×
12.04.2023
223.018.47c9

Результат интеллектуальной деятельности: Скважинная штанговая насосная установка с вертикальным пружинным компенсатором колебаний давления

Вид РИД

Изобретение

Аннотация: Изобретение относится к области добычи нефти, в частности к установкам скважинных штанговых насосов. Технический результат заключается в обеспечении высокой степени выравнивания неравномерности подачи скважинной штанговой насосной установки в широких диапазонах за счет подбора параметров и последовательного соединения пружин без использования работы сжатия газа заданного объема, в повышении долговечности рабочих элементов. Предложена скважинная штанговая насосная установка, содержащая насос, колонны насосных труб и штанг, вертикальный пружинный компенсатор, установленный на нагнетательной линии с помощью отвода и фланцевого соединения. При этом пружинный компенсатор содержит корпус с расположенным внутри литым поршнем, внутренняя поверхность которого выполнена в виде двух полусфер, содержащим два отверстия, располагающихся под углом к потоку жидкости, с перпендикулярным расположением осей и пересечением в центре поршня, совершающего возвратно-поступательное движение под действием жидкости, и рабочую секцию, включающую втулки и три пружины сжатия с вертикальным расположением для равномерного распределения продольной нагрузки. 2 ил.

Изобретение относится к области добычи нефти, в частности к установкам скважинных штанговых насосов.

Известна скважинная штанговая насосная установка с пневмокомпенсатором, установленным на устье и сообщенным с выкидной линией с помощью отвода. Согласно изобретению пневмокомпенсатор состоит из двух частей: нижняя - деталь в форме цилиндра и верхней - полусферы, которые скрепляются между собой шпильками. В нижней части рабочей камеры установлен вкладыш. Она сообщена с выкидной линией с помощью отвода (RU 164585, 10.09.2016).

Недостатками указанного технического решения являются повышенная металлоемкость конструкции, за счет установки в корпус пневмокомпенсатора вкладышей, а также повышенный износ диафрагмы при низких температурах, что снижает работоспособность пневмокомпенсатора.

Наиболее близкой по принципу действия является скважинная штанговая насосная установка с пневмокомпенсатором, состоящим из двух полусфер, которые скрепляются между собой шпильками (Патент RU 2655485, 28.05.2018). Пневмокомпенсатор устанавливается в герметичную теплоизолированную от окружающей среды камеру, внутри которой пробурена скважина глубиной, превышающей глубину промерзания грунта, причем скважина закрыта металлической сеткой, а корпус камеры имеет откидную крышку, рабочая полость пневмокомпенсатора сообщена с затрубным пространством скважины через пружинный предохранительный клапан.

Недостатками указанного технического решения являются сложность установки теплоизоляционной камеры, дополнительные затраты по ее обслуживанию для обеспечения изоляции пневмокомпенсатора от воздействия низких температур, большие габаритные размеры, низкая долговечность диафрагмы, подверженность коррозионному износу деталей, соприкасающихся с жидкостью, а также неспособность пневмокомпенсатора эффективно гасить пульсацию давления.

Задачами изобретения являются снижение пульсации давления в широком диапазоне на выходе из насосной установки, а также повышение долговечности рабочего элемента и корпуса компенсатора колебаний давления, снижение затрат на обслуживание, уменьшение габаритных размеров, за счет установки в корпус стальных пружин с вертикальным расположением и уплотнительного кольца, препятствующего контакту жидкости с корпусом компенсатора колебаний давления.

Указанные задачи решаются тем, что скважинная штанговая насосная установка, содержащая насос, колонны насосных труб и штанг, оборудуется вертикальным пружинным компенсатором, состоящим из корпуса, с расположенным внутри литым поршнем, внутренняя поверхность которого выполнена в виде двух полусфер, содержащим два отверстия, располагающихся под некоторым углом к потоку жидкости, с перпендикулярным расположением осей и пересечением в центре поршня, совершающего возвратно-поступательное движение под действием жидкости вдоль уплотнительного кольца, рабочей секции, включающей втулки и пружины сжатия, параметры (жесткость, длина, диаметр, количество витков и т.д.) которых подобраны таким образом, что гашение пульсации давления происходит в широких диапазонах, а нагрузка на витки распределяется равномерно.

Крышка корпуса, закрепленная шпильками к рабочей секции и содержащая транспортировочное ушко, служит для герметичного соединения. Нижний фланец выполнен таким образом, что его форма способствует плавному и эффективному подводу жидкости в отверстия поршня для сонаправления. Уплотнительное кольцо, установленное в корпусе и фиксирующееся посадочным диском, позволяет избежать коррозионного износа внутренних стенок корпуса компенсатора.

На фиг. 1 представлено устройство вертикального пружинного компенсатора.

Конструкция вертикального пружинного компенсатора:

1 - корпус;

2 - рабочая секция;

3 - шпильки;

4 - поршень;

5 - сквозные отверстия;

6 - шток;

7 - втулки;

8, 9, 10 - пружины;

11 - крышка корпуса;

12 - транспортировочное ушко;

13 - фланец;

14 - крепежный элемент;

15 - прокладка;

16 - посадочный диск;

17 - уплотнения штока;

18 - торцевые уплотнения;

19 - уплотнительное кольцо.

