×
20.04.2023
223.018.4ad8

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ВОЗДЕЙСТВИЯ НЕВЕСОМОСТИ НА ДВИГАТЕЛЬНУЮ АКТИВНОСТЬ НАХОДЯЩЕГОСЯ НА БОРТУ КОСМИЧЕСКОГО АППАРАТА ОПЕРАТОРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к медицине, а именно к способу определения воздействия невесомости на двигательную активность находящегося на борту космического аппарата оператора. При исполнении способа измеряют в наземных условиях биомеханические параметры двигательной активности оператора, включая углы в суставах. Сравнивают значения биомеханических параметров. Определяют воздействие невесомости на биомеханику движений оператора с учетом результатов сравнения. Дополнительно осуществляют измерение биомеханических параметров двигательной активности оператора в наземных условиях в процессе выполнения оператором локомоторных движений с использованием заданного положения опорной поверхности относительно оператора и интерьера. При этом измеряют углы в суставах между последовательно соединенными сегментами тела оператора, начиная с сегмента, ближайшего к опорной поверхности, расстояние от опорной поверхности до конечной точки ближайшего к опорной поверхности сегмента тела оператора, длину проекции на опорную поверхность перемещения конечной точки ближайшего к опорной поверхности сегмента тела оператора и продолжительность выполнения движения. Регистрируют биомеханическую структуру выполненных оператором локомоторных движений, включая последовательность и длительность интервалов движений, измеряют упомянутые угловые, линейные и временные величины биомеханических параметров в космическом полете в процессе выполнения оператором локомоторных движений, биомеханическая структура которых идентична зарегистрированной, с использованием заданного положения опорной поверхности относительно оператора. Результат воздействия невесомости на двигательную активность находящегося на борту космического аппарата оператора определяют по результатам сравнения значений величин биомеханических параметров, определенных в наземных условиях, и значений данных величин, определенных в космическом полете. Обеспечивается повышение точности определения воздействия невесомости на биомеханику движений оператора с учетом первичных наземных и последующих бортовых измерений анализируемых величин биомеханических параметров. 1 з.п. ф-лы.

Изобретение относится к области космической медицины, а именно, к способам определения влияния факторов космического полета на состояние человека (оператора).

Система управления движениями человека организована применительно к действию гравитационных сил, поэтому пониженная гравитация в условиях космического полета оказывает влияние на данную систему.

Известны исследования, проведенные в невесомости и в моделирующих ее условиях, которые выявили широкий спектр изменений в состоянии различных звеньев двигательной системы оператора, главным образом, мышечного аппарата (атония, атрофия) (см. Гевлич Г.Н., Григорьева Л.С., Бойко М.И., Козловская И.Б. Оценка тонуса скелетных мышц методом регистрации поперечной жесткости. - Космическая биология и авиакосмическая медицина. 1983. - №5. - С. 86-89; Григорьева Л.С., Козловская И.Б. Влияние 7-суточной опорной разгрузки на скоростно-силовые свойства скелетных мышц человека // Космическая биология и авиакосмическая медицина. 1983, Т. 17, №4, С. 21-25) и ведущих сенсорных входов - опорного, мышечного, вестибулярного (см. Edgerton V.R., McCall G.E., Hodson J.A. et al. Sensorimotor adaptation to microgravity in humans // J. Experim. Biol. 2001. №204. P. 3217; HoMick J.L., Reschke M.F. Postural equilibrium following exposure to weightless space flight // Acta Otolaryngology. 1997. V. 83. P. 455; Kornilova L.N. Vestibular function and sensory interaction in altered gravity // Adv. Space Biol. Med. 1997. V. 6. P. 275).

Выявленный широкий спектр изменений в состоянии различных звеньев двигательной системы оператора оказывает неблагоприятное влияние на работу систем двигательного управления, что экспериментально показано в работах: Григорьев А.И., Козловская И.Б., Шенкман Б.С.Роль опорной афферентации в организации тонической мышечной системы // Рос.физиол. журн. им. И.М. Сеченова. 2004. Т. 90. №5. С. 508; Козловская И.Б., Григорьева Л.С., Гевлич Г.И. Сравнительный анализ влияния невесомости и ее моделирования на скоростно-силовые свойства и тонус скелетных мышц человека // Космическая биология и авиакосмическая медицина. 1984. Т. 18. №6. С. 22.

