×
20.04.2023
223.018.4acb

Результат интеллектуальной деятельности: СПОСОБ ПОМЕХОЗАЩИТЫ ОПТИКО-ЭЛЕКТРОННЫХ СРЕДСТВ ОТ МОЩНЫХ ЛАЗЕРНЫХ КОМПЛЕКСОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к радиолокации и может использоваться для защиты оптико-электронных средств (ОЭС) от мощных оптических излучений. Технический результат состоит в повышении эффективности защиты ОЭС от поражения оптическим излучением. Для этого принимают оптические излучения ОЭС, устанавливают вокруг ОЭС N ложных оптических целей (ЛОЦ) на расстоянии от ОЭС, за пределами которого поток падающего мощного лазерного излучения (МЛИ) мощного лазерного комплекса (МЛК) не поразит ОЭС на заданной дистанции непоражения, при этом расстояние между соседними ЛОЦ составляет максимальное значение радиуса зоны, в пределах которой поток локационного излучения МЛК облучит минимум одну ЛОЦ на заданной дистанции непоражения, осуществляют имитацию параметров ОЭС ЛОЦ при облучении локационным излучением и МЛИ МЛК, формируют и передают сигнал имитации поражения ОЭС ЛОЦ МЛИ МЛК на ОЭС. 2 ил.

Изобретение относится к области защиты оптико-электронных средств (ОЭС) от мощных оптических излучений.

Известен способ защиты приемника оптического излучения (см., например, [1]), основанный на приеме входного оптического потока матричным фотоприемным устройством (МФПУ), измерении величины ii выходного сигнала каждого i-го чувствительного элемента (ЧЭ) МФПУ, где - номер ЧЭ МФПУ, N - количество ЧЭ в МФПУ, и сравнении ее значения с пороговым in, закрытии при превышении величины г.выходного сигнала j'-ого ЧЭ МФПУ порогового значения iП j-ой части входного оптического потока, где - номер ЧЭ МФПУ, выходной сигнал которого превысил пороговое значение и номер части входного оптического потока падающего на этот ЧЭ МФПУ, периодическом открытии j-ой части входного оптического потока и измерении величины ij выходного сигнала j-го ЧЭ МФПУ, закрытии при ij≥iП j-ой части входного оптического потока, оставлении при ij≥iП j-ой части входного оптического потока открытой. Недостатком способа является низкий порог лучевой стойкости, не исключающий «прожиг» защитного элемента и дальнейшее поражения ОЭС.А также непосредственное воздействие мощного лазерного излучения (МЛИ) на ОЭС, выдвигает жесткие требования к времени реакции его защиты.

Известен способ защиты ОЭС от МЛИ (см., например, [2]), основанный на приеме оптического излучения ОЭС, пропускании оптического излучения через заранее установленный перед элементом из состава ОЭС с минимальным значением лучевой стойкости EЭ min и временем разрушения под воздействием оптического излучения равным tЭpaз защитный элемент со значениями лучевой стойкости ЕЗЭ и времени разрушения под воздействием оптического излучения tЗЭраз меньше значений EЭmin и tЭраз соответственно, пропускающий оптическое излучение мощностью не превышающей значение ЕЗЭ и имеющий спектральные параметры своего и отражаемого оптических излучений, сопровождающие процесс разрушения под воздействием оптического излучения мощностью превышающей значение ЕЗЭ, идентичные элементу с минимальным значением EЭmin, защите при воздействии оптического излучения мощностью превышающей значение ЕЗЭ ОЭС разрушением защитного элемента и имитации разрушения элемента с минимальным значением ЕЭmin, замене при разрушении защитного элемента под воздействием оптического излучения новым. Недостатком способа также является ограничение числа защит от воздействия МЛИ. Также непосредственное воздействие мощного лазерного излучения (МЛИ) на ОЭС, выдвигает жесткие требования к времени реакции его защиты.

Техническим результатом, на достижение которого направлено предлагаемое изобретение, является повышение эффективности защиты ОЭС от поражения оптическим излучением.

Технический результат достигается тем, что в известном способе помехо-защиты ОЭС от мощных лазерных комплексов (МЛК), основанном на приеме оптических излучений ОЭС, устанавливают вокруг ОЭС N ложных оптических целей (ЛОЦ) на расстоянии от ОЭС Ri≥Rmin, где Rmin - минимальное значение радиуса зоны относительно ОЭС, за пределами которой поток падающего МЛИ МЛК не поразит ОЭС на заданной дистанции непоражения, Ri - расстояние между i-ой ЛОЦ от ОЭС, , при этом расстояние между соседними ЛОЦ составляет R≤Rmax, Rmax - максимальное значение радиуса зоны, в пределах которой поток локационного излучения МЛК облучит минимум одну ЛОЦ на заданной дистанции непоражения, R - расстояние между i-ой и i+1-ой ЛОЦ, имитируют параметры ОЭС ЛОЦ при облучении локационным излучением и МЛИ МЛК, формируют и передают сигнал имитации поражения ОЭС ЛОЦ МЛИ МЛК на ОЭС.

