×
20.04.2023
223.018.4e8a

Результат интеллектуальной деятельности: Способ астроориентации орбитального космического аппарата (варианты)

Вид РИД

Изобретение

Аннотация: Группа изобретений относится к области ориентации орбитального космического аппарата (КА) с использованием звездного датчика. В предлагаемом способе применен алгоритм, в котором используется вектор конечного поворота (ВКП) Эйлера. По баллистическим данным, показаниям звездного датчика и блока гироскопических датчиков угловых скоростей рассчитывают компоненты ВКП и его производные, которые передают непосредственно на исполнительные органы КА. Этим обеспечивают качественное управление поворотом КА для совмещения связанной и орбитальной систем координат (ОСК). Для программного поворота КА относительно ОСК вводят программную систему координат (ПСК) в форме программных углов и программных угловых скоростей КА относительно ОСК, обеспечивая улучшение качества переходных процессов. В этом варианте компоненты ВПК рассчитывают относительно ПСК. Техническим результатом является повышение точности ориентации КА относительно ОСК. 5 ил.

Изобретение относится к области космической техники и может быть использовано для ориентирования космического аппарата (КА) относительно орбитальной (ОСК) и программной (ПСК) систем координат с использованием датчика звезд (ДЗ).

Известены способы орбитальной ориентации КА, приведенные в книге авторов В.Н. Бранец, И.П. Шмыглевский «Применение кватернионов в задачах ориентации твердого тела». Москва, Наука 1973 г., 320 с. (см. стр. 205-226), где рассматриваются только общетеоретические аспекты ориентации КА.

Известен способ, изложенный в статье «Система ориентации и стабилизации космического аппарата по информации с астродатчиков», Электронный журнал «Труды МАИ». Выпуск №38, в котором изложены результаты летных испытаний, но не недостаточно раскрыты существенные признаки способа.

В книге авторов О.Н. Анучин, И.Э. Комарова, Л.Ф. Перфильев «Бортовые системы навигации и ориентации искусственных спутников Земли» - СПб.: ГНЦ РФ ЦНИИ «Электроприбор», 2004 г. приводится большое количество методов ориентации твердого тела без конкретизации рабочего алгоритма астроориентации.

В книге Системы астрономической ориентации космических аппаратов/ В.И. Кочетков - Москва.: Машиностроение, 1980 рассматриваются способы астрокоррекции для систем с гиростабилизированными платформами, что малопригодно для систем ориентации современных КА.

Наиболее близким способом, который может быть принять за прототип, является способ, изложенный в патенте RU 2610766. Способ содержит общие признаки с предлагаемым техническим решение, которые заключаются в расчете по данным аппаратуры спутниковой навигации матрицы А положения ОСК относительно инерциальной системы координат (ИСК), фиксированное измерение датчиком звезд (ДЗ) положения связанной системы координат (ССК) относительно ИСК и получение от блока гироскопических измерителей угловых скоростей (БИУС) данных о проекциях абсолютной угловой скорости КА ωg(p,q,r) на оси ССК.

Недостатком способа является то, что ДЗ измеряет положение КА относительно ИСК только вначале процесса ориентации, а сама ориентация выполняется относительно «замороженной» ОСК, что приводит к большим ошибкам ориентации КА относительно изменяющейся во времени ОСК по завершению процесса ориентации. Ошибки могут достигать десятков градусов, т.к. ошибка на одном цикле включения пропорциональна величине орбитальной угловой скорости КА и расчетного времени приведения КА к ОСК. По этой причине применяют повторные включения режима приведения, что снижает общую погрешность ориентации, но все же не достигают требуемой точности, которая для современных систем ориентации должна находиться на уровне нескольких угловых секунд по углу и на уровне 0,001-0,0001°/с по угловой скорости в номинальном и программном положениях.

Техническим результатом предлагаемого технического решения является повышение точности ориентации КА относительно ОСК.

В отличие от известного способа астроориентации, который включает расчет по данным аппаратуры спутниковой навигации (АСН) матрицы А положения орбитальной системы координат (ОСК) относительно инерциальной системы координат (ИСК), фиксированное определение датчиком звезд (ДЗ) матрицы - Мro ориентации связанной системы координат (ССК) относительно ИСК и измерение блоком гироскопических измерителей угловых скоростей (БИУС) текущей абсолютной угловой скорости КА в проекциях на оси связанной системы координат (ССК) - ωg(p,q,r) с последующей корректировкой положения ССК относительно ОСК, выполняют новые операции. Принимают данные баллистического расчета о скорости вращения ОСК относительно ИСК ωoхо, ωуо, ωzo), измеряют датчиком звезд текущие значения матрицы (кватерниона) Мro ориентации ССК относительно ИСК, рассчитывают в бортовом вычислителе скорость вращения ССК относительно ОСК по формуле (Т - знак транспонирования) и ее интегрированием матрицу S - ориентации ССК относительно ОСК, из полученных решений находят компоненты вектора конечного поворота Эйлера и его производные в соответствии с выражениями:

θx=S23 - S32, θy=S31-S13, θz=Sn-S2l,

где - элементы матриц создают моменты управления на корпус КА по соответствующим осям ССК как функции от компонент векторов конечного поворота и поворачивают КА до совмещения связанной и орбитальной систем координат.