Также данные изменения обусловливают развитие наблюдающихся в этих условиях нарушения регуляции позы, точностного управления движениями и локомоций, описанные в работах: Гурфинкель B.C., Пальцев В.И., Фельдман А.Г., Эльнер A.M. Изменения некоторых двигательных функций человека после длительной гипокинезии: В книге: Проблемы косм, биол., 1969, Т. 13, Наука, Москва, С. 148-161; Homick J.L., Reschke M.F. Postural equilibrium following exposure to weightless space flight // Acta Otolaryngology. 1997. V. 83. P. 455; Корво P.З., Козловская И.Б., Крейдич Ю.В. Влияние 7-ми суточного космического полета на структуру и функцию опорно-двигательного аппарата человека // Космическая биология и авиакосмическая медицина. 1983. Т. 17. №2. С.37; Bloomberg J.J., Peters В.Т., Huebner W.P. et al. Locomotor head-trunk coordinationon strategies following space flight // J. Vestib. Res. 1997. №7. P. 161; Paloski W.H. Adaptive Sensory-Motor Processes Disturb Balance Control After Spaceflight // Biomechanics and Neural Control of Posture and Movement / Eds. Winter D., Crago P. New York: Springer Verlag, Inc., 2000. P. 292; Зациорский B.M., Сирота М.Г., Прилуцкий Б.И. и др. Биомеханика тела и движений людей, подвергшихся 120-суточной антиортостатической гипокинезии // Космич. биология и медицина. 1985. №5. С. 23.

В работах сотрудников ГНЦ РФ - ИМБП РАН Григорьев А.И., Козловская И.Б., Шенкман Б.С.Роль опорной афферентации в организации тонической мышечной системы // Рос.физиол. журн. им. И.М. Сеченова. 2004. Т. 90. №5. С. 508-521; Мельник К.А., Артамонов А.А., Миллер Т.Ф., Воронов А.В. Влияние механической стимуляции опорных зон стоп во время 7-суточной сухой иммерсии на кинематические параметры локомоций человека // Авиакосмич. и экологич. медицина. 2006. Т. 40. №5. С. 61-65; Киренская А.В., Козловская И.Б., Сирота М.Г. Влияние иммерсионной гипокинезии на характеристики ритмической активности двигательных единиц камбаловидной мышцы // Физиология человека. 1986. Т. 12. №1. С.617; Kozlovskaya I.B., Sayenko I.V., Sayenko D.G., Miller T.F., Khusnutdinova D.R. and Melnik K.A. Role of support afferentation in control of the tonic muscle activity // Acta Astronautica, 2007, V.60, N 4-7, pp.285-295; Tomilovskaya E, Shigueva T, Sayenko D, Rukavishnikov I and Kozlovskaya I (2019) Dry Immersion as a Ground-Based Model of Microgravity Physiological Effects. Front. Physiol. 10:284 выявлена важная роль опорной разгрузки в развитии двигательных нарушений в невесомости.

Показано, что опорная афферентация является триггером активности тонической мышечной системы, и устранение ее в условиях невесомости запускает широкий спектр изменений в деятельности и состоянии различных двигательных механизмов и структур (изменений по природе адаптивных - к невесомости, но затрудняющих функционирование двигательной системы на Земле после пребывания в невесомости).

Изменения в деятельности и состоянии различных звеньев двигательной системы оператора могут вносить вклад в изменения локомоторных функций (см. Мельник К.А., Артамонов А.А., Миллер Т.Ф., Воронов А.В. Влияние механической стимуляции опорных зон стоп во время 7-суточной сухой иммерсии на кинематические параметры локомоций человека // Авиакосмич. и экологич. медицина. 2006. Т. 40. №5. С. 61-65).

Длительное пребывание в условиях микрогравитации существенно изменяет биомеханические свойства двигательного аппарата ног. Снижение силы мышц-экстензоров ног, сформированные в условиях микрогравитации координационные навыки, нарушение вертикальной устойчивости сопровождаются определенными изменениями в кинематических характеристиках и электрической активности мышц при выполнении локомоций.

После космических полетов у космонавтов выявляются глубокие нарушения координации движений (см. Bloomberg J.J., Peters В.Т., Huebner W.P. et al. Locomotor head-trunk coordinationon strategies following space flight // J. Vestib. Res. 1997. №7. P. 161).

Наиболее выраженными из них в первые дни после приземления являются изменения кинематики локомоций, описанные в работе: Шпаков А.В., Воронов А.В., Фомина Е.В., Лысова Н.Ю., Чернова М.В., Козловская И.Б. Сравнительный анализ эффективности различных режимов локомоторных тренировок в длительных космических полетах по данным биомеханических и электромиографических характеристик ходьбы // Физиология человека. 2013. Т. 39. №2. С. 60.

