×
20.04.2023
223.018.4c47

Результат интеллектуальной деятельности: Способ формирования пористого покрытия на рельефной поверхности

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу напыления трехмерных капиллярно-пористых (ТКП) покрытий на предварительно сформированную рельефную поверхность и может быть использовано в инженерной практике для повышения эффективности теплообмена на поверхности нагретых узлов в условиях смены агрегатного состояния хладагента, для формирования поверхностей носителей катализатора и для очистки жидкостей. Способ формирования металлического пористого покрытия на рельефной поверхности металлических деталей, работающих в условиях смены агрегатного состояния хладагента, включает формирование на поверхности детали рельефа путем создания прорезей в двух взаимно перпендикулярных направлениях, при этом в одном из направлений боковые поверхности рельефа наклонены под углами от 50 до 80° к его опорной поверхности, а плазменное покрытие в виде гребней и впадин напыляют под углом 90° к опорной поверхности рельефа. Изобретение направлено на повышение величины нормированной контактной поверхности. 4 пр., 4 ил.

Изобретение относится к области металлургии, а более конкретно к формированию рельефной пористой поверхности плазменным напылением и может быть использовано для повышения эффективности теплообмена на поверхности нагретых деталей и узлов в условиях смены агрегатного состояния хладагента, для формирования поверхностей носителей катализатора и для очистки жидкостей.

Известен способ нанесения пористого покрытия (Патент RU 623944 С1), когда покрытие наносится на базовую поверхность подложки сначала под углом 90°, а на второй стадии с углом меньшим 45° к ней. В этом случае на подложке формируется трехмерное капиллярно-пористое (ТКП) покрытие с бимодальной пористостью от 10 до 60%. Такие покрытия состоят из гребней и впадин с высотой равной толщине покрытия. Основной объем порового пространства этих покрытий составляют впадины с шириной от 50 до 600 мкм. Боковые стенки гребней содержат капилляры с размером менее 10 мкм. Недостатком данного способа напыления является невозможность формирования дополнительного пористого пространства с порами большего размера.

Известен способ плазменного напыления покрытий из проволоки (Рис. 1 позиция 1) на поверхность с локальным рельефом, который сформирован прорезями имеющими профиль типа «ласточкиного хвоста», полученными механической обработкой (Рис. 1 позиция 2) (Hoffmeister Н. W., Schnell С.Mechanical roughing of cylinder bores in light metal crankcases //Production Engineering. - 2008. - T. 2. - №. 4. - C. 365-370. Bobzin K. et al. Development of novel Fe-based coating systems for internal combustion engines //Journal of Thermal Spray Technology. - 2018. - T. 27. - №. 4. - C. 736-745.). Данный рельеф формируется для увеличения прочности соединения изделия с напыленным покрытием до 60 МПа. Глубина рельефа до напыления имеет размер 100-120 мкм. Углы наклона поверхности рельефа у его вершины составляют от 24 до 33°, а у основания 103-110°, относительно опорной поверхности рельефа. Ширина рельефа у основания 130-140 мкм, а ширина канавки между соседними элементами рельефа 170-190 мкм. Недостатком данного способа нанесения покрытий является невозможность формирования капиллярно-пористого покрытия на боковых поверхностях рельефа, так как они не образуют углов менее 45° относительно вектора движения напыляемых частиц.

Известна рельефная поверхность с покрытием, интенсифицирующая теплообмен при смене агрегатного состояния хладоагента (Авторское свидетельство SU1788425 А1). Рельеф формируется в виде ребер (Рис. 2, позиция 1), верхние части боковых поверхностей которых имеют однородное пористое покрытие (Рис. 2, позиция 2) с толщиной, переменной по высоте ребер, с увеличением толщины покрытия вершине ребра, а нижние части боковых поверхностей ребер снабжены микрорельефом (Рис. 2, позиция 3). Боковые поверхности ребер, на которые наносятся покрытия, имеют углы меньшие 90° относительно опорной поверхности рельефа. Опорная поверхность рельефа совпадает с базовой поверхности изделия. Поверхности покрытия на боковых поверхностях ребер перпендикулярны базовой поверхности изделия. В итоге поверхность изделия имеет два вида пористого пространства, бимодальная пористость: пористость покрытия на боковой поверхности ребер и пространство между ребрами.

