×
20.04.2023
223.018.4d26

Результат интеллектуальной деятельности: Устройство для получения наночастиц из газов и паров жидкостей при сверхнизких температурах

Вид РИД

Изобретение

Аннотация: Изобретение относится к области нанотехнологии, а именно предлагаемое устройство позволяет получать частицы малых размеров (наночастицы) из материалов, которые существуют при комнатных температурах в виде газов или паров. Устройство для получения наночастиц из материалов, существующих при комнатной температуре в виде газов и паров жидкостей, включает гелиевый криостат с окнами, трубку конденсации, ампулу сбора наночастиц. В ампуле для сбора наночастиц находится сверхтекучий гелий. Уровень сверхтекучего гелия в ампуле поддерживается крионасосом через трубку подлива. Трубка конденсации выполнена с возможностью подачи примесь-гелиевой смеси. Изобретение позволяет избежать потерь конденсируемого потока и увеличить время сбора наночастиц. 1 ил.

Изобретение относится к области нанотехнологии, а именно, предлагаемое устройство позволяет получать частицы малых размеров (наночастицы) из материалов, существующих при комнатных температурах в виде газов или паров, конденсация которых производится на поверхности сверхтекучей жидкости.

Устройство содержит криостат со сверхтекучим гелием в качестве низкотемпературной подложки для конденсации наночастиц, трубку подачи смеси гелия и требуемой примеси, ампулу для сбора наночастиц, устройство для поддержания уровня сверхтекучего гелия выше конца трубки для создания низкотемпературной подложки для конденсации наночастиц на поверхности сверхтекучего гелия и предотвращения потерь смеси в процессе формирования наночастиц.

Известно устройство и способ получения наночастиц в непрерывном режиме, состоящее из нескольких реакторов с нагреваемой реакционной зоной, с перемещением материала последовательно из реактора в реактор с помощью устройства движения (К. Нуес, А. Воотшч, М. Гроуалле, Ж. Эшвеш, Ф. Дарвас, Патент 2486003). Устройство характеризуется тем, что после каждой нагреваемой реакционной зоны в канале движения материала установлено соответствующее охлаждающее устройство для снижения размера наночастиц в процессе их получения, причем охлаждающие устройства дополнительно выполнены с возможностью прекращения этого процесса получения наночастиц.

Устройство пригодно для синтеза наночастиц из одной, двух или нескольких составляющих, желательно металлов; наночастиц, наноэмульсий, наносуспензий и коллоидных растворов, содержащих биологически активные органические молекулы, а также наночастиц со структурой типа «ядро-оболочка».

В качестве прототипа использовано устройство по получению металлических порошков (Д.С. Белинин, П.С. Кучев, Ю.Д. Щицын, Н.Н. Струков, Патент РФ 2532215). Устройство содержит водоохлаждаемую рабочую камеру с контролируемой атмосферой, установленный в верхней части рабочей камеры плазмотрон для формирования плазменного потока, одно или несколько устройств для подачи пруткового материала в плазменный поток и сборник порошка, установленный в нижней части рабочей камеры. Обеспечивается получение порошков сферической формы при отсутствии слипания частиц. Изобретение относится к области получения металлических порошков с использованием плазменного распыления.

Недостатками прототипа являются невозможность формирования наночастиц из веществ, существующих при комнатных температурах в виде газов или паров и для веществ, разлагаемых при плазменных распылениях (принципиально отличный класс веществ).

Общими чертами описываемых выше устройств и предлагаемого нами устройства - создание атомарного или молекулярного потока примесных атомов в контролируемой атмосфере, конденсируемого на холодную поверхность, что позволяет формировать наночастицы. Применяемая атмосфера позволяет создавать условия, ограничивающие рост частиц.

Технический результат, на достижение которого направлено заявляемое изобретение, заключается в получении наночастиц из материалов, существующих при комнатных температурах в виде газов или паров или веществ, не допускающих нагрева до высоких температур, устройство позволяет избежать потерь конденсируемого вещества и увеличить количество формируемых наночастиц.

Для достижения указанного технического результата использован гелиевый криостат, изготовлена кварцевая трубка конденсации диаметром в 2 см, позволяющая направлять смесь из материала для приготовления наночастиц и газообразного гелия на поверхность сверхтекучего гелия из верхней части криостата, верхний конец трубки конденсации находится при комнатной температуре и соединен с системой подготовки смеси, кварцевая ампула, в которой собираются формируемые наночастицы и уровень сверхтекучего гелия в которой находится выше конца трубки конденсации. Уровень сверхтекучего гелия в ампуле поддерживается с помощью предлагаемой нами системы подлива гелия, состоящей из крионасоса и трубки подлива.

