×
12.04.2023
223.018.4a1e

Результат интеллектуальной деятельности: Способ получения тонкодисперсного графитового порошка

Вид РИД

Изобретение

Аннотация: Изобретение относится к получению порошка на основе графита, который может быть использован в качестве основного компонента многофункциональных покрытий в ракетно-космической и авиационной технике, а также в ядерной энергетике, металлургии, машино- и приборостроении, солнечной энергетике, при производстве полупроводниковой техники. Предложен способ получения тонкодисперсного графитового порошка методом электрохимического расслоения в двухэлектродной ячейке на постоянном токе в растворе электролита. В качестве электролита используют водные растворы неорганических оснований 15÷25% массовой концентрации. В качестве анода применяют графит, а в качестве катода - нержавеющую сталь, к которым подводят электрический ток постоянной величины после однополупериодного выпрямления при напряженности однородного электрического поля 40÷60 В/м и плотности тока 43÷55 А/м. Выпавший в осадок графитовый порошок фильтруют, промывают и высушивают. Изобретение позволяет получить частицы графитового порошка размером 0,001-0,05 мм с высокой однородностью без нарушений кристаллической структуры, снизить удельные энергозатраты. 1 з.п. ф-лы, 2 ил., 4 табл.

Изобретение относится к технологии получения тонкодисперсного порошка на основе графита. Тонкодисперсный порошок может быть использован в качестве основного компонента многофункциональных покрытий ракетно-космической и авиационной техники, а также в ядерной энергетике, металлургии, машино- и приборостроении, солнечной энергетике, при производстве полупроводниковой техники.

Из существующего уровня техники известен способ получения порошка графита (RU 2257341, кл. С01В 31/04, опубл. 20.07.2005 «Способ получения тонкозернистого графита»). Способ заключается в сверхтонком измельчении графита марки МПГ в высоконагруженной вибромельнице при дозах механической энергии 20 кДж/г, и последующей высокотемпературной графитации с дополнительными удельными энергозатратами 4 кДж/г, позволяющий получить порошок с размером частиц от 2 до 20 мкм.

Сверхтонкое точение (измельчение на вибромельнице) до размеров частиц порядка 1÷4 мкм сопровождается нарушением кристаллической структуры графита: увеличивается величина межслойного расстояния, уменьшаются размеры кристаллитов. Для улучшения качества частиц и уменьшения количества дефектов после сверхтонкого точения полученную смесь обжигают при 1000÷1300°С и проводят высокотемпературную графитацию - термообработка тонкодисперсных порошков в атмосфере аргона при температуре 2600÷3000°С.

Измельчение на вибромельнице - длительный и сложный технологический процесс с высокими трудозатратами, а операция термовакуумной обработки требует использования дополнительного технологического оборудования (вакуумная печь).

Известен способ получения мелкозернистого порошка графита, заключающийся в дроблении пекового кокса на щековой и молотковой дробилках, размоле на вибромельнице до получения пресспорошка со средним размером частиц 5-20 мкм, который затем прессуют на изостатическом прессе [RU 2493098, кл. С01В 31/04, опубл. 20.09.2013 «Способ получения заготовок из мелкозернистого графита»]. Дальнейший технологический процесс включает операции обжига, пропитки, повторного обжига, графитации и механической обработки.

Анализ вышеописанных патентов показывает, что основные аналоги, наиболее близкие по технической сущности имеют определенные недостатки, которые не позволяют удовлетворить требования высокотехнологичных отраслей промышленности. Помимо сложного технологического процесса, недостатком графитового порошка, полученного механическим воздействием является структурные дефекты кристаллической решетки у полученных частиц - микропоры, трещины и увеличенное межслоевое расстояние.

Электрохимические методы обработки углеграфитовых материалов известны, однако для получения тонкодисперсных графитовых порошков электролиз не применяется.