Сущность предлагаемого способа заключается в следующем. Защита ОЭС от поражения оптическим излучением обеспечивается ОЭС за счет смещения точки наведения МЛИ на основе использования вынесенных ЛОЦ.

С системных позиций МЛК включает две основные подсистемы (см., например, [3]): подсистема поиска, обнаружения, оценки параметров и распознавания ОЭС (информационного обеспечения); подсистема формирования, генерации и наведения поражающего излучения (поражения). Каждая из подсистем в силу внешний и внутренних факторов вносит свой вклад в точность наведения узкого луча поражающего канала и удержания его в требуемом направлении. Точность наведения луча МЛИ влияет на величину потока оптического излучения на входе ОЭС [4,5]. Следовательно, смещение точки наведения позволит снизить поток излучения на входе ОЭС до требуемого уровня. Эффективная площадь рассеивания ОЭС позволяет локационному средству по величине отраженного сигнала обнаружить и определить его местоположение (см., например, [6], стр. 11-26). Для имитации вокруг ОЭС используют ложные оптические цели (ЛОЦ), приводящие дополнительным ошибкам наведения МЛИ МЛК. В предлагаемом способе ЛОЦ имитирует параметры ОЭС как при локации, так и при воздействии МЛИ МЛК [7].

Заявленный способ поясняется схемой, представленной на фигуре 1, где приняты следующие обозначения: 1 - носитель ОЭС; 2 - ОЭС; 3 - ЛОЦ; 4 - наземный МЛК; 5 - сектор просмотра подстилающей поверхности ОЭС; 6 - излучения МЛК. На фигуре 1 исключены элементы ненесущие смысловой нагрузки для раскрытия сущности изобретения.

Рассмотрим ситуацию, когда ОЭС 2 является элементов воздушного комплекса наблюдения, выполняющего задачу в зоне действия наземного МЛК 4. ОЭС 2 с воздушного носителя 1 ведет просмотр подстилающей поверхности в секторе 5. Вокруг ОЭС 2 установлено N ЛОЦ 3 на расстоянии Ri≥Rmin и (Rmin - минимальное значение радиуса зоны относительно ОЭС 2, за пределами которого падающий поток МЛИ 6 МЛК 4 не поразит ОЭС 2 на заданной дистанции непоражения Ri - расстояние установки i-ой ЛОЦ от ОЭС 2, ), при этом расстояние между соседними ЛОЦ 3 составляет R≤Rmax (Rmax - максимальное значение радиуса зоны, в пределах которой поток локационного излучения 6 МЛК 4 облучит минимум одну ЛОЦ 3 на заданной дистанции непоражения, R - расстояние установки между i -ой и i+1-ой ЛОЦ 3).

МЛК 4 осуществляет локационный поиск целей. Взаимное расположение ОЭС 2 и ЛОЦ 3 обеспечивает первоочередной оптический контакт локационного излучения 6 МЛК 4 с ЛОЦ 3. По отраженному излучению от ЛОЦ 3 МЛК 4 идентифицирует ее как цель. По результатам координатной оценки ЛОЦ 3 МЛК 4 формирует пространственные параметры МЛИ 6. В результате ошибка наведения поражающего канала МЛК 4 будет включать ошибку целеуказания, которую вносит местоположение ЛОЦ 3. МЛИ 6 МЛК 4 попадает на ЛОЦ 3, под воздействием которого ЛОЦ 3 имитирует поражение ОЭС.МЛК 4 принимает ложное решение об успешном выводе из работоспособного состояния ОЭС. При этом расстояние между ОЭС 2 и ЛОЦ 3 обеспечивает эффективную защиту ОЭС 2 от МЛИ 6 МЛК 4. ЛОЦ 3 передает сигналы о факте применения по ней МЛК 4 на ОЭС 2.

