баллистического расчета о скорости вращения ОСК относительно ИСК ωoхо, ωуо, ωzo), измеряют датчиком звезд текущие значения матрицы (кватерниона) Мro ориентации ССК относительно ИСК, рассчитывают в бортовом вычислителе скорость вращения ССК относительно ОСК по формуле (Т - знак транспонирования) и ее интегрированием матрицу S - ориентации ССК относительно ОСК, из полученных решений находят компоненты вектора конечного поворота Эйлера и его производные в соответствии с выражениями:

θx=S23 - S32, θy=S31-S13, θz=Sn-S2l,

где - элементы матриц создают моменты управления на корпус КА по соответствующим осям ССК как функции от компонент векторов конечного поворота и поворачивают КА до совмещения связанной и орбитальной систем координат.

На фиг. 1 приведена иллюстрация способа ориентации, где показано приведение КА в ОСК из начального положения относительно ОСК по курсу ψ(0)=+70°, тангажу ϑ(0)=-70° и по крену γ(0)=+120° при начальных нулевых скоростях относительно ИСК ωg(p,q,r)=0 (с погрешностью до собственного дрейфа гироскопов БИУС).

Параметры КА:

- масса 350 кг,

- орбита околокруговая, высота 500 км,

- закон стабилизации - пропорциональный:

где kx=0,562 н/рад,

ky=8,310 н/рад,

kz=8,600 н/рад,

Из приведенных графиков наглядно виден переходный процесс приведения КА в ОСК, который завершается за время менее 50 с.

На фиг. 2 показан тот же процесс в увеличенном масштабе. Как следует из приведенных графиков, погрешность ориентации в конце приведения не хуже 10 угловых секунд. Переходные процессы приведения КА в ОСК по скорости приведены на фиг. 3, погрешность приведения КА по скорости не превышает значений 0,0002°/с, что соответствует требованиям высокоточной ориентации КА.

В способе по п. 2 достигается обратная задача - угловое перемещение КА в заранее предписанное (программное) положение относительно ОСК.

Этот способ отличается тем, что задают программное движение КА относительно ОСК в форме программных углов по курсу ψp{t), тангажу ϑ(t) и крену γp{t) и соответствующих им программных угловых скоростей - рассчитывают в бортовом вычислителе скорость вращения ССК относительно программной системы координат (ИСК) по формуле и ее интегрированием - матрицу С ориентации ССК относительно ПСК, где ωр, ωo, ωg - кососимметрические матрицы, причем текущие компоненты программной скорости ωрpx, ωpy, ωpz) непрерывно рассчитываются в бортовом вычислителе по формуле - векторы столбцы, а Р=РψРϑРγ - матрицы плоских программных поворотов КА по курсу, тангажу и крену, вычисляют компоненты вектора конечного поворота Эйлера и их производные по формулам:

ϕx=C23-C32, ϕy3113, ϕz1221,

- элементы матриц создают моменты управления на корпус КА по соответствующим осям ССК как функции от компонент вектора конечного поворота и поворачивают КА до совмещения связанной и программной систем координат.

На фиг. 4 показан пример программного поворота КА относительно ОСК по курсу ψ(0)=+170°, тангажу ϑ(0)=-80° и крену γ(0)=+95°.

КА выполнил качественный и точный программный поворот. Время переходного процесса составило 1700 с, погрешность программного поворота по углу составила ≤40 угловых секунд, по угловой скорости ≤0,001°/с (фиг. 5).

Таким образом, предлагаемая система астроориентации позволяет выполнять функции приведения КА в ОСК из неориентированного положения и переводить КА в требуемое программное положение относительно ОСК. Обе функции выполняются с высоким качеством переходного процесса и высокой точностью ориентации КА относительно ОСК и ПСК как по углу, так и по угловой скорости.


Способ астроориентации орбитального космического аппарата (варианты)
Способ астроориентации орбитального космического аппарата (варианты)
Способ астроориентации орбитального космического аппарата (варианты)
Способ астроориентации орбитального космического аппарата (варианты)
Способ астроориентации орбитального космического аппарата (варианты)
Способ астроориентации орбитального космического аппарата (варианты)
Способ астроориентации орбитального космического аппарата (варианты)
Способ астроориентации орбитального космического аппарата (варианты)
Способ астроориентации орбитального космического аппарата (варианты)
Способ астроориентации орбитального космического аппарата (варианты)
Способ астроориентации орбитального космического аппарата (варианты)
Способ астроориентации орбитального космического аппарата (варианты)
Способ астроориентации орбитального космического аппарата (варианты)
Способ астроориентации орбитального космического аппарата (варианты)
Способ астроориентации орбитального космического аппарата (варианты)
Источник поступления информации: Роспатент

Показаны записи 71-80 из 161.
10.05.2018
№218.016.49fb

Наконечник гиперзвукового летательного аппарата

Изобретение относится к летательным аппаратам с тепловой абляционной защитой. Наконечник гиперзвукового летательного аппарата выполнен из углерод-углеродного композиционного материала. Диаметр волокна (d), формирующего структурную ячейку углерод-углеродного композиционного материала в...
Тип: Изобретение
Номер охранного документа: 0002651344
Дата охранного документа: 19.04.2018
10.05.2018
№218.016.4adb