Наиболее близким к заявленному техническому решению, принятому за прототип, является способ, описанный в [Образцова Е.Ю., Дегтярев А.А., Рухов А.В., Бакунин Е.С. Физико-химические особенности коллоидной устойчивости в полярных растворителях оксида нанографита, синтезированного электрохимическим способом // Вестник ТГТУ. 2019. Т. 25. №1. С. 116-122]. Данный способ заключается в получении графитового порошка методом электрохимического расслоения графитовой фольги на постоянном токе в двухэлектродной ячейке в растворе электролита - серной кислоты. В качестве анода используется платина, катодом служит графитовая фольга. Плотность тока, пропускаемая через электроды, составляет 0.25 А/см2. Затем полученные частицы подвергают обработке ультразвуком в ультразвуковой ванне мощностью 100 Вт и частотой излучения 22 кГц в течение 60 минут. В результате был получен графитовый порошок с размером частиц в пределах от 17 до 100 мкм. Удельные энергозатраты процесса составляют 129.35 кДж/кг.

Недостатком данного способа является то, что полученные частицы графита имеют неправильную форму. Были выявлены микроповреждения кристаллической решетки полученных частиц. Это связано со значительным окислением частиц графита раствором серной кислоты и структурными деградациями кристаллической решетки углерода.

Задачей изобретения является создание способа получения тонкодисперсного порошка графита, который позволит получить частицы с высокой однородностью и без нарушений кристаллической структуры с небольшими удельными энергозатратами.

Способ получения тонкодисперсного графитового порошка методом электрохимического расслоения в двухэлектродной ячейке на постоянном токе в растворе электролита, отличающийся тем, что в качестве электролита используют 15^25% массовой концентрации водные растворы неорганических оснований, в качестве анода применяют графит, катода - нержавеющую сталь, к которым подводят электрический ток постоянной величины, после однополупериодного выпрямления при напряженности однородного электрического поля 40-60 В/м и плотности тока 43÷55 А/м2, а выпавший в осадок графитовый порошок в дальнейшем фильтруют, промывают и высушивают.

Технический результат, выраженный в получении тонкодисперсного порошка графита с высокой однородностью без нарушений кристаллической структуры и с меньшими удельными энергозатратами, обусловлен тем, что на электроды (графитовый анод и катод из нержавеющей стали), погруженные водные растворы неорганических оснований, воздействуют электрическим током постоянной величины, после однополупериодного выпрямления, при напряженности однородного электрического поля 40÷60 В/м, что вызывает анодное окисление и катодное восстановление графита до образования гидратированных соединений, процесс гидролиза с образованием молекулярного кислорода из гидроксид-ионов в околоанодном пространстве, приводящем к высвобождению углекислого газа и получению водного раствора с графитовым осадком, который в дальнейшем фильтруют, промывают и высушивают.

Способ получения тонкодисперсного графитового порошка электросинтезом на постоянном токе поясняется примером.

На фиг. 1 представлена принципиальная схема устройства, в котором осуществляют заявленный способ.

На фиг. 2 показан микроснимок полученного графитового порошка.

Принципиальная схема электрохимического устройства (фиг. 1) содержит корпус, выполненный из органического стекла 1, внутри которого размещены электроды: катод 2 - пластина из нержавеющей стали, анод 3 -пластинчатый графитовый электрод марки МПГ-6. Между электродами расположена рабочая среда - электролит, в качестве которого применен водный раствор неорганического основания (гидроксид натрия или гидроксид калия). Объем электролита - 790 мл. На верхней части электродов расположены токоподводы 4, которые соединены с источником постоянного тока через диод 5. В цепь подключен амперметр 6 для контролирования значения силы тока, вольтметр 7.

Способ реализуется следующим образом.

После подачи на электроды достаточного постоянного напряжения начинается процесс переноса электрического тока движущимися к электродам ионами в электролите и электронами во внешней цепи. Под действием однородного электрического поля положительно заряженные ионы мигрируют к катоду, а отрицательно заряженные ионы - к аноду. На электродах происходит переход электронов. Катод отдает электроны в раствор, и в приэлекгродном пространстве происходят процессы восстановления. В околоанодном пространстве протекают процессы переноса электронов от реагирующих частиц к электроду - окисление.