Этот источник является наиболее близким к способу формирования пористого покрытия на рельефной поверхности для формирования развитой поверхности изделия, его взяли в качестве прототипа.

Способ формирования пористости на рельефной поверхности, реализуемый в прототипе имеет недостатки, пористое покрытие, сформированное таким способом, состоит из равномерно распределенных плотных частиц и пор, а толщина пористого покрытие увеличивается по мере удаления от опорной поверхности рельефа. Такое пористое покрытие имеет небольшую величину контактной поверхности, не более чем в 1,5 раза превышающую площадь опорной поверхности, на которой сформировано покрытие. Это снижает эффективность отвода тепла от изделия. Такая пористая структура недостаточно эффективна, например, в процессе теплообмена, так через такую пористую структуру должен одновременно происходить подвод к изделию жидкого хладагента и обратный выброс газовой фазы из пористого пространства. Создание микрорельефа у основания ребер, требует дополнительной сложной механической обработки.

Задачей изобретения является: создание способа формирования пористого покрытия с большей величиной нормированной контактной поверхности на поверхности с предварительно сформированным рельефом.

Техническим результатом изобретения является: трехмерное капиллярно -пористое (ТКП) покрытие на рельефе, сформированном до напыления и образованном двумя рядами прорезей во взаимно перпендикулярных направлениях, в одном из рядов боковые поверхности наклонены под углами от 50° до 80° к опорной поверхности рельефа. ТКП покрытие состоит из гребней, высота которых равна толщине покрытия, и впадин между ними. У такого покрытия величина нормированной контактной поверхности повышается в 7-14 раз по отношению к опорной поверхности.

Технический результат достигается тем, что рельеф формируется прорезями в двух взаимно перпендикулярных направлениях, в одном из направлений боковые поверхности наклонены под углами от 50° до 80° к опорной поверхности рельефа, а покрытие в виде гребней и впадин напыляют под углом 90° к опорной поверхности рельефа.

Сущность получаемого технического результата заключается в том, что предварительный рельеф формируется рядами взаимно перпендикулярных прорезей (Рис. 3, параметры b и с), в одном из направлений боковые поверхности наклонены под углами от 50° до 80° (Рис. 3, параметр α) к опорной поверхности рельефа (Рис. 3, позиция 1). Процесс напыления ведут при угле 90° между траекторией движения напыляемых частиц и опорной поверхностью рельефа. Угол наклона боковых поверхностей рельефа от 50° до 80° определяет угол соударения напыляемых частиц с боковой поверхностью рельефа 40°-10°. При таких углах соударения за затвердевшими на боковых поверхностях рельефа частицами образуются теневые зоны, куда не могут попасть следующие напыляемые частицы. Из теневых зон формируются впадины ТКП покрытия (Рис. 4, позиция 1), а на уже закрепившихся на боковых поверхностях рельефа частицах осаждаются новые частицы и растут гребни (Рис. 4, позиция 2). Высота гребней и впадин равна толщине покрытия (Рис. 4, параметр δ). В результате пористость в ТКП покрытии формируется за счет объема впадин и капилляров между частицами покрытия, сформированных в боковых стенках гребней (Рис. 4, позиция 3). Впадины служат для подвода жидкого хладагента и удаления паровой фазы. Капилляры удерживают жидкую фазу и таким образом интенсифицируют теплообмен. Количественно рост эффективности теплообмена характеризуется увеличением нормированной контактной поверхности ТКП покрытия (отношения площади поверхности ТКП покрытия контактирующей с хладагентом к площади боковой поверхности рельефа, на который было нанесено покрытие) со значения 1,5 в прототипе и до 7-14 в данном изобретении.

Пример 1. Покрытие из бронзового порошка ПР-БрМц9-2 фракционного состава 20-32 мкм напыляли на латунную трубку с предварительно нанесенным на нее поверхностным рельефом двумя рядами взаимно перпендикулярных прорезей, в одном из которых угол наклона боковых поверхностей к базовой поверхности рельефа α=50°, высота рельефа h=0,1 мм, расстояние между элементами рельефа b=0,1 мм, с=0,5 мм. Отношение h/b=1.