Основные отличия от прототипа заключается в том, что поток атомов образуется не плазменным нагревом металлической мишени в контролируемой атмосфере, что непригодно для данного класса веществ, а готовится заранее смешением газа примеси и гелия. Для создания потока атомов примеси, существующей при комнатной температуре в виде жидкости, применяется барботация жидкости потоком гелиевого газа, концентрация паров жидкости в готовой смеси определяется температурой жидкости. В качестве контролируемой и охлаждающей атмосферы используется гелий. Подготовленная таким образом примесь-гелиевая смесь направляется на холодную поверхность, однако в отличие от прототипа - это поверхность сверхтекучего гелия, что определяется классом веществ, применяемых для формирования наночастиц в данном устройстве. При этом давление паров сверхтекучего гелия удовлетворяет условиям формирования ламинарного потока смеси, охлаждаемой в процессе конденсации за времена порядка десятков секунд. Еще одним принципиальным отличием от прототипа является наличие крионасоса, с помощью которого поддерживается постоянным уровень сверхтекучей жидкости для конденсации всего потока смеси, что устраняет возможность потерь потока в процессе конденсации и увеличивает время накопления наночастиц в ампуле сбора.

На фиг. 1 изображено: 1 - гелиевый криостат с вакуумной изоляцией, 2 - окна, 3 - трубка конденсации, 4 - ампула сбора наночастиц, 5 - штанга, 6 - крионасос, 7 - трубка подлива, 8 - поток примесь-гелиевой смеси, 9 - сконденсированные наночастицы, 10 - уровень гелия в ампуле, 11 - уровень гелия в криостате, 12 - поток подливаемого сверхтекучего гелия, 13 - мелкий порошок, 14 - нагреватель.

В процессе работы устройства поток примесь-гелиевой смеси (8) подается по трубке конденсации (3) на поверхность сверхтекучего гелия в ампуле (4), уровень которой в ампуле поддерживается постоянным (10) выше конца трубки конденсации для предотвращения потерь конденсируемой смеси. Смесь малого количества (порядка нескольких процентов) примеси (например, газов: дейтерия, метана, азота или паров воды, тяжелой воды, спирта и т.д.) и газообразного гелия в процессе движения по трубке конденсации за времена порядка нескольких десятков секунд охлаждается от комнатной температуры до гелиевой и формирует наночастицы (9), при этом атомы гелия препятствуют образованию больших частиц. В процессе охлаждения смеси происходит интенсивное испарение сверхтекучего гелия, что понижает уровень гелия в ампуле. Если уровень гелия будет ниже нижнего конца трубки конденсации процесс конденсации прекращается. Для поддержания постоянным уровня сверхтекучего гелия в ампуле выше конца трубки конденсации нами применен крионасос (6). Принцип работы крионасоса основан на способности сверхтекучей компоненты протекать через малые зазоры между частицами мелкого порошка (13), в то время как нормальная компонента гелия (после нагрева нагревателем (14) в верхней части крионасоса и перехода сверхтекучей компоненты в нормальную) имеет большое гидравлическое сопротивление при движении через порошок. Из-за возросшего давления в крионасосе сверхтекучий гелий поднимается вверх по трубке подлива (8), что позволяет подливать гелий в ампулу (4), несмотря на то, что уровень гелия в криостате (11) может быть существенно ниже, чем в ампуле (10). Применение такого приспособления, как крионансос, увеличивает время накопления наночастиц и увеличивает выход готового продукта.

Устройство для получения наночастиц из материалов, существующих при комнатной температуре в виде газов и паров жидкостей, включающее гелиевый криостат с окнами, трубку конденсации, выполненную с возможностью подачи примесь-гелиевой смеси, ампулу сбора наночастиц, отличающееся тем, что в ампуле для сбора наночастиц находится в сверхтекучий гелий и уровень сверхтекучего гелия в ампуле поддерживается крионасосом через трубку подлива.
Источник поступления информации: Роспатент

Показаны записи 41-50 из 91.
21.03.2019
№219.016.eb97

Электрод для дуговой плавки металлов

Изобретение относится к электроду для дуговой плавки металлов и может быть использовано для плавления металлических порошков, прецизионной сварки тонколистовых металлов и изготовления деталей сложной геометрической формы в среде защитных газов. Электрод для дуговой плавки металлов содержит...
Тип: Изобретение
Номер охранного документа: 0002682553
Дата охранного документа: 19.03.2019
04.04.2019
№219.016.fc6b

Способ обнаружения шумящих в море объектов

Изобретение относится к области гидроакустики и может быть использовано в системах шумопеленгования. Достигаемым техническим результатом изобретения является повышение достоверности обнаружения и длительного поддержания контакта с шумящей движущейся в море целью. Способ включает прием шумовых...
Тип: Изобретение
Номер охранного документа: 0002339050
Дата охранного документа: 20.11.2008
19.04.2019
№219.017.344b

Способ автоматической классификации

Изобретение относится к области гидроакустики и может быть использовано для построения систем классификации объектов, обнаруженных гидролокаторами ближнего действия. Техническим результатом изобретения является обеспечение автоматической классификации объекта. Для этого осуществляют излучение...
Тип: Изобретение
Номер охранного документа: 0002461020
Дата охранного документа: 10.09.2012
18.05.2019
№219.017.57cb

Ключевое устройство (варианты)