Катодная реакция:

Реакция на плоском аноде:

Происходит окисление воды с выделением кислорода:

При прохождении электрического тока через анод, происходит реакция образования иона С4+ из атомов углерода:

Происходит увеличение силы тока и нагревание водного раствора электролита - графитовый электрод начинает взаимодействовать с кислородом и выделяется СО2. То есть электрохимическое окисление проходит до четырехвалентного состояния СО2. Вокруг части ионов С4+ формируется гидратная оболочка. Образовавшиеся гидратированные ионы остаются в воде в виде осадка:

Для определения оптимальной продолжительности проведения электросинтеза, и для соблюдения баланса между количеством полученного графитового порошка и удельными энергозатратами на его получение, выполняют замеры силы тока при помощи амперметра 6. В течение первых 15 минут от начала электролиза частицы графита практически не отделяются от графитового анода, что связано с недостаточным количеством выделенного молекулярного кислорода O2 из гидроксид-ионов в околоанодном пространстве. В процессе гидролиза молекулы О2, воздействуя на поверхность анода, отделяют частицы углерода С4+ от анода. В этот момент сила тока при постоянной величине напряжения увеличивается более чем в 2 раза от среднего значения силы тока электросинтеза, в связи с увеличением количества высвободившихся положительно заряженных электронов с поверхности анода - графита. Электроны, взаимодействуя с раствором, начинают его подогревать, при этом удельное сопротивление электролита уменьшается, и, соответственно, увеличивается сила тока. После 27 минуты электросинтеза достигается максимальное значения силы тока и для соблюдения баланса между количеством полученного порошка и произведенными энергозатратами, напряжение с электродов необходимо снимать. Дальнейшее проведение электросинтеза приводит к неоправданному повышению значения удельных энергозатрат.

Основные результаты электросинтеза представлены в таблице ниже.

Удельные энергозатраты заявленного способа получения тонкодисперсного порошка из графита составил и 95÷110 кДж/г.

После окончания электрохимического процесса, полученный раствор пропускают через фильтрующее устройство, основой которого служит химическая коническая воронка и несколько слоев фильтровальной бумаги.

Затем полученный готовый продукт - тонкодисперсный графитовый порошок промывают дистиллированной водой и высушивают.

Исследования полученных частиц графита проводили методами лазерной дифракции и сканирующей электронной микроскопии (СЭМ). По результатам лазерной дифракции частиц графита можно сделать вывод, что частицы имеют размеры диапазоном от 0.001 до 0.05 мм.

На фиг. 2 представлен микроснимок частиц графита, полученных заявляемым способом. На снимке видно, что частицы соли NaCl остаются отдельными самостоятельными частицами, расположенными между частицами графита. Частицы-основания NaOH плотно связали своими «нитями» атомы углерода и поэтому необходима дальнейшая промывка для их отделения. Благодаря таким «нитям» частицы графита быстрее и легче отделяются от поверхности графитового анода, так как «нити» связываясь с поверхностью частиц графита своим весом тянут их в сторону, «мягко» отсоединяя микрочастицы графита от поверхности анода.

Анализ снимков и микроструктуры полученных частиц показали, что частицы графита имеют однотипную микроструктуру и форму, и у частиц тонкодисперсного графита отсутствует повреждение кристаллической решетки (либо наблюдаются незначительные повреждения).

Способ получения тонкодисперсного порошка из графита основан на свойстве окисленного графита диспергироваться в процессе электрохимического окисления.

Уменьшение массовой концентрации электролита менее 15% ведет к излишним энергозатратам проведения процесса, при этом массовая концентрация свыше 25%, по результатам анализа микрофотографий частиц, приводит к окислению получаемых частиц графита и появлению деформаций кристаллической решетки.

Ниже приведена таблица зависимости величины удельных энергозатрат от массовой концентрации электролита:

При напряженности однородного электрического поля свыше б0 В/м и менее 40 В/м наблюдается неравномерное повышение удельных энергозатрат электросинтеза.

Представлена зависимость величины удельных энергозатрат от напряженности однородного электрического поля:

Снижение плотности тока менее 43 A/м2 приводит к значимому уменьшению массы получаемого графитового порошка, а повышение плотности тока выше 55 А/м2 ведет к излишнему образованию микропузырьков газа O2, и нагреванию электролита и, следовательно, уменьшению производительности электрохимического процесса.

Для примера представлена зависимость массы получаемого порошка и производительности электрохимического процесса от плотности тока, при использовании в качестве электролита 15% водного раствора гидроксида натрия.

Таким образом, заявленный электрохимический способ получения тонкодисперсного порошка из графита позволяет получить частицы графита размером 0.001-0.05 мм с высокой однородностью без нарушений кристаллической структуры (либо с незначительными нарушениями), при этом с меньшими удельными энергозатратами по сравнению с аналогами.