На фиг. 1 приведена иллюстрация способа ориентации, где показано приведение КА в ОСК из начального положения относительно ОСК по курсу ψ(0)=+70°, тангажу ϑ(0)=-70° и по крену γ(0)=+120° при начальных нулевых скоростях относительно ИСК ωg(p,q,r)=0 (с погрешностью до собственного дрейфа гироскопов БИУС).

Параметры КА:

- масса 350 кг,

- орбита околокруговая, высота 500 км,

- закон стабилизации - пропорциональный:

где kx=0,562 н/рад,

ky=8,310 н/рад,

kz=8,600 н/рад,

Из приведенных графиков наглядно виден переходный процесс приведения КА в ОСК, который завершается за время менее 50 с.

На фиг. 2 показан тот же процесс в увеличенном масштабе. Как следует из приведенных графиков, погрешность ориентации в конце приведения не хуже 10 угловых секунд. Переходные процессы приведения КА в ОСК по скорости приведены на фиг. 3, погрешность приведения КА по скорости не превышает значений 0,0002°/с, что соответствует требованиям высокоточной ориентации КА.

В способе по п. 2 достигается обратная задача - угловое перемещение КА в заранее предписанное (программное) положение относительно ОСК.

Этот способ отличается тем, что задают программное движение КА относительно ОСК в форме программных углов по курсу ψp{t), тангажу ϑ(t) и крену γp{t) и соответствующих им программных угловых скоростей - рассчитывают в бортовом вычислителе скорость вращения ССК относительно программной системы координат (ИСК) по формуле и ее интегрированием - матрицу С ориентации ССК относительно ПСК, где ωр, ωo, ωg - кососимметрические матрицы, причем текущие компоненты программной скорости ωрpx, ωpy, ωpz) непрерывно рассчитываются в бортовом вычислителе по формуле - векторы столбцы, а Р=РψРϑРγ - матрицы плоских программных поворотов КА по курсу, тангажу и крену, вычисляют компоненты вектора конечного поворота Эйлера и их производные по формулам:

ϕx=C23-C32, ϕy3113, ϕz1221,

- элементы матриц создают моменты управления на корпус КА по соответствующим осям ССК как функции от компонент вектора конечного поворота и поворачивают КА до совмещения связанной и программной систем координат.

На фиг. 4 показан пример программного поворота КА относительно ОСК по курсу ψ(0)=+170°, тангажу ϑ(0)=-80° и крену γ(0)=+95°.

КА выполнил качественный и точный программный поворот. Время переходного процесса составило 1700 с, погрешность программного поворота по углу составила ≤40 угловых секунд, по угловой скорости ≤0,001°/с (фиг. 5).

Таким образом, предлагаемая система астроориентации позволяет выполнять функции приведения КА в ОСК из неориентированного положения и переводить КА в требуемое программное положение относительно ОСК. Обе функции выполняются с высоким качеством переходного процесса и высокой точностью ориентации КА относительно ОСК и ПСК как по углу, так и по угловой скорости.


Способ астроориентации орбитального космического аппарата (варианты)
Способ астроориентации орбитального космического аппарата (варианты)
Способ астроориентации орбитального космического аппарата (варианты)
Способ астроориентации орбитального космического аппарата (варианты)
Способ астроориентации орбитального космического аппарата (варианты)
Способ астроориентации орбитального космического аппарата (варианты)
Способ астроориентации орбитального космического аппарата (варианты)
Способ астроориентации орбитального космического аппарата (варианты)
Способ астроориентации орбитального космического аппарата (варианты)
Способ астроориентации орбитального космического аппарата (варианты)
Способ астроориентации орбитального космического аппарата (варианты)
Способ астроориентации орбитального космического аппарата (варианты)
Способ астроориентации орбитального космического аппарата (варианты)
Способ астроориентации орбитального космического аппарата (варианты)
Способ астроориентации орбитального космического аппарата (варианты)
Источник поступления информации: Роспатент

Показаны записи 51-60 из 161.
20.01.2018
№218.016.13b1

Шаровая опора

Изобретение относится к области авиа- и ракетостроительного машиностроения и может быть использовано в создании опорных узлов трения, где в качестве опор скольжения используются сферические шарнирные подшипники. Шаровая опора содержит корпус, выполненный из двух частей в виде крышек, неразъемно...
Тип: Изобретение
Номер охранного документа: 0002634661
Дата охранного документа: 02.11.2017
20.01.2018
№218.016.16c0

Устройство стабилизации ракеты

Изобретение относится к области ракетной техники, а именно к устройствам стабилизации ракеты. Содержит пару кинематически связанных между собой при помощи установленных на корпусе ракеты тяг и механизм управления аэродинамического и газового рулей. Последний содержит основание и механизм...
Тип: Изобретение
Номер охранного документа: 0002635705
Дата охранного документа: 15.11.2017
20.01.2018
№218.016.1702

Способ получения деталей газотурбинных двигателей из титанового псевдо -β - сплава с лигатурой ti-al-mo-v-cr-fe