Изобретение относится к области усилительной и генераторной техники и может быть использовано в гидротехнических и гидроакустических передающих трактах. Техническим результатом от использования обоих вариантов изобретения является обеспечение номинальной амплитуды импульсных сигналов управления...
Тип: Изобретение
Номер охранного документа: 0002372710
Дата охранного документа: 10.11.2009
24.05.2019
№219.017.5fd8

Способ получения информации о шумящих в море объектах

Изобретение относится к области гидроакустики и может быть использовано в системах шумопеленгования. Способ содержит следующие операции. Принимают шумовые сигналы в горизонтальной и вертикальной плоскостях, осуществляют частотно-временную обработку в каждом пространственном канале наблюдения,...
Тип: Изобретение
Номер охранного документа: 0002353946
Дата охранного документа: 27.04.2009
29.05.2019
№219.017.6829

Способ производства литой мишени для магнетронного распыления из сплава на основе молибдена

Изобретение относится к области металлургии цветных металлов и может быть использовано при производстве распыляемых металлических мишеней для нанесения тонкопленочной металлизации различного назначения в микроэлектронике и других высоких технологиях. Заявлены способ производства литой мишени...
Тип: Изобретение
Номер охранного документа: 0002454484
Дата охранного документа: 27.06.2012
29.05.2019
№219.017.682a

Способ производства литой мишени из сплава на основе тантала для магнетронного распыления

Изобретение относится к области металлургического производства распыляемых металлических мишеней для микроэлектроники, а также к изготовлению интегральных схем и тонкопленочных конденсаторов на основе тантала и его сплавов. Заявлены способ производства литой мишени для магнетронного распыления...
Тип: Изобретение
Номер охранного документа: 0002454483
Дата охранного документа: 27.06.2012
04.06.2019
№219.017.7349

Способ внутриволноводной терагерцовой интерферометрии и сапфировая ячейка для его реализации

Группа изобретений относится к интерферометрии. При осуществлении способа излучение вводят в двухмодовый волновод, часть которого занимает анализируемое вещество, и выводят через фигурную диафрагму, где на расстоянии, превышающем на порядок среднюю длину волны используемого излучения (>10λ),...
Тип: Изобретение
Номер охранного документа: 0002690319
Дата охранного документа: 31.05.2019
09.06.2019
№219.017.7db1

Способ получения составной мишени для распыления из сплава вольфрам-титан-кремний

Изобретение относится к области металлургии, в частности к способам производства распыляемых мишеней. Заявлены способ производства составной мишени для получения пленок магнетронным распылением и мишень, полученная этим способом. Способ включает изготовление диска из слитка поликристаллического...
Тип: Изобретение
Номер охранного документа: 0002454481
Дата охранного документа: 27.06.2012
09.06.2019
№219.017.7db3

Способ получения составной мишени для распыления из сплава вольфрам-титан-рений

Изобретение относится к области металлургии, в частности к способам производства распыляемых мишеней. Заявлены способ производства составной мишени для получения пленок магнетронным распылением и мишень, полученная этим способом. Способ включает изготовление диска из слитка поликристаллического...
Тип: Изобретение
Номер охранного документа: 0002454482
Дата охранного документа: 27.06.2012
Показаны записи 1-4 из 4.
27.10.2013
№216.012.783c

Крионаконечник с сапфировым хладопроводом-облучателем

Изобретение относится к хирургическим инструментам, применяемым для локального замораживания и деструкции выделенных участков биологической ткани, и может быть использовано в общей и детской хирургии, в онкологии, дерматологии, отоларингологии, гинекологии, косметологии. Крионаконечник с...
Тип: Изобретение
Номер охранного документа: 0002496442
Дата охранного документа: 27.10.2013
29.05.2020
№220.018.217a

Способ выращивания слоев алмаза на подложке монокристаллического кремния

Изобретение относится к области выращивания кристаллов и может быть использовано для получения слоев алмаза большой площади на подложках из монокристаллического кремния. Способ выращивания слоев алмаза, включающий нагрев в вакуумной среде в диапазоне температур от 910°С до 1150°С порошка...
Тип: Изобретение
Номер охранного документа: 0002722136
Дата охранного документа: 26.05.2020
20.04.2023
№223.018.4a84

Высоковольтный программируемый стабилизатор напряжения постоянного тока с изменяемой полярностью

Высоковольтный программируемый стабилизатор постоянного напряжения с изменяемой полярностью может быть использован в измерительной технике, а также в автоматизированных системах научных исследований. Сущность: высоковольтный программируемый стабилизатор постоянного напряжения с изменяемой...
Тип: Изобретение
Номер охранного документа: 0002783476
Дата охранного документа: 14.11.2022
20.04.2023
№223.018.4d09

Устройство для измерения малых токов инжектированных зарядов в конденсированных средах

Устройство для измерения малых токов инжектированных зарядов в конденсированных средах предназначено для измерения малых токов ~ 10 А и регистрации их изменения во времени, а также записи результатов измерения на электронный носитель. Устройство содержит преобразователь ток-напряжение,...
Тип: Изобретение
Номер охранного документа: 0002754201
Дата охранного документа: 30.08.2021
+ добавить свой РИД