Результаты исследований, выполненных после относительно коротких экспедиций (от 3 до 16 суток), показали, что походка членов экипажа после пребывания в невесомости отличается выраженной неустойчивостью: космонавты ходят неуверенно, переваливаясь с одной ноги на другую, периодически разводя руки в стороны для сохранения равновесия, при этом энергетическая стоимость ходьбы значительно возрастает, на что указывает быстрая утомляемость, высокая частота сердцебиений и одышка.

Локомоторные нарушения после длительных полетов еще более глубоки: в первые часы после приземления космонавты неспособны на самостоятельное передвижение, что составляет особую опасность в случае необходимости срочного покидания корабля. При этом, если после коротких полетов указанные расстройства нивелируются к 48-72 часам после приземления, то после полетов длительных восстановление локомоторных способностей длится дни и недели (Чекирда И.Ф., Еремин А.В. Динамика цикличных и ацикличных локомоций космонавтов после 63-дневного космического полета // Космическая биология и медицина. 1974, Т. 8, №4, С. 9-13).

Сравнение биомеханических параметров ходьбы в период реадаптации к условиям земной гравитации после приземления с таковыми до полета позволяет определить "слабые" элементы биомеханической системы нижних конечностей - мышечные группы, проявляющие в условиях микрогравитации наибольшие изменения и определяющие необходимые характеристики физических упражнений в полетах на борту Международной космической станции (МКС).

Особенности биомеханики локомоций при выполнении тренировок на борту приведены, например, в работе Saveko А.А., (…), Tomilovskaya E.S., Kozlovskaya I.B., Foot-ground reaction force during long-term space flight and after it: walking in active treadmill mode, Gait & posture, 2020, 76, pp.382-388, DOI: 10.1016/j.gaitpost.2019.12.033.

При выполнении указанных исследований использовался, в том числе, способ определения воздействия фактора невесомости на оператора, включающий регистрацию и последующий анализ электромиографической (ЭМГ) активности мышц ног при выполнении оператором локомоторных движений, определение по ЭМГ-активности мышц ног параметров, характеризующих их состояние, сопоставление параметров, определенных по результатам различных сеансов измерений и определение воздействия невесомости на оператора по результатам сопоставления.

Например, в исследованиях, представленных в статях Шпаков А.В., Воронов А.В., Фомина Е.В., Лысова Н.Ю., Чернова М.В., Козловская И.Б. Сравнительный анализ эффективности различных режимов локомоторных тренировок в длительных космических полетах по данным биомеханических и электромиографических характеристик ходьбы // Физиология человека. 2013, том 39, №2, с. 60-69; Фомина Е.В., Савинкина А.О., Лысова Н.Ю. Эффективность локомоторных тренировок на борту международной космической станции в зависимости от индивидуальных особенностей величин опорных реакций // Авиакосмическая и экологическая медицина. 2017. Т. 51. №7. С. 48-52, перед и после полета космонавтов - операторов в космос в наземных условиях выполнялось измерение ЭМГ активности мышц голени флексора (m. tibialis anterior) и экстензоров (m. gastrocnemius medialis, m.soleus). Конечным параметром при обработке ЭМГ характеристик локомоций являлись площадь огибающей электромиограммы мышц голени и электромиографическая стоимость, которая определялась величиной максимальной амплитуды ЭМГ, нормализованной на время двойного шага. В результате статистической обработки результатов исследований методом описательной статистики в каждой группе операторов вычислялись средние значения и их стандартные ошибки. Достоверности различий пред- и послеполетных показателей определяли и использованием непараметрического критерия Вилкоксона. Для выявления статистически значимых различий между группами использовали непараметрический критерий Манна-Уитни.

Также известен способ определения воздействия фактора невесомости на двигательную активность оператора, описанный в статье Шпаков А.В., Артамонов А.А., Воронов А.В., Мельник К.А. Влияние иммерсионной гипокинезии: кинематические и электромиографические характеристики локомоций человека // Авиакосмич. и экологич. медицина. 2008. Т. 42. №5. С. 24 (прототип), включающий выполнение видеосъемки оператора, выполняющего локомоторные движения в условиях наземного моделирования, определение по видеоинформации, полученной в результате видеосъемок, биомеханических параметров - углов и угловых скоростей в суставах, сопоставление параметров, определенных по результатам различных сеансов видеосъемки, и определение воздействия фактора невесомости на оператора по результатам сопоставления. Для моделирования / имитации физиологических эффектов микрогравитации используют модель "сухой" иммерсии, по условиям которой испытуемые погружаются в воду, но не соприкасаются с ней, будучи отделенными от воды водонепроницаемой свободно плавающей тканью, при этом фоновое обследование проводят за несколько суток до иммерсии.