Эффективная мощность плазменной струи 5,6 кВт, расход плазмообразующего газа Ar+10%N2 34 л/мин. На боковых поверхностях рельефа сформировалось ТКП покрытие толщиной 5=0,075 мм. Величина нормированной контактной поверхности ТКП покрытия равна 7.

Пример 2. Покрытие из порошка нержавеющей стали Х18Н25 фракционного состава 32-56 мкм напыляли на медный цилиндр с предварительно нанесенным на него поверхностным рельефом из прорезей в двух взаимно перпендикулярных направлениях, в одном из направлений угол наклона боковых поверхностей к базовой поверхности рельефа α=80°, высота рельефа h=1 мм, расстояние между элементами рельефа b=0,5 мм, с=0,5 мм. Отношение h/b=2. Эффективная мощность плазменной струи 5,6 кВт, расход плазмообразующего газа Ar+10%N2 34 л/мин. На боковых поверхностях рельефа сформировалось пористое покрытие толщиной δ=0,150 мм. Величина нормированной контактной поверхности ТКП покрытия равна 14.

Пример 3. Покрытие из бронзового порошка ПР-БрМц9-2 фракционного состава 20-32 мкм напыляли на алюминиевую трубку с предварительно нанесенным на нее поверхностным рельефом из прорезей в двух взаимно перпендикулярных направлениях, на одном из которых угол наклона боковых поверхностей к базовой поверхности рельефа α=60°, высота рельефа h=3 мм, расстояние между элементами рельефа b=1 мм с=1 мм. Отношение h/b=3. Эффективная мощность плазменной струи 4,8 кВт, расход плазмообразующего газа Ar+10%N2 20 л/мин. На боковых поверхностях рельефа сформировалось пористое покрытие толщиной δ=0,315 мм. Величина нормированной контактной поверхности ТКП покрытия равна 9.

Пример 4. Покрытие из бронзового порошка ПР-БрМц9-2 фракционного состава 71-100 мкм напыляли на латунную трубку с предварительно нанесенным на нее поверхностным рельефом из прорезей в двух взаимно перпендикулярных направлениях, на одном из которых угол наклона боковых поверхности к базовой поверхности рельефа α=75°, высота рельефа h=3,0 мм, расстояние между элементами рельефа b=0,1 мм с=0,5 мм. Отношение h/b=30. Эффективная мощность плазменной струи 8,5 кВт, расход плазмообразующего газа Ar+10%N2 34 л/мин. На боковых поверхностях рельефа сформировалось пористое покрытие толщиной δ=0,075 мм. Величина нормированной контактной поверхности ТКП покрытия равна 12.

Способ формирования металлического пористого покрытия на рельефной поверхности металлических деталей, работающих в условиях смены агрегатного состояния хладагента, включающий плазменное нанесение металлического покрытия на поверхность металлической детали с предварительно нанесенным на нее рельефом, отличающийся тем, что рельеф формируют путем создания прорезей в двух взаимно перпендикулярных направлениях, при этом в одном из направлений боковые поверхности рельефа наклонены под углами от 50 до 80° к его опорной поверхности, а плазменное покрытие в виде гребней и впадин напыляют под углом 90° к опорной поверхности рельефа.
Источник поступления информации: Роспатент

Показаны записи 101-108 из 108.
01.06.2023
№223.018.74a0

Способ получения длинномерных полуфабрикатов из сплавов tinihf с высокотемпературным эффектом памяти формы

Изобретение относится к металлургии, а именно к получению прутков из сплавов с памятью формы (СПФ) на основе никелида титана легированных гафнием, и может быть использовано для изготовления специальных изделий с повышенной температурой эксплуатации для различных отраслей промышленности,...
Тип: Изобретение
Номер охранного документа: 0002771342
Дата охранного документа: 29.04.2022
01.06.2023
№223.018.74c6

Способ упрочнения цилиндрического изделия с покрытием поверхностно-пластическим деформированием