Система отделения отсека летательного аппарата

Изобретение относится к авиационной и ракетной технике и может быть использовано для отделения отсека летательного аппарата (ЛА). Система отделения отсека ЛА содержит устройство крепления отсека к ЛА по стыковочным шпангоутам, выполненное с возможностью расфиксации крепления, и устройство...
Тип: Изобретение
Номер охранного документа: 0002651780
Дата охранного документа: 23.04.2018
10.05.2018
№218.016.4c2b

Механизм раскрытия консолей крыла летательного аппарата

Изобретение относится к области ракетной техники, а именно к складным аэродинамическим поверхностям и механизмам их раскрытия. Раскрываемое, шарнирно закрепленное на корпусе крыло и механизм раскрытия консолей крыла, выполненный в виде Т-образно вращающихся стержней, установленных...
Тип: Изобретение
Номер охранного документа: 0002652035
Дата охранного документа: 24.04.2018
16.06.2018
№218.016.630b

Корабельная пусковая установка для ракет в транспортно-пусковом контейнере с минометном стартом

Изобретение относится к пусковым установкам (ПУ) для ракет в транспортно-пусковом контейнере (ТПК). Корабельная ПУ для ракет в ТПК с минометным стартом оснащена продольной системой амортизации (СА) с заданным ходом подвижной части ПУ с жестко закрепленным в ней ТПК с ракетой. ПУ снабжена...
Тип: Изобретение
Номер охранного документа: 0002657634
Дата охранного документа: 14.06.2018
16.06.2018
№218.016.6329

Устройство тепловой защиты летательного аппарата

Изобретение относится к авиационной и ракетной технике и может быть использовано для обеспечения теплового режима бортовой аппаратуры сверх- и гиперзвуковых летательных аппаратов (ЛА). Устройство тепловой защиты ЛА выполнено в виде внешней и внутренней оболочек и содержит пропитанный...
Тип: Изобретение
Номер охранного документа: 0002657614
Дата охранного документа: 14.06.2018
03.07.2018
№218.016.69eb

Ракета в транспортно-пусковом контейнере

Изобретение относится к ракетной технике, а именно к устройствам, обеспечивающим сохранность ракеты при ее размещении в транспортно-пусковом контейнере (ТПК) на носителях, транспортно-заряжающих машинах, базах долговременного хранения. Ракета в транспортно-пусковом контейнере содержит...
Тип: Изобретение
Номер охранного документа: 0002659450
Дата охранного документа: 02.07.2018
06.07.2018
№218.016.6cdd

Крепежное соединение деталей из материалов с разными коэффициентами теплового расширения

Изобретение относится к болтовым соединениям деталей, выполненных из материалов с разными коэффициентами теплового расширения, и может быть использовано в различных отраслях техники, включая конструкции высокоскоростных летательных аппаратов. Крепежное соединение деталей из материалов с разными...
Тип: Изобретение
Номер охранного документа: 0002660308
Дата охранного документа: 05.07.2018
08.07.2018
№218.016.6d5c

Способ радиооптической маскировки надводного корабля

Изобретение относится к способам комбинированной маскировки надводного корабля от радиолокационных, радиотехнических и оптико-электронных средств обнаружения и самонаведения противокорабельных крылатых ракет (ПКР). Для радиооптической маскировки надводного корабля (1) в движении и на стоянке от...
Тип: Изобретение
Номер охранного документа: 0002660518
Дата охранного документа: 06.07.2018
08.07.2018
№218.016.6eb5

Способ изготовления деталей из титановых псевдо - α - сплавов

Изобретение может быть использовано для получения сверхпластической штамповкой изделий сложной формы. Осуществляют вакуумно-дуговую выплавку слитка из сплава ВТ20 и изготовление детали сверхпластической деформацией слитка при скорости деформации 10 с с последующими термической обработкой. При...
Тип: Изобретение
Номер охранного документа: 0002660461
Дата охранного документа: 06.07.2018
12.07.2018
№218.016.6f7f

Способ восстановления курсовой ориентации космического аппарата с использованием бесплатформенного орбитального гирокомпаса

Изобретение относится к управлению космическим аппаратом (КА) с использованием бесплатформенного орбитального гирокомпаса, прибора ориентации на Землю и гироскопических измерителей угловой скорости. При этом предварительно оценивают положение КА в орбитальной системе координат, а затем...
Тип: Изобретение
Номер охранного документа: 0002661050
Дата охранного документа: 11.07.2018
Показаны записи 11-12 из 12.
12.07.2018
№218.016.6f7f

Способ восстановления курсовой ориентации космического аппарата с использованием бесплатформенного орбитального гирокомпаса

Изобретение относится к управлению космическим аппаратом (КА) с использованием бесплатформенного орбитального гирокомпаса, прибора ориентации на Землю и гироскопических измерителей угловой скорости. При этом предварительно оценивают положение КА в орбитальной системе координат, а затем...
Тип: Изобретение
Номер охранного документа: 0002661050
Дата охранного документа: 11.07.2018
13.01.2019
№219.016.af6b

Система восстановления курсовой ориентации космического аппарата с использованием орбитального гирокомпаса

Система восстановления курсовой ориентации (ВО) космического аппарата (КА) с использованием орбитального гирокомпаса (ОГК) содержит прибор ориентации по Земле (ПОЗ), блок гироскопических измерителей угловых скоростей (БИУС), навигационно-баллистический блок (НББ), содержащий центральный...
Тип: Изобретение
Номер охранного документа: 0002676844
Дата охранного документа: 11.01.2019
+ добавить свой РИД