Недостаток способа-прототипа связан с тем, что он не позволяет определить воздействия невесомости на оператора непосредственно в ходе реализации космического полета.

Задачей, на решение которой направлено настоящее изобретение, является обеспечение высокоточного определения воздействия невесомости на биомеханику движений оператора.

Технический результат, достигаемый при осуществлении настоящего изобретения, заключается в повышении точности определения воздействия невесомости на биомеханику движений оператора с учетом первичных наземных и последующих бортовых измерений анализируемых величин биомеханических параметров.

Технический результат достигается тем, что в способе определения воздействия невесомости на двигательную активность находящегося на борту космического аппарата оператора, включающем измерение в наземных условиях биомеханических параметров двигательной активности оператора, включая углы в суставах, сравнение значений биомеханических параметров и определение воздействия невесомости на биомеханику движений оператора с учетом результатов сравнения, дополнительно измерение биомеханических параметров двигательной активности оператора в наземных условиях осуществляют в процессе выполнения оператором локомоторных движений с использованием заданного положения опорной поверхности относительно оператора и интерьера, при этом измеряют углы в суставах между последовательно соединенными сегментами тела оператора, начиная с сегмента, ближайшего к опорной поверхности, расстояние от опорной поверхности до конечной точки ближайшего к опорной поверхности сегмента тела оператора, длину проекции на опорную поверхность перемещения конечной точки ближайшего к опорной поверхности сегмента тела оператора и продолжительность выполнения движения, регистрируют биомеханическую структуру выполненных оператором локомоторных движений, включая последовательность и длительность интервалов движений, измеряют упомянутые угловые, линейные и временные величины биомеханических параметров в космическом полете в процессе выполнения оператором локомоторных движений, биомеханическая структура которых идентична зарегистрированной, с использованием заданного положения опорной поверхности относительно оператора, а результат воздействия невесомости на двигательную активность находящегося на борту космического аппарата оператора определяют по результатам сравнения значений упомянутых величин биомеханических параметров, определенных в наземных условиях, и значений данных величин, определенных в космическом полете.

Измерения биомеханических параметров в ходе выполнения оператором локомоторных движений в наземных условиях и в космическом полете предлагается осуществлять по видеоинформации, полученной в результате непрерывной съемки оператора аппаратурой, жестко установленной относительно наземного интерьера и относительно корпуса космического аппарата, при этом для сегментов тела оператора, оканчивающихся в суставах с измеряемыми углами, в процессе выполнении съемок значение угла между продольной осью сегмента и не менее чем одной из осей визирования съемочной аппаратуры превышает заданное значение.

Поясним предложенные в способе действия.

В предложенном техническом решении измеряют биомеханические параметры двигательной активности оператора в наземных условиях в процессе выполнения оператором локомоторных движений с использованием заданного положения опорной поверхности относительно оператора и наземного интерьера.

В состав измеряемых биомеханических параметров входят следующие измеряемые величины: углы в суставах между последовательно соединенными сегментами тела оператора, начиная с сегмента, ближайшего к опорной поверхности; расстояние от опорной поверхности до конечной точки ближайшего к опорной поверхности сегмента тела оператора; длина проекции на опорную поверхность перемещения конечной точки ближайшего к опорной поверхности сегмента тела оператора; продолжительность выполнения движения.

В качестве задаваемого положения опорной поверхности относительно оператора и наземного интерьера задается такое их относительное расположение, которое может быть воссоздано в бортовых условиях в интерьере герметичного отсека космического корабля.

Например, в качестве выполняемых оператором локомоторных движений может использоваться ходьба по опорной поверхности (например, на беговой дорожке) с задаваемой скоростью (например, в качестве стандартной скорости ходьбы можно использовать значение скорости в пределах 3,5÷4,0 км/час). Темп движений может задаваться метрономом: например, оператор в процессе выполнения движений проходит задаваемое расстояние приблизительно за задаваемое время, чем достигается максимально возможное постоянство линейной скорости перемещения общего центра масс тела оператора. В этом случае ближайшим к опорной поверхности сегментом тела оператора является стопа оператора, а конечной точкой ближайшего к опорной поверхности сегмента тела оператора является носок стопы, а измеряемыми углами в суставах являются углы в голеностопном, коленном, тазобедренном суставах.