Изобретение относится к области металлургии, а более конкретно к формированию коррозионно- и износостойких покрытий с высокой плотностью и твердостью. Способ упрочнения цилиндрического изделия с покрытием поверхностно-пластическим деформированием включает равномерное перемещение покрытия...
Тип: Изобретение
Номер охранного документа: 0002765559
Дата охранного документа: 01.02.2022
01.06.2023
№223.018.7502

Керамический материал и способ его получения

Изобретение относится к получению материалов на основе диоксида циркония, стабилизированного в тетрагональной форме, которые могут быть использованы для изготовления изделий конструкционного и медицинского назначения, в частности, реставраций ортопедической стоматологии. Керамический материал...
Тип: Изобретение
Номер охранного документа: 0002744546
Дата охранного документа: 11.03.2021
01.06.2023
№223.018.750c

Устройство для получения металлического порошка

Устройство относится к получению металлических порошков. Устройство содержит водоохлаждаемую рабочую камеру с контролируемой атмосферой, установленный в верхней части рабочей камеры плазмотрон для формирования плазменного потока, несколько устройств для подачи пруткового материала в плазменный...
Тип: Изобретение
Номер охранного документа: 0002749403
Дата охранного документа: 09.06.2021
01.06.2023
№223.018.7510

Способ плазменного производства порошков неорганических материалов и устройство для его осуществления

Группа изобретений относится к порошковой металлургии, а именно к способу плазменного получения порошка неорганического материала и устройству для осуществления указанного способа. Проводят плавление исходного неорганического материала в плавильном устройстве и диспергирование струи расплава...
Тип: Изобретение
Номер охранного документа: 0002743474
Дата охранного документа: 18.02.2021
01.06.2023
№223.018.751e

Способ прогнозирования разрушения заготовок в процессе обработки металлов давлением

Изобретение относится к области обработки металлов давлением. Способ прогнозирования разрушения заготовок в процессах обработки металлов давлением основан на использовании компьютерного моделирования в вычислительной среде конечно-элементного анализа и экспериментальной оценки. Проводится...
Тип: Изобретение
Номер охранного документа: 0002748138
Дата охранного документа: 19.05.2021
16.06.2023
№223.018.7b57

Способ получения проволоки из сплава титан-ниобий-тантал для применения в производстве сферического порошка

Изобретение относится к металлургии, в частности к способам изготовления проволоки TiNbTa из биосовместимого сплава для производства сферического порошка. Способ получения проволоки из сплава титан-ниобий-тантал для производства сферического порошка включает выплавку слитков сплава из исходных...
Тип: Изобретение
Номер охранного документа: 0002751065
Дата охранного документа: 07.07.2021
19.06.2023
№223.018.824f

Способ получения мезопористых порошков гидроксиапатита методом химического соосаждения

Изобретение относится к методу получения мезопористых порошков гидроксиапатита, применяемых в катализе. Описан способ получения мезопористых порошков гидроксиапатита методом химического соосаждения, включающий приготовление растворов нитрата кальция и фосфата аммония, перемешивание раствора...
Тип: Изобретение
Номер охранного документа: 0002797213
Дата охранного документа: 31.05.2023
Показаны записи 31-32 из 32.
01.06.2023
№223.018.74c6

Способ упрочнения цилиндрического изделия с покрытием поверхностно-пластическим деформированием

Изобретение относится к области металлургии, а более конкретно к формированию коррозионно- и износостойких покрытий с высокой плотностью и твердостью. Способ упрочнения цилиндрического изделия с покрытием поверхностно-пластическим деформированием включает равномерное перемещение покрытия...
Тип: Изобретение
Номер охранного документа: 0002765559
Дата охранного документа: 01.02.2022
19.06.2023
№223.018.824f

Способ получения мезопористых порошков гидроксиапатита методом химического соосаждения

Изобретение относится к методу получения мезопористых порошков гидроксиапатита, применяемых в катализе. Описан способ получения мезопористых порошков гидроксиапатита методом химического соосаждения, включающий приготовление растворов нитрата кальция и фосфата аммония, перемешивание раствора...
Тип: Изобретение
Номер охранного документа: 0002797213
Дата охранного документа: 31.05.2023
+ добавить свой РИД