×
20.04.2023
223.018.4e8a

Результат интеллектуальной деятельности: Способ астроориентации орбитального космического аппарата (варианты)

Вид РИД

Изобретение

Аннотация: Группа изобретений относится к области ориентации орбитального космического аппарата (КА) с использованием звездного датчика. В предлагаемом способе применен алгоритм, в котором используется вектор конечного поворота (ВКП) Эйлера. По баллистическим данным, показаниям звездного датчика и блока гироскопических датчиков угловых скоростей рассчитывают компоненты ВКП и его производные, которые передают непосредственно на исполнительные органы КА. Этим обеспечивают качественное управление поворотом КА для совмещения связанной и орбитальной систем координат (ОСК). Для программного поворота КА относительно ОСК вводят программную систему координат (ПСК) в форме программных углов и программных угловых скоростей КА относительно ОСК, обеспечивая улучшение качества переходных процессов. В этом варианте компоненты ВПК рассчитывают относительно ПСК. Техническим результатом является повышение точности ориентации КА относительно ОСК. 5 ил.

Изобретение относится к области космической техники и может быть использовано для ориентирования космического аппарата (КА) относительно орбитальной (ОСК) и программной (ПСК) систем координат с использованием датчика звезд (ДЗ).

Известены способы орбитальной ориентации КА, приведенные в книге авторов В.Н. Бранец, И.П. Шмыглевский «Применение кватернионов в задачах ориентации твердого тела». Москва, Наука 1973 г., 320 с. (см. стр. 205-226), где рассматриваются только общетеоретические аспекты ориентации КА.

Известен способ, изложенный в статье «Система ориентации и стабилизации космического аппарата по информации с астродатчиков», Электронный журнал «Труды МАИ». Выпуск №38, в котором изложены результаты летных испытаний, но не недостаточно раскрыты существенные признаки способа.

В книге авторов О.Н. Анучин, И.Э. Комарова, Л.Ф. Перфильев «Бортовые системы навигации и ориентации искусственных спутников Земли» - СПб.: ГНЦ РФ ЦНИИ «Электроприбор», 2004 г. приводится большое количество методов ориентации твердого тела без конкретизации рабочего алгоритма астроориентации.

В книге Системы астрономической ориентации космических аппаратов/ В.И. Кочетков - Москва.: Машиностроение, 1980 рассматриваются способы астрокоррекции для систем с гиростабилизированными платформами, что малопригодно для систем ориентации современных КА.

Наиболее близким способом, который может быть принять за прототип, является способ, изложенный в патенте RU 2610766. Способ содержит общие признаки с предлагаемым техническим решение, которые заключаются в расчете по данным аппаратуры спутниковой навигации матрицы А положения ОСК относительно инерциальной системы координат (ИСК), фиксированное измерение датчиком звезд (ДЗ) положения связанной системы координат (ССК) относительно ИСК и получение от блока гироскопических измерителей угловых скоростей (БИУС) данных о проекциях абсолютной угловой скорости КА ωg(p,q,r) на оси ССК.

Недостатком способа является то, что ДЗ измеряет положение КА относительно ИСК только вначале процесса ориентации, а сама ориентация выполняется относительно «замороженной» ОСК, что приводит к большим ошибкам ориентации КА относительно изменяющейся во времени ОСК по завершению процесса ориентации. Ошибки могут достигать десятков градусов, т.к. ошибка на одном цикле включения пропорциональна величине орбитальной угловой скорости КА и расчетного времени приведения КА к ОСК. По этой причине применяют повторные включения режима приведения, что снижает общую погрешность ориентации, но все же не достигают требуемой точности, которая для современных систем ориентации должна находиться на уровне нескольких угловых секунд по углу и на уровне 0,001-0,0001°/с по угловой скорости в номинальном и программном положениях.

Техническим результатом предлагаемого технического решения является повышение точности ориентации КА относительно ОСК.

В отличие от известного способа астроориентации, который включает расчет по данным аппаратуры спутниковой навигации (АСН) матрицы А положения орбитальной системы координат (ОСК) относительно инерциальной системы координат (ИСК), фиксированное определение датчиком звезд (ДЗ) матрицы - Мro ориентации связанной системы координат (ССК) относительно ИСК и измерение блоком гироскопических измерителей угловых скоростей (БИУС) текущей абсолютной угловой скорости КА в проекциях на оси связанной системы координат (ССК) - ωg(p,q,r) с последующей корректировкой положения ССК относительно ОСК, выполняют новые операции. Принимают данные баллистического расчета о скорости вращения ОСК относительно ИСК ωoхо, ωуо, ωzo), измеряют датчиком звезд текущие значения матрицы (кватерниона) Мro ориентации ССК относительно ИСК, рассчитывают в бортовом вычислителе скорость вращения ССК относительно ОСК по формуле (Т - знак транспонирования) и ее интегрированием матрицу S - ориентации ССК относительно ОСК, из полученных решений находят компоненты вектора конечного поворота Эйлера и его производные в соответствии с выражениями:

θx=S23 - S32, θy=S31-S13, θz=Sn-S2l,

где - элементы матриц создают моменты управления на корпус КА по соответствующим осям ССК как функции от компонент векторов конечного поворота и поворачивают КА до совмещения связанной и орбитальной систем координат.