Измерения упомянутых угловых, линейных и временной величин биомеханических параметров на временных интервалах выполнения оператором локомоторных движений в наземных условиях предлагается осуществлять по видеоинформации, полученной в результате непрерывной съемки оператора аппаратурой, жестко установленной относительно наземного интерьера.

Для определения по видеоинформации перечисленных угловых и линейных величин биомеханических параметров требуется обеспечить такой ракурс съемки (т.е. так разместить съемочную аппаратуру относительно наземного интерьера), чтобы на получаемых снимках/кадрах могли быть с необходимой точностью определены положения продольных осей необходимых сегментов тела оператора - сегментов тела оператора, оканчивающихся в упомянутых суставах с измеряемыми углами (в суставах, углы в которых измеряют, - в тазобедренном, коленном, голеностопном).

Для того, чтобы положения продольных осей данных сегментов тела оператора с необходимой точностью могли быть определены на получаемых снимках/кадрах, съемочную аппаратуру относительно наземного интерьера размещают таким образом, что для сегментов тела оператора, оканчивающихся в суставах с измеряемыми углами, для не менее чем одной из камер съемочной аппаратуры значение угла, под которым с данной камеры виден отрезок, соединяющий лежащие на продольной оси сегмента его крайние точки, превышает величину угловой разрешающей способности данной камеры, что формализуется, например, следующим образом:

для i-го сегмента тела оператора (обозначаем {i} - множество, состоящее из сегментов тела оператора, оканчивающихся в упомянутых суставах с измеряемыми углами (тазобедренном, коленном, голеностопном) всегда существует j-ая камера съемочной аппаратуры такая, что

где εij - текущие значения в процессе выполнении съемок угла, под которым с j-ой камеры виден отрезок, соединяющий крайние точки i-го сегмента тела оператора, лежащие на продольной оси данного сегмента;

- величина угловой разрешающей способности j-ой камеры (минимальный угол между центрами соседних ячеек/точек снимка); при этом максимальное значение угла между осью чувствительности/визирования данной камеры и направлением от камеры на крайнюю точку сегмента тела оператора, лежащую на продольной оси сегмента, менее угла полураствора поля зрения камеры

где λkij, k=1,2 - углы между осью чувствительности/визирования j-ой камеры и направлением от j-ой камеры на крайние точки i-го сегмента тела оператора, лежащие на продольной оси i-го сегмента;

- угол полураствора поля зрения j-ой камеры.

Например, с использованием декартовой системы координат OXYZ с центром в центре камеры и осью Z, направленной по оси чувствительности/визирования камеры, величина εij определяется соотношением

где (δkij, αkij), k=l,2 - углы восхождения и склонения направлений от j-ой камеры на крайние точки i-го сегмента тела оператора, лежащие на продольной оси данного сегмента, заданные в указанной декартовой системе координат OXYZ, а условие (2) записывается в виде условия

Данное требование к размещению съемочной аппаратуры, задающее возможность определения на получаемых снимках/кадрах положений продольных осей необходимых сегментов тела оператора, может быть также формализовано условием, что для сегментов тела оператора, оканчивающихся в упомянутых суставах с измеряемыми углами (тазобедренном, коленном, голеностопном), в процессе выполнении съемок значение угла между продольной осью сегмента и не менее чем одной из осей визирования съемочной аппаратуры превышает заданное значение:

для i-го сегмента тела оператора всегда существует j-ая камера съемочной аппаратуры такая, что

где βij - текущие значения в процессе выполнении съемок угла между продольной осью i-го сегмента тела оператора и осью визирования j-ой камеры съемочной аппаратуры, βij≤90°;

- задаваемое фиксированное значение угла между продольной осью i-го сегмента тела оператора и осью визирования j-ой камеры съемочной аппаратуры, определяемое (с учетом угловой разрешающей способности j-ой камеры и размеров i-го сегмента тела оператора) из условия, что при значениях угла между продольной осью сегмента тела оператора и осью визирования камеры съемочной аппаратуры βij, превышающих значение , положение продольной оси данного сегмента тела оператора может быть с необходимой точностью определено на снимке/кадре, полученном данной камерой съемочной аппаратуры.

Для облегчения задачи обработки видеоизображений могут быть использованы специальные маркеры, закрепляемые на теле оператора. Маркеры, например, могут быть установлены следующим образом: маркер тазобедренного сустава - в области проекции наиболее выступающей части большого вертела; маркер коленного сустава - в точке, находящейся на задаваемом расстоянии (например, 2 см) выше латеральной суставной щели; маркер голеностопного сустава совпадает с нижним краем латеральной лодыжки; маркер дистальной части стопы - в области головки пятой плюсневой кости.