Способ получения тонкодисперсного графитового порошка
Источник поступления информации: Роспатент

Показаны записи 1-10 из 61.
26.08.2017
№217.015.d863

Теплоизоляционный материал

Изобретение относится к производству теплоизоляционных материалов в виде матов, а именно сырьевой смеси, предназначенных для строительства, в частности для многослойных стеновых вертикальных и горизонтальных панелей, и для теплоизоляции различных сооружений. Теплоизоляционный материал на основе...
Тип: Изобретение
Номер охранного документа: 0002622654
Дата охранного документа: 19.06.2017
20.11.2017
№217.015.efd3

Гольмий-марганцевый сульфид с гигантским магнитосопротивлением

Изобретение может быть использовано в производстве элементов микроэлектроники, сенсорной техники. Гольмий-марганцевый сульфид с гигантским магнитосопротивлением включает марганец и серу и дополнительно содержит гольмий при следующем соотношении компонентов, мас.%: гольмий 2,5-15, марганец...
Тип: Изобретение
Номер охранного документа: 0002629058
Дата охранного документа: 24.08.2017
29.12.2017
№217.015.f73d

Способ создания реактивной тяги бесклапанного пульсирующего воздушно-реактивного двигателя

Способ создания реактивной тяги бесклапанного пульсирующего воздушно-реактивного двигателя может быть применен в двигателях летательных аппаратов. Способ включает циклический выброс продуктов сгорания и всасывание атмосферного воздуха во впускном канале с осуществлением одновременной генерации...
Тип: Изобретение
Номер охранного документа: 0002639279
Дата охранного документа: 20.12.2017
29.12.2017
№217.015.fb0f

Способ технического обслуживания карданных шарниров

Изобретение относится к области машиностроения и предназначено для обслуживания карданных шарниров на игольчатых подшипниках. Способ технического обслуживания карданных шарниров заключается в том, что вначале проводят предварительную разметку положения вилок карданного шарнира, затем разбирают...
Тип: Изобретение
Номер охранного документа: 0002640157
Дата охранного документа: 26.12.2017
20.01.2018
№218.016.1993

Устройство развертывания трансформируемых механических систем космического аппарата

Изобретение относится к средствам перевода трансформируемых конструкций (например, солнечных батарей) космического аппарата из сложенного положения в раскрытое. Устройство содержит кронштейны (1) и (2), прикрепленные к взаимно подвижным элементам (4) и (5) (например, панелям) конструкции...
Тип: Изобретение
Номер охранного документа: 0002636207
Дата охранного документа: 21.11.2017
20.01.2018
№218.016.1b25

Электрический имитатор аккумуляторной батареи с защитой по току и напряжению и устройство защиты электрического имитатора аккумуляторной батареи

Изобретение относится к преобразовательной технике, предназначенной для имитации характеристик аккумуляторных батарей, и может быть использовано при испытаниях систем электропитания, работающих в режиме заряда и разряда. Технический результат заключается в повышении коэффициента использования...
Тип: Изобретение
Номер охранного документа: 0002635897
Дата охранного документа: 16.11.2017
20.01.2018
№218.016.1b4e

Способ создания электрореактивной тяги

Изобретение относится к способу создания электрореактивной тяги. Способ состоит в том, что после создания электрореактивной тяги в режиме горения топлива при импульсном давлении в усеченной сферической камере сгорания с образованием огненного ядра в камере сгорания и плазменного ядра в...
Тип: Изобретение
Номер охранного документа: 0002635951
Дата охранного документа: 17.11.2017
04.04.2018
№218.016.30bb

Микрополосковый широкополосный фильтр

Изобретение относится к СВЧ-радиотехнике, в частности к фильтрам. Микрополосковый широкополосный фильтр содержит диэлектрическую подложку, на одну сторону которой нанесено заземляемое основание, а на вторую - полосковые проводники, электромагнитно связанные между собой. Узкие и широкие...
Тип: Изобретение
Номер охранного документа: 0002644976
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.34cd

Тяговое мобильное устройство для круговой обработки почвы

Изобретение относится к области сельскохозяйственного машиностроения, в частности к орудиям, применяемым, например, на круговых полях. Тяговое мобильное устройство для круговой обработки почвы содержит центральную опору со стрелой, связанной с возможностью вращения относительно опоры через...
Тип: Изобретение
Номер охранного документа: 0002646050
Дата охранного документа: 01.03.2018
10.05.2018
№218.016.42f8