Изобретение относится к получению деталей газотурбинных двигателей из титанового псевдо-β-сплава с лигатурой Ti-Al-Mo-V-Cr-Fe. Проводят дополнительное легирование титанового сплава псевдо-β-сплава с лигатурой Ti-Al-Mo-V-Cr-Fe редкоземельным металлом. Осуществляют последующую вакуумно-дуговую...
Тип: Изобретение
Номер охранного документа: 0002635595
Дата охранного документа: 14.11.2017
20.01.2018
№218.016.1730

Способ управления прямоточным воздушно-реактивным двигателем крылатой ракеты

Изобретение относится к области ракетной техники, созданию прямоточных воздушно-реактивных двигателей (ПВРД) для крылатых ракет (КР) и управлению КР. В случаях неисправности датчиков командных давлений выдается команда для выполнения резервного алгоритма управления ПВРД. Достигается заранее...
Тип: Изобретение
Номер охранного документа: 0002635757
Дата охранного документа: 15.11.2017
20.01.2018
№218.016.179c

Система регулирования сверхзвукового прямоточного воздушно-реактивного двигателя

Изобретение относится к ракетной технике и касается системы регулирования (CP) сверхзвукового прямоточного воздушно-реактивного двигателя (СПВРД). На поверхности передней части центрального тела расположены от двух до четырех приемников воздушного давления и приемник полного давления...
Тип: Изобретение
Номер охранного документа: 0002635758
Дата охранного документа: 15.11.2017
20.01.2018
№218.016.179d

Устройство соединения и расстыковки электрических связей разделяемых ступеней летательного аппарата

Изобретение относится к области ракетно-космической техники и может быть использовано в конструкции высокоскоростных двухступенчатых ракет. Устройство установлено в корпусе летательного аппарата и содержит электрический узел. Электрический узел расположен перпендикулярно к внешнему обводу...
Тип: Изобретение
Номер охранного документа: 0002635704
Дата охранного документа: 15.11.2017
13.02.2018
№218.016.2069

Фиксатор разделяемых объектов летательных аппаратов

Изобретение относится к ракетной технике и может найти применение в конструкциях систем разделения объектов летательных аппаратов (ЛА). Целью изобретения является создание надежного фиксатора разделяемых объектов ЛА для соединения без люфта сложных разделяемых объектов большой массы,...
Тип: Изобретение
Номер охранного документа: 0002641532
Дата охранного документа: 18.01.2018
13.02.2018
№218.016.257e

Обечайка корпуса летательного аппарата

Изобретение относится к конструкции корпусов скоростных летательных аппаратов (ЛА), преимущественно малых калибров. Для обечайки с длиной образующей L и с гладкой несущей стенкой толщиной δ корпуса цилиндрической, конической или биконической формы - в стенке обечайки с одного или двух торцов...
Тип: Изобретение
Номер охранного документа: 0002642471
Дата охранного документа: 26.01.2018
17.02.2018
№218.016.2a5f

Многоцелевая трансформируемая орбитальная система и способ ее применения

Группа изобретений относится к построению и управлению космическими аппаратами на орбитах ИСЗ. Система включает в себя орбитальную станцию, целевые (ЦМ) и обеспечивающие модули на компланарных орбитах. ЦМ имеют в своем составе многоразовые возвращаемые аппараты (МВА) крылатой схемы. В МВА...
Тип: Изобретение
Номер охранного документа: 0002643082
Дата охранного документа: 30.01.2018
17.02.2018
№218.016.2cdb

Ракетно-космический комплекс и способ функционирования ракетно-космического комплекса

Группа изобретений относится к средствам и методам выведения, работы на орбите и увода с орбиты автоматических полезных нагрузок (ПН) с помощью беспилотного ракетно-космического комплекса (РКК). В состав РКК входит разгонный блок (РБ) с устройствами управления ракетой-носителем, которые при...
Тип: Изобретение
Номер охранного документа: 0002643744
Дата охранного документа: 05.02.2018
Показаны записи 11-12 из 12.
12.07.2018
№218.016.6f7f

Способ восстановления курсовой ориентации космического аппарата с использованием бесплатформенного орбитального гирокомпаса

Изобретение относится к управлению космическим аппаратом (КА) с использованием бесплатформенного орбитального гирокомпаса, прибора ориентации на Землю и гироскопических измерителей угловой скорости. При этом предварительно оценивают положение КА в орбитальной системе координат, а затем...
Тип: Изобретение
Номер охранного документа: 0002661050
Дата охранного документа: 11.07.2018
13.01.2019
№219.016.af6b

Система восстановления курсовой ориентации космического аппарата с использованием орбитального гирокомпаса

Система восстановления курсовой ориентации (ВО) космического аппарата (КА) с использованием орбитального гирокомпаса (ОГК) содержит прибор ориентации по Земле (ПОЗ), блок гироскопических измерителей угловых скоростей (БИУС), навигационно-баллистический блок (НББ), содержащий центральный...
Тип: Изобретение
Номер охранного документа: 0002676844
Дата охранного документа: 11.01.2019
+ добавить свой РИД