Регистрируют биомеханическую структуру локомоторных движений, выполненных оператором при измерении биомеханических параметров в наземных условиях с использованием заданного положения опорной поверхности относительно оператора и интерьера. Регистрация биомеханической структуры локомоторных движений включает фиксацию последовательности и длительности интервалов движений (с характеристикой их интенсивности) - т.е. фиксацию расписания чередования данных интервалов.

Далее при нахождении оператора на КА непосредственно в ходе реализации космического полета измеряют упомянутые величины биомеханических параметров в процессе выполнения оператором локомоторных движений, биомеханическая структура которых идентична упомянутой зарегистрированной структуре, с использованием заданного положения опорной поверхности относительно оператора.

Задаваемое положение опорной поверхности относительно оператора при выполнении локомоций определяет не жесткую фиксацию взаимного положения опорной поверхности и оператора. Например, бортовая бегущая дорожка как правило совмещена с системой виброизоляции и «плавает» относительно корпуса КА при выполнении движений, при этом к самой дорожке оператор пристегивается с помощью тренировочно-нагрузочного костюма (ТНК), который представляет собой специальную сбрую и тяжи. В этом случае задаваемое положение опорной поверхности относительно оператора определяет, например, среднее положение оператора, пристегнутого с помощью ТНК к беговой дорожке, перед началом выполнения движений.

Например, при использовании в качестве локомоторных движений, выполняемых оператором в процессе измерения биомеханических параметров в наземных условиях, ходьбы по опорной поверхности, в качестве локомоторных движений, выполняемых оператором в процессе измерения биомеханических параметров в условиях космического полета, также необходимо использовать ходьбу по опорной поверхности (например, на бортовой беговой дорожке) с задаваемой зарегистрированной последовательностью и длительностью интервалов движений (с характеристикой интенсивности выполняемых движений, которая в данном случае характеризуется скоростью выполнения движений).

Измерения упомянутых угловых, линейных и временной величин биомеханических параметров в ходе выполнения оператором локомоторных движений в космическом полете осуществляют, например, по видеоинформации, полученной в результате непрерывной съемки оператора аппаратурой, жестко установленной относительно корпуса КА. В качестве съемочной аппаратуры может быть использована как имеющаяся на борту пилотируемого КА штатная, так и специально доставленная аппаратура видеорегистрации (например, камкордеры Sony HVR, GoPro и т.п.).

Аналогично выполнению наземных съемок, при выполнении бортовых съемок для обеспечения определения по видеоинформации искомых угловых и линейных величин биомеханических параметров требуется обеспечить такой ракурс съемки (т.е. так разместить съемочную аппаратуру относительно КА), чтобы на получаемых снимках/кадрах могли быть с необходимой точностью определены положения продольных осей необходимых сегментов тела оператора.

Для того, чтобы положения продольных осей необходимых сегментов тела оператора с необходимой точностью могли быть определены на получаемых снимках/кадрах, съемочную аппаратуру на КА размещают таким образом, что для сегментов тела оператора, оканчивающихся в упомянутых суставах с измеряемыми углами (тазобедренном, коленном, голеностопном), для не менее чем одной из камер съемочной аппаратуры значение угла, под которым с данной камеры виден отрезок, соединяющий лежащие на продольной оси сегмента его крайние точки, превышает величину угловой разрешающей способности данной камеры (выполнение данного условия формализуется соотношением (1)), при этом максимальное значение угла между осью чувствительности/визирования данной камеры и направлением от камеры на крайнюю точку сегмента тела оператора, лежащую на продольной оси сегмента, менее угла полураствора поля зрения камеры (выполнение данного условия формализуется соотношением (2)).

Данное требование к размещению съемочной аппаратуры, задающее возможность определения на получаемых снимках/кадрах положения продольных осей необходимых сегментов тела оператора, может быть также формализовано условием, что для сегментов тела оператора, оканчивающихся в упомянутых суставах с измеряемыми углами (тазобедренном, коленном, голеностопном), в процессе выполнении съемок значение угла между продольной осью сегмента и не менее чем одной из осей визирования съемочной аппаратуры превышает заданное значение (выполнение данного условия формализуется соотношением (3)).

Для облегчения задачи обработки видеоизображений также могут быть использованы специальные маркеры, закрепляемые на теле космонавта-оператора по методике, аналогичной методике установки маркеров при наземных съемках для выполнения наземных измерений биомеханических параметров.