Импульсный детонационный ракетный двигатель

Импульсный детонационный ракетный двигатель содержит детонационную камеру сгорания, вход которой через торцевую стенку служит для порционного ввода детонационного топлива и герметично соединен через баллистическое устройство с магнитокумулятивным генератором импульсов, источник начального...
Тип: Изобретение
Номер охранного документа: 0002649494
Дата охранного документа: 03.04.2018
Показаны записи 1-8 из 8.
10.08.2013
№216.012.5c3d

Способ размерной электрохимической обработки

Изобретение относится к электрофизическим и электрохимическим методам обработки и может быть использовано при электрохимической обработке длинномерных деталей. В способе размерную электрохимическую обработку детали осуществляют электродом-инструментом, содержащим токопроводящий корпус с...
Тип: Изобретение
Номер охранного документа: 0002489234
Дата охранного документа: 10.08.2013
10.06.2014
№216.012.d16c

Способ очистки воды и водных растворов от анионов и катионов

Изобретение относится к очистке воды и водных растворов от анионов и катионов и может быть использовано для очистки природных вод, стоков металлургической, машиностроительной и других отраслей промышленности. Очистку воды и водных растворов от анионов и катионов проводят электролизом переменным...
Тип: Изобретение
Номер охранного документа: 0002519383
Дата охранного документа: 10.06.2014
10.05.2015
№216.013.4881

Способ электрохимического полирования металлов и сплавов

Изобретение относится к области электрохимической обработки металлов и сплавов и может быть использовано в машино- и приборостроении при доводке внутренних и наружных поверхностей. Способ включает циклическое полирование детали в нейтральном водном растворе солей при плотности тока 0,2-10,0...
Тип: Изобретение
Номер охранного документа: 0002550068
Дата охранного документа: 10.05.2015
29.12.2017
№217.015.f3a0

Комбинированный накопитель энергии

Изобретение относится к электротехнике, к накопителям энергии для транспортных систем, летательных аппаратов, источников аварийного и бесперебойного питания систем связи и телекоммуникаций, для атомных, ветровых, солнечных электростанций. Технический результат заключается в увеличении срока...
Тип: Изобретение
Номер охранного документа: 0002637489
Дата охранного документа: 05.12.2017
29.05.2019
№219.017.685b

Катод для электрохимической обработки

Изобретение относится к области металлообработки и может быть использовано для электрохимической обработки крупногабаритных тонкостенных деталей типа тел вращения. Катод содержит рабочий элемент, профиль которого повторяет форму обрабатываемой поверхности. Рабочий элемент установлен на стержне...
Тип: Изобретение
Номер охранного документа: 0002456139
Дата охранного документа: 20.07.2012
25.12.2019
№219.017.f225

Способ изготовления гибко-плоского электронагревателя

Изобретение относится к областям электротермии и космического машиностроения и может быть использовано при изготовления гибких, плоских, гибко-плоских электронагревателей, поддерживающих в работоспособном состоянии радиоэлектронную аппаратуру космического аппарата при воздействии условий...
Тип: Изобретение
Номер охранного документа: 0002710029
Дата охранного документа: 24.12.2019
16.05.2023
№223.018.6314

Электрохимический способ получения мелкодисперсного порошка графита

Изобретение относится к электрохимическому способу получения мелкодисперсного порошка графита, заключающемуся в погружении в рабочий раствор диафрагменного электролизера коаксиально расположенных электродов - графитового анода и катода из нержавеющей стали, и подводе к ним электрического тока....
Тип: Изобретение
Номер охранного документа: 0002771846
Дата охранного документа: 12.05.2022
16.06.2023
№223.018.79c3

Гибко-плоский электронагреватель

Изобретение относится к области космического машиностроения и может быть использовано при изготовлении гибких, плоских, гибко-плоских электронагревателей (ЭН) космических аппаратов (КА). Технический результат - создание ЭН с увеличенным КПД для условий штатной работы в составе КА...
Тип: Изобретение
Номер охранного документа: 0002737666
Дата охранного документа: 02.12.2020
+ добавить свой РИД