Минимальное значение Rmin, обеспечивающее эффективную защиту ОЭС от МЛК рассматриваемым способом при условии, что интенсивность мощного лазерного излучения имеет гауссовое распределение и закон ошибок наведения релеевский вид, можно определить с помощью выражения

где Р0 - известное значение мощности потока МЛИ МЛК; Lmin - заданная минимальная дистанция защиты ОЭС от МЛК; β - известная угловая средняя квадратичная ошибка наведения луча МЛИ МЛК; IП - известное пороговое значение интенсивности МЛИ на входе ОЭС, при котором происходит поражение ОЭС; αΣ - суммарный показатель энергетического ослабления (потерь) МЛИ в атмосфере; рз - заданная вероятность защищенности ОЭС от МЛК.

Так, например, для типовых исходных значений Р0=10 Вт, Lmin=200 м, Рпор=0,95 β=2⋅10-4 рад, IП=10 Вт/м2, αΣ ≈ min, составит Rmin=0,526 м, а при увеличении в два раза Р0=20 Вт - Rmin=0,744 м, что реализуемо практически на любом носителе ОЭС.

На фигуре 2 изображена блок схема варианта устройства, реализующего способ. Блок - схема включает: датчик температуры ЛОЦ 7, блок защиты ОЭС от МЛИ 8, остальные обозначения соответствуют фигуре 1.

Устройство работает следующим образом. Датчик температуры ЛОЦ 7 измеряет температуру ЛОЦ 3. При превышении температуры порогового значения вырабатывается сигнал об облучении ЛОЦ 3 МЛИ МЛК и предается на ОЭС 2.

Таким образом, у заявляемого способа появляются свойства повышения эффективности защиты ОЭС от поражения оптическим излучением за счет смещения точки наведения МЛИ МЛК на основе использования вынесенных ЛОЦ на требуемое удаление. Тем самым, предлагаемый авторами, способ устраняет недостатки прототипа.

Предлагаемое техническое решение является новым, поскольку из общедоступных сведений неизвестен помехозащиты ОЭС от МЛК, основанный на приеме на приеме оптических излучений ОЭС, установке вокруг ОЭС N ЛОЦ на расстоянии от ОЭС Ri≥Rmin, где Rmin - минимальное значение радиуса зоны относительно ОЭС, за пределами которой поток падающего МЛИ МЛК не поразит ОЭС на заданной дистанции непоражения, Ri - расстояние между i-ой ЛОЦ от ОЭС, , при этом расстояние между соседними ЛОЦ составляет R≤Rmax, Rmax - максимальное значение радиуса зоны, в пределах которой поток локационного излучения МЛК облучит минимум одну ЛОЦ на заданной дистанции непоражения, R - расстояние между i-ой и i+1-ой ЛОЦ, имитации параметров ОЭС ЛОЦ при облучении локационным излучением и МЛИ МЛК, формировании и передаче сигнала имитации поражения ОЭС ЛОЦ МЛИ МЛК на ОЭС.

Предлагаемое техническое решение практически применимо, так как для его реализации могут быть использованы оптические и оптико-электронные блоки и устройства.

1. Пат. 2363017 RU, МПК H04N 5/238, H01L 31/0232. Способ защиты приемника оптического излучения / Ю.Л. Козирацкий, А.Ю. Козирацкий, П.Е. Кулешов, Р.Г. Хильченко, Д.В. Прохоров, Д.Е. Столяров; заявитель и патентообладатель ВУНЦ ВВС «ВВА им. проф. Н.Е. Жуковского и Ю.А. Гагарина». - №2016107511; заявл. 01.03.16; опубл. 16.11.17, Бюл. №32. - 11 с.

2. Пат. 2363017 RU, H04N 5/238, H01L 31/0232, G01B 5/205. Способ защиты ОЭС от мощного лазерного излучения / П.Е. Кулешов, А.Н. Глушков, А.В. Алабовский, В.Д. Попело, А.В. Марченко; заявитель и патентообладатель ВУНЦ ВВС «ВВА им. проф. Н.Е. Жуковского и Ю.А. Гагарина». - №2019104733; заявл. 19.02.2019; опубл. 17.12.2019, Бюл. №35. - 10 с.

3. Кулешов П.Е, Глушков А.Н., Марченко А.В. Классификация технических методов (способов) защиты оптико-электронных средств от лазерного комплекса функционального поражения / П.Е. Кулешов, А.Н. Глушков, А.В. Марченко // Воздушно-космические силы. Теория и практика (электронный журнал). 2019. №10. С. 72-80.

4. Козирацкий Ю.Л. Оптимизация угла расходимости излучения лазерной локационной системы в условиях помех / Ю.Л. Козирацкий // Радиотехника. - 1994. - №3. - С. 6-10.

5. Козирацкий Ю.Л., Козирацкий А.Ю., Кулешов П.Е. и др. Моделирование пространственного распределения лазерного излучения с многомодовым типом колебаний / Ю.Л. Козирацкий, А.Ю. Козирацкий, П.Е. Кулешов и др. // Антенны. - 2007. - №4 (119). - С. 54 - 56.