Выполняют сравнение полученных измеренных значений упомянутых угловых, линейных и временной величин биомеханических параметров, определенных в наземных условиях, и полученных измеренных значений данных величин биомеханических параметров, определенных в условиях космического полета.

Результат воздействия невесомости на двигательную активность находящегося на борту космического аппарата оператора определяют по итогам выполненного сравнения указанных значений биомеханических параметров.

Опишем технический эффект предлагаемого изобретения.

Предлагаемое техническое решение обеспечивает повышение точности определения воздействия невесомости на биомеханику движений оператора за счет использования предложенного максимально информативного состава анализируемых величин биомеханических параметров с учетом первичных наземных измерений предложенных величин биомеханических параметров и последующих бортовых измерений предложенных величин биомеханических параметров, выполненных непосредственно в ходе космического полета.

Высокоточное определение воздействия невесомости на биомеханику движений оператора предлагается выполнять по результатам анализа изменения следующих величин биомеханических параметров: углы в суставах между последовательно соединенными сегментами тела оператора, начиная с сегмента, ближайшего к опорной поверхности; расстояние от опорной поверхности до конечной точки ближайшего к опорной поверхности сегмента тела оператора; длина проекции на опорную поверхность перемещения конечной точки ближайшего к опорной поверхности сегмента тела оператора; продолжительность выполнения движения.

Измерение предложенных угловых, линейных и временных величин биомеханических параметров на временных интервалах выполнения оператором локомоторных движений в наземных условиях и в условиях космического полета предлагается осуществлять по видеоинформации, полученной в результате непрерывной съемки оператора (в процессе выполнения локомоторных движений) съемочной аппаратурой, жестко установленной относительно наземного интерьера и относительно корпуса КА.

Размещение съемочной аппаратуры, используемой для реализации наземных и бортовых съемок, согласно выполнению соотношений (1), (2) и/или соотношения (3), обеспечивает гарантированное получение искомой видеоинформации - информации, зарегистрированной съемочной аппаратурой под таким ракурсом относительно снимаемых сегментов тела оператора, который обеспечивает возможность определения предложенных величин биомеханических параметров (при размещении съемочной аппаратуры согласно соотношениям (3) задаваемые значения углов между продольной осью i-го сегмента тела оператора и осью визирования j-ой камеры съемочной аппаратуры предварительно определяются и задаются такими, что описанное соотношениями (3) расположение съемочной аппаратуры обеспечивает гарантированное получение искомой видеоинформации).

Таким образом, предложенное расположение съемочной аппаратуры, используемой для реализации наземных и бортовых съемок, обеспечивает гарантированное получение видеоинформации, необходимой и достаточной для определения предложенных величин биомеханических параметров.

В настоящее время технически все готово для реализации предложенного способа. Промышленное исполнение существенных признаков, характеризующих изобретение, не является сложным и может быть выполнено с использованием существующих технических средств.

Источник поступления информации: Роспатент

Показаны записи 91-92 из 92.
17.06.2023
№223.018.7ee6

Устройство управления размещенной на космическом корабле переносной аппаратурой наблюдения

Изобретение относится к аэрокосмической технике. Устройство управления размещенной на космическом корабле (КК) переносной аппаратурой наблюдения (ПАН) содержит узел разъемного крепления ПАН и узел съемной установки устройства управления на иллюминатор (УСУУИ). Узел разъемного крепления снабжен...
Тип: Изобретение
Номер охранного документа: 0002772766
Дата охранного документа: 25.05.2022
17.06.2023
№223.018.7efe

Телескопическое стреловое устройство

Изобретение относится к космической технике. Телескопическое стреловое устройство содержит телескопическую стрелу из секций, вставленных одна в другую, а также механизм выдвижения и складывания. Механизм выдвижения и складывания прикреплен к фланцу корневой секции и выполнен в виде...
Тип: Изобретение
Номер охранного документа: 0002772764
Дата охранного документа: 25.05.2022
Показаны записи 91-100 из 130.
08.04.2019
№219.016.fe47

Способ управления космическим аппаратом с имеющими одну степень свободы солнечными батареями

Изобретение относится к управлению ориентацией космического аппарата (КА) и установленных на нём солнечных батарей (СБ) с осью вращения (Y), перпендикулярной продольной оси (X) КА. По высоте орбиты определяют диапазон витков, когда угол () между направлением (S) на Солнце и плоскостью (4)...
Тип: Изобретение
Номер охранного документа: 0002684241
Дата охранного документа: 04.04.2019
29.04.2019
№219.017.44c6