На фиг. 1 приведена иллюстрация способа ориентации, где показано приведение КА в ОСК из начального положения относительно ОСК по курсу ψ(0)=+70°, тангажу ϑ(0)=-70° и по крену γ(0)=+120° при начальных нулевых скоростях относительно ИСК ωg(p,q,r)=0 (с погрешностью до собственного дрейфа гироскопов БИУС).

Параметры КА:

- масса 350 кг,

- орбита околокруговая, высота 500 км,

- закон стабилизации - пропорциональный:

где kx=0,562 н/рад,

ky=8,310 н/рад,

kz=8,600 н/рад,

Из приведенных графиков наглядно виден переходный процесс приведения КА в ОСК, который завершается за время менее 50 с.

На фиг. 2 показан тот же процесс в увеличенном масштабе. Как следует из приведенных графиков, погрешность ориентации в конце приведения не хуже 10 угловых секунд. Переходные процессы приведения КА в ОСК по скорости приведены на фиг. 3, погрешность приведения КА по скорости не превышает значений 0,0002°/с, что соответствует требованиям высокоточной ориентации КА.

В способе по п. 2 достигается обратная задача - угловое перемещение КА в заранее предписанное (программное) положение относительно ОСК.

Этот способ отличается тем, что задают программное движение КА относительно ОСК в форме программных углов по курсу ψp{t), тангажу ϑ(t) и крену γp{t) и соответствующих им программных угловых скоростей - рассчитывают в бортовом вычислителе скорость вращения ССК относительно программной системы координат (ИСК) по формуле и ее интегрированием - матрицу С ориентации ССК относительно ПСК, где ωр, ωo, ωg - кососимметрические матрицы, причем текущие компоненты программной скорости ωрpx, ωpy, ωpz) непрерывно рассчитываются в бортовом вычислителе по формуле - векторы столбцы, а Р=РψРϑРγ - матрицы плоских программных поворотов КА по курсу, тангажу и крену, вычисляют компоненты вектора конечного поворота Эйлера и их производные по формулам:

ϕx=C23-C32, ϕy3113, ϕz1221,

- элементы матриц создают моменты управления на корпус КА по соответствующим осям ССК как функции от компонент вектора конечного поворота и поворачивают КА до совмещения связанной и программной систем координат.

На фиг. 4 показан пример программного поворота КА относительно ОСК по курсу ψ(0)=+170°, тангажу ϑ(0)=-80° и крену γ(0)=+95°.

КА выполнил качественный и точный программный поворот. Время переходного процесса составило 1700 с, погрешность программного поворота по углу составила ≤40 угловых секунд, по угловой скорости ≤0,001°/с (фиг. 5).

Таким образом, предлагаемая система астроориентации позволяет выполнять функции приведения КА в ОСК из неориентированного положения и переводить КА в требуемое программное положение относительно ОСК. Обе функции выполняются с высоким качеством переходного процесса и высокой точностью ориентации КА относительно ОСК и ПСК как по углу, так и по угловой скорости.


Способ астроориентации орбитального космического аппарата (варианты)
Способ астроориентации орбитального космического аппарата (варианты)
Способ астроориентации орбитального космического аппарата (варианты)
Способ астроориентации орбитального космического аппарата (варианты)
Способ астроориентации орбитального космического аппарата (варианты)
Способ астроориентации орбитального космического аппарата (варианты)
Способ астроориентации орбитального космического аппарата (варианты)
Способ астроориентации орбитального космического аппарата (варианты)
Способ астроориентации орбитального космического аппарата (варианты)
Способ астроориентации орбитального космического аппарата (варианты)
Способ астроориентации орбитального космического аппарата (варианты)
Способ астроориентации орбитального космического аппарата (варианты)
Способ астроориентации орбитального космического аппарата (варианты)
Способ астроориентации орбитального космического аппарата (варианты)
Способ астроориентации орбитального космического аппарата (варианты)
Источник поступления информации: Роспатент

Показаны записи 141-150 из 161.
22.12.2019
№219.017.f0b2

Топливный отсек летательного аппарата с деформируемым расходным баком

Изобретение относится к ракетной технике, а более конкретно к топливным отсекам. Топливный отсек летательного аппарата (ЛА) с вытеснительной системой подачи топлива включает жестко закрепленную в его полости заборную трубу, расходный бак, нагруженный пружиной клапан, датчика уровня топлива....
Тип: Изобретение
Номер охранного документа: 0002709641
Дата охранного документа: 19.12.2019
24.12.2019
№219.017.f1ac

Топливная система летательного аппарата

Изобретение относится к топливной системе летательных аппаратов. Топливная система летательного аппарата содержит бак, инерционный клапан переключения забора топлива, расходный отсек с перегородкой и трубопроводы (4,5) забора топлива из бака. При этом, инерционный клапан переключения забора...
Тип: Изобретение
Номер охранного документа: 0002709965
Дата охранного документа: 23.12.2019
15.01.2020
№220.017.f500