6. Козирацкий Ю.Л., Афанасьева Е.М., Гревцев А.И. и др. Обнаружение и координатометрия оптико-электронных средств, оценка параметров их сигналов / Ю.Л. Козирацкий, Е.М. Афанасьева, А.И. Гревцев и др. М.: «ЗАО «Издательство «Радиотехника», 2015, 456 с.

7. Пат. 2698466 RU, МПК G01S 7/40. Способ формирования ложной оптической цели / Козирацкий Ю.Л., Глушков А.Н., П.Е. Кулешов, Дробышевский Н.В., Прохоров Д.В.; заявитель и патентообладатель ВУНЦ ВВС «ВВА им. проф. Н.Е. Жуковского и Ю.А. Гагарина». - №2018142951; заявл. 04.12.2018; опубл. 27.08.2019, Бюл. №24. - 7 с.

Способ помехозащиты оптико-электронных средств от мощных лазерных комплексов, основанный на приеме оптических излучений оптико-электронным средством, отличающийся тем, что устанавливают вокруг оптико-электронного средства N ложных оптических целей на расстоянии от оптико-электронного средства R≥R, где R - минимальное значение радиуса зоны относительно оптико-электронного средства, за пределами которой поток падающего мощного лазерного излучения мощного лазерного комплекса не поразит оптико-электронное средство на заданной дистанции непоражения, R - расстояние между i-й ложной оптической целью и оптико-электронным средством, , при этом расстояние между соседними ложными оптическими целями составляет R≤R, R - максимальное значение радиуса зоны, в пределах которой поток локационного излучения мощного лазерного комплекса облучит минимум одну ложную оптическую цель на заданной дистанции непоражения, R - расстояние между i-й и i+1-й ложными оптическими целями, имитируют параметры оптико-электронного средства ложной оптической целью при облучении локационным излучением и мощным лазерным излучением мощного лазерного комплекса, формируют и передают сигнал имитации поражения оптико-электронного средства ложной оптической целью мощным излучением мощного лазерного комплекса на оптико-электронное средство.
Источник поступления информации: Роспатент

Показаны записи 81-90 из 244.
17.11.2018
№218.016.9e8d

Способ обнаружения препятствий в зоне посадки вертолета

Изобретение относится к радиолокационным системам посадки вертолета и может быть использовано при их разработке. Достигаемый технический результат - повышение вероятности обнаружения препятствий в зоне посадки за счет приема эхо-сигналов непосредственно из зоны посадки вертолета независимо от...
Тип: Изобретение
Номер охранного документа: 0002672578
Дата охранного документа: 16.11.2018
23.11.2018
№218.016.a032

Теплообменный аппарат

Изобретение относится к области теплотехники, а именно к теплообменным аппаратам с трубами с развитой поверхностью теплообмена, и может быть использовано в аппаратах воздушного охлаждения, теплообменниках, холодильниках, рекуператорах, печах, которые применяются в различных отраслях...
Тип: Изобретение
Номер охранного документа: 0002673119
Дата охранного документа: 22.11.2018
24.11.2018
№218.016.a0cd

Способ защиты объектов от телевизионных средств космического наблюдения

Изобретение относится к области защиты объектов путем постановки аэрозольных образований и может быть использовано для маскировки объектов. Определяют параметры метеообстановки, координаты и интенсивность сброса аэрозолеобразующего состава (АОС), формируют аэрозольную завесу (AЗ). Сканируют по...
Тип: Изобретение
Номер охранного документа: 0002673169
Дата охранного документа: 22.11.2018
24.11.2018
№218.016.a0ec

Частотомер

Изобретение относится к области радиотехники, в частности к средствам оценивания статистических характеристик обнаружения радиосигналов, и может быть использовано для измерения частоты появления сигналов радиоэлектронных средств, а также проведения экспериментальных исследований. Технический...
Тип: Изобретение
Номер охранного документа: 0002673240
Дата охранного документа: 23.11.2018
13.01.2019
№219.016.af38

Способ поиска оптических и оптико-электронных приборов

Способ поиска оптических и оптико-электронных приборов основан на использовании дистанционно пилотируемого аппарата, который осуществляет сканирование зоны поиска по определенной траектории. При сканировании получают изображение зоны поиска как с облучением ее оптическим излучением и без...
Тип: Изобретение
Номер охранного документа: 0002676856
Дата охранного документа: 11.01.2019
22.02.2019
№219.016.c5ad