Способ определения магнитной помехи на космическом аппарате в полете

Изобретение относится к управлению полетом космических аппаратов с использованием данных о магнитном поле Земли (МПЗ). Способ включает измерение векторов напряженности МПЗ и направления на выбранную звезду (в оптическом диапазоне). Последний вектор должен быть отклонен от нормали к плоскости...
Тип: Изобретение
Номер охранного документа: 0002408507
Дата охранного документа: 10.01.2011
29.04.2019
№219.017.44cf

Способ определения трехосной ориентации космического аппарата

Изобретение относится к управлению ориентацией космического аппарата (КА), оснащенного магнитометром для определения вектора напряженности магнитного поля Земли (МПЗ). Способ включает измерение напряженности МПЗ и параметров орбиты КА. При этом стабилизируют КА в инерциальном пространстве,...
Тип: Изобретение
Номер охранного документа: 0002408508
Дата охранного документа: 10.01.2011
09.05.2019
№219.017.4bfc

Способ поддержания трехосной ориентации космического аппарата с силовыми гироскопами и целевой нагрузкой

Изобретение относится к управлению ориентацией космического аппарата (КА). Предлагаемый способ включает математическое моделирование орбиты КА, измерение кинетического момента силовых гироскопов и - на определенных полетных интервалах - параметров углового движения КА. По этим измерениям...
Тип: Изобретение
Номер охранного документа: 0002341419
Дата охранного документа: 20.12.2008
09.05.2019
№219.017.4e4e

Способ управления положением солнечных батарей космического аппарата и система для его осуществления

Изобретения относятся к энергоснабжению космических аппаратов (КА). Предлагаемый способ включает разворот панелей солнечных батарей (СБ) в рабочее положение, когда нормаль к освещенной поверхности СБ совмещена с плоскостью, образуемой осью вращения СБ и направлением на Солнце. При этом...
Тип: Изобретение
Номер охранного документа: 0002325311
Дата охранного документа: 27.05.2008
09.05.2019
№219.017.506a

Планшет для выбора объектов наблюдения с орбитального космического аппарата

Планшет для выбора объектов наблюдения с орбитального космического аппарата (КА) относится к космической технике. Планшет для выбора объектов наблюдения с орбитального КА включает пластину с картой земной поверхности, полупрозрачную пластину, установленную поверх карты планеты, и средство...
Тип: Изобретение
Номер охранного документа: 0002463559
Дата охранного документа: 10.10.2012
29.05.2019
№219.017.656a

Способ определения стока поглощаемого из атмосферы углерода древесной растительностью

Изобретение относится к мониторингу природных объектов при помощи космических средств и может найти применение в экологических целях. Сущность: способ состоит в зондировании лесов космическими средствами, получении изображений лесов в виде матриц элементов зависимости функции яркости сигнала от...
Тип: Изобретение
Номер охранного документа: 0002342636
Дата охранного документа: 27.12.2008
19.06.2019
№219.017.8b6c

Планшет для выбора объектов наблюдения с орбитального космического аппарата

Планшет для выбора наземного объекта наблюдения с орбитального космического аппарата (КА) относится к космической технике. Планшет для выбора наземных объектов наблюдения с орбитального КА включает в себя гибкую ленту с картой поверхности планеты, установленную над ней полупрозрачную пластину и...
Тип: Изобретение
Номер охранного документа: 0002469274
Дата охранного документа: 10.12.2012
20.06.2019
№219.017.8ce6

Способ определения деформации корпуса объекта преимущественно космического аппарата

Изобретение относится к способам технологического контроля технических средств. Способ определения деформации корпуса объекта, преимущественно космического аппарата, включает измерение острого угла α между направлением от ориентира на поверхности объекта к источнику освещения и нормалью к...
Тип: Изобретение
Номер охранного документа: 0002691776
Дата охранного документа: 18.06.2019
22.06.2019
№219.017.8e91

Устройство для ориентирования перемещаемой на борту пилотируемого корабля аппаратуры наблюдения

Изобретение относится к космической технике. Устройство для ориентирования перемещаемой на борту пилотируемого корабля аппаратуры наблюдения содержит разъемное соединение, одна из разъемных частей которого жестко соединена с аппаратурой наблюдения, штанги, на которых размещены ультразвуковые...
Тип: Изобретение
Номер охранного документа: 0002692205
Дата охранного документа: 21.06.2019
+ добавить свой РИД