Способ прицеливания крылатых ракет на самоходной пусковой установке

Изобретение относится к военной технике и может найти применение для прицеливания крылатых ракет (КР), размещаемых на самоходной пусковой установке. Для прицеливания крылатых ракет на самоходной пусковой установке (СПУ) определяют азимутальный угол инерциального блока (ИБ) ракеты по известному...
Тип: Изобретение
Номер охранного документа: 0002710757
Дата охранного документа: 13.01.2020
22.01.2020
№220.017.f8aa

Способ тепловакуумных испытаний космического аппарата

Изобретение относится к наземным испытаниям космических аппаратов (КА), корпус которых выполнен с боковыми гранями из сотопанелей (СП), содержащих аксиальные (вертикальные) и горизонтальные коллекторные тепловые трубы. На СП установлены тепловые эквиваленты или штатные приборы КА. В первом...
Тип: Изобретение
Номер охранного документа: 0002711407
Дата охранного документа: 17.01.2020
31.01.2020
№220.017.fbb3

Способ нейтрализации заправочного оборудования и изделий ракетно-космической техники и мобильный комплекс для его реализации

Изобретение относится к ракетно-космической технике. Мобильный комплекс средств нейтрализации заправочного оборудования и изделий ракетно-космической техники (1) включает в себя агрегат управления и агрегат нейтрализации КРТ. Внутри агрегата управления установлены операторская (3) с пультом...
Тип: Изобретение
Номер охранного документа: 0002712354
Дата охранного документа: 28.01.2020
23.02.2020
№220.018.05d5

Многоразовый беспилотный летательный аппарат в транспортно-пусковом контейнере и способ старта многоразового беспилотного летательного аппарата из транспортно-пускового контейнера

Группа изобретений относится к атмосферным беспилотным летательным аппаратам (БПЛА). Многоразовый БПЛА в транспортно-пусковом контейнере содержит фюзеляж, двигательную установку, стартово-разгонную ступень, складывающиеся крыло и оперение. Каждая из консолей крыла выполнена из телескопически...
Тип: Изобретение
Номер охранного документа: 0002714616
Дата охранного документа: 19.02.2020
27.02.2020
№220.018.0679

Счётчик газа (варианты)

Изобретение относится к приборостроению, предназначено для измерения объема газа, проходящего через трубопровод, и может быть использовано при учете потребления газа индивидуальными потребителями. В счетчике газа струйный акустический генератор датчика расхода выполнен в виде тонкостенных...
Тип: Изобретение
Номер охранного документа: 0002715087
Дата охранного документа: 25.02.2020
28.02.2020
№220.018.06ec

Цифровая система управления пиротехническими средствами

Изобретение относится к инициирующим устройствам для подрыва пиротехнических средств и может быть использовано в системах управления изделий ракетно-космической техники и в авиационных системах. Технический результат - увеличение функциональных возможностей системы, повышение безопасности и...
Тип: Изобретение
Номер охранного документа: 0002715277
Дата охранного документа: 26.02.2020
10.04.2020
№220.018.13f0

Способ обнаружения и поражения воздушной цели ракетным комплексом

Изобретение относится к комплексам противовоздушной обороны мобильных и стационарных объектов. Технический результат – повышение эффективности обнаружения и поражения воздушной цели. Способ обнаружения и поражения воздушной цели ракетным комплексом включает поиск и селекцию воздушной цели - ВЦ...
Тип: Изобретение
Номер охранного документа: 0002718560
Дата охранного документа: 08.04.2020
11.04.2020
№220.018.1415

Способ контроля осевых зазоров между центробежным колесом и корпусом турбонасосного агрегата и устройство для его осуществления

Группа изобретений относится к области машиностроения, а именно к машинам с вращающимся ротором, и может быть использована при создании турбонасосных агрегатов (ТНА) летательных аппаратов. В способе контроля осевых зазоров между центробежным колесом и корпусом ТНА осуществляется приложение к...
Тип: Изобретение
Номер охранного документа: 0002718612
Дата охранного документа: 08.04.2020
Показаны записи 11-12 из 12.
12.07.2018
№218.016.6f7f

Способ восстановления курсовой ориентации космического аппарата с использованием бесплатформенного орбитального гирокомпаса

Изобретение относится к управлению космическим аппаратом (КА) с использованием бесплатформенного орбитального гирокомпаса, прибора ориентации на Землю и гироскопических измерителей угловой скорости. При этом предварительно оценивают положение КА в орбитальной системе координат, а затем...
Тип: Изобретение
Номер охранного документа: 0002661050
Дата охранного документа: 11.07.2018
13.01.2019
№219.016.af6b

Система восстановления курсовой ориентации космического аппарата с использованием орбитального гирокомпаса

Система восстановления курсовой ориентации (ВО) космического аппарата (КА) с использованием орбитального гирокомпаса (ОГК) содержит прибор ориентации по Земле (ПОЗ), блок гироскопических измерителей угловых скоростей (БИУС), навигационно-баллистический блок (НББ), содержащий центральный...
Тип: Изобретение
Номер охранного документа: 0002676844
Дата охранного документа: 11.01.2019
+ добавить свой РИД