Способ концентрирования флороглюцина из водных растворов

Настоящее изобретение относится к способу концентрирования флороглюцина из водных растворов и может быть использовано при аналитическом контроле сточных вод, поступающих на биологическую очистку. Способ заключается в экстракции флороглюцина трибутилфосфатом из подкисленных до рН=1-5 водных...
Тип: Изобретение
Номер охранного документа: 0002680394
Дата охранного документа: 20.02.2019
23.02.2019
№219.016.c6c3

Способ защиты объектов от радиолокационных огневых комплексов

Изобретение относится к области систем защиты объектов от средств воздушной разведки, прицеливания и наведения путем формирования ложной радиолокационной обстановки и может быть использовано для радиолокационной маскировки индивидуальных и групповых стационарных объектов. Достигаемый...
Тип: Изобретение
Номер охранного документа: 0002680515
Дата охранного документа: 22.02.2019
21.03.2019
№219.016.eb5e

Тепловой имитатор

Изобретение относится к области снижения заметности вооружения и военной техники, ввода в заблуждение средств поражения высокоточным оружием, обеспечения скрытности от тепловизионных, оптикоэлектронных средств воздушно-космической разведки, увода и срыва прицеливания инфракрасных головок...
Тип: Изобретение
Номер охранного документа: 0002682355
Дата охранного документа: 19.03.2019
29.03.2019
№219.016.ed07

Способ концентрирования гидрохинона из водных растворов

Изобретение относится к способу концентрирования гидрохинона из водных растворов, который может быть использован при аналитическом контроле очищенных сточных вод, поступающих на биологическую очистку. Способ включает концентрирование гидрохинона полимерным порошкообразным материалом, в качестве...
Тип: Изобретение
Номер охранного документа: 0002682965
Дата охранного документа: 25.03.2019
01.04.2019
№219.016.fa3e

Центробежная форсунка

Изобретение относится к средствам распыливания жидкостей, растворов и может применяться в химической, пищевой промышленности, а также может быть использовано в системе топливоподачи различных энергетических устройств. Центробежная форсунка состоит из корпуса, шнека, в нижней части корпуса...
Тип: Изобретение
Номер охранного документа: 0002683610
Дата охранного документа: 29.03.2019
Показаны записи 51-55 из 55.
21.12.2019
№219.017.f068

Способ защиты оэс от мощного лазерного излучения

Изобретение относится к области защиты оптико-электронных средств (ОЭС) и касается способа защиты ОЭС от мощного лазерного излучения. Способ заключается в приеме оптического излучения оптико-электронным средством и пропускании оптического излучения через защитный элемент, установленный перед...
Тип: Изобретение
Номер охранного документа: 0002709452
Дата охранного документа: 17.12.2019
05.02.2020
№220.017.fe01

Способ имитации оптико-электронного средства

Изобретение относится к области оптико-электронной техники и может быть использовано в лазерных локационных системах, системах оптико-электронного противодействия. Заявленный способ имитации оптико-электронного средства (ОЭС) базируется на установке в секторе поиска ОЭС ложной оптической цели,...
Тип: Изобретение
Номер охранного документа: 0002712940
Дата охранного документа: 03.02.2020
25.04.2020
№220.018.1984

Способ поражения цели управляемым боеприпасом в сложной фоноцелевой обстановке

Изобретение относится к вооружению, в частности к системам огневого поражения объектов управляемыми боеприпасами. Сущность способа поражения цели управляемым боеприпасом в сложной фоноцелевой обстановке заключается в определении пространственных координат района местоположения цели,...
Тип: Изобретение
Номер охранного документа: 0002719891
Дата охранного документа: 23.04.2020
04.07.2020
№220.018.2ed7

Способ маскировки объектов

Изобретение относится к области маскировки наземных объектов от систем радиолокационного и оптико-электронного наблюдения. Для маскировки объектов на поверхность маскируемого объекта наносят по меньшей мере два слоя твердеющих маскирующих пен. При этом фоновый материал измельчают до заданной...
Тип: Изобретение
Номер охранного документа: 0002725301
Дата охранного документа: 30.06.2020
21.04.2023
№223.018.4f43

Способ скрытия оптико-электронного средства воздушного комплекса оптико-электронного наблюдения

Изобретение относится к области оптико-электронной техники. Способ скрытия оптико-электронного средства (ОЭС) воздушного комплекса оптико-электронного наблюдения (ВКОЭН) базируется на осуществлении наблюдения участков подстилающей поверхности ОЭС ВКОЭН путем полета беспилотного летательного...
Тип: Изобретение
Номер охранного документа: 0002792921
Дата охранного документа: 28.03.2023
+ добавить свой РИД