На фиг. 2 схематично представлен общий вид скважинной штанговой насосной установки с вертикальным пружинным компенсатором. Конструкция скважинной штанговой насосной установки:

20 - станок - качалка;

21 - устьевая арматура;

22 - колонна насосных труб;

23 - нагнетательная линия;

24 - опора;

25 - отвод;

26 - вертикальный пружинный компенсатор.

Вертикальный пружинный компенсатор (фиг. 1) состоит из двух секций - нижней, представленной корпусом 1, а также верхней - в виде рабочей секции 2. Соединение двух секций осуществляется за счет затяжек шпилек 3. Внутри нижней секции расположен рабочий орган - поршень 4, служащий для образования встречных потоков для их последующего завихрения и соударения для обеспечения частичного гашения пульсации давления.

Поршень 4 и шток 6, содержащий установочные пазы, выполнены литьем. Втулки 7, надетые вдоль штока 6, служат для установки и фиксации пружин 8, 9, 10 - низкой, средней, высокой жесткости соответственно, а также для передачи поступательного движения от поршня 4. Крышка корпуса 11 с пазами для пружины 10, содержащая транспортировочное ушко 12 для транспортировки и ремонта, а также полый участок для свободного хода штока 6, устанавливается вверху рабочей секции 2 и фиксируется шпильками 3.

К нижней части корпуса 1 присоединен фланец 13 с помощью крепежных элементов 14. Фланец 13, крепящийся к ответному фланцу со стороны нагнетательного трубопровода, содержит пазы для установки прокладки 15 для снижения ударных нагрузок со стороны поршня 4, а также внутренние стенки, расположенных под некоторым углом для эффективного подвода жидкости вдоль внутренних стенок поршня 4 в отверстия 5. Посадочный диск 16 установлен в пазах корпуса и имеет выемки для посадки уплотнений 17 штока вдоль внешних стенок штока 6. На стыках корпусных деталей установлены торцевые уплотнения 18. Уплотнительное кольцо 19, прижимающееся фланцем 13 и фиксирующееся посадочным диском 16 для исключения перегибов, установлено в корпус 1 и служит для герметизации и предотвращения коррозионного износа корпуса компенсатора под действием агрессивной среды.

Устройство работает следующим образом.

Скважинная штанговая насосная установка подает жидкость в нагнетательную линию 23 с установленным на ней вертикальным пружинным компенсатором 26 с помощью отвода 25 и фланцевого соединения. При этом поршень насоса движется с некоторым замедлением и ускорением, вызывая пульсацию давления. Жидкость огибает стенки фланца 13 и поступает в полусферические полости поршня 4, затем движется в отверстия 5 и смешивается со встречным потоком с противоположной стороны. Два встречных потока образуют завихрения за счет углового расположения отверстий 5, тем самым поглощая некоторую часть энергии пульсации потока.

Под действием давления жидкости, нагнетаемой насосной установкой, поршень 4, расположенный в корпусе 1, приводит в действие шток 6, который совершает поступательное движение вместе с втулками 7, приводя в действие пружины 8, 9, 10, размещенные в корпусе 1 и рабочей секции 2.

В пружинах возникают силы упругости, направленные в противоположную сторону усилиям на поршень 4 под действием жидкости. При нагнетании жидкости пружины 8, 9, 10 сжимаются, испытывая циклические нагрузки. За счет усилий сжатия пружин 8, 9, 10 происходит выравнивание подачи насоса, обеспечивая эффективную работу насосной установки в целом.

Пружины 8, 9, 10 сжатия установлены в пазах элементов конструкции компенсатора, параметры (жесткость, длина, диаметр, количество витков и тд.) пружин подобраны таким образом, что гашение пульсации давления обеспечивается в широких диапазонах, а нагрузка на витки каждой отдельной пружины происходит последовательно и равномерно, повышая их долговечность и эффективность работы. Пружина 8 предназначена для низкой области колебаний давления, пружина 9 - для средней, пружина 10 - для высокой. Пружина 8 обладает меньшей площадью сечения витков по сравнению с пружинами 9, 10, но большим количеством витков и длиной хода. Такая конструкция пружины 8 необходима для того, чтобы компенсировать нагрузку от веса поршня 4, штока 6 и втулок 7 при нагнетании жидкости.

При установившейся амплитуде колебаний давления на выходе из насосной установки в работе участвуют все перечисленные пружины, что позволяет равномерно распределить нагрузку. В том числе, при перепадах давления исключено соударение витков с последующей деформацией, за счет эффективной последовательной передачи сжатия каждой пружине. Конструкция данного типа позволяет использовать компенсатор в широких диапазонах колебаний давления, а также повысить долговечность рабочих элементов - пружин, за счет равномерного распределения продольной нагрузки.

Ограничительное устройство хода штока отсутствует по причине подбора жесткости пружины 10, такой, что максимальное давление, развиваемое насосом, не превышает силу упругости пружины.

Поршень 4 установлен в полости корпуса 1 и при движении касается стенок уплотнительного кольца 19. Посадочный диск 16 сконструирован таким образом, что исключает перегибы уплотнительного кольца 19 для обеспечения свободного хода поршня 4. Соударение поршня 4 о посадочный диск 16 также исключено благодаря подбору параметров пружины 10, при которых максимальное давление, развиваемое насосом, не превышает силу упругости пружины.

Приведенная конструкция вертикального пружинного компенсатора обеспечивает высокую степень выравнивания неравномерности подачи скважинной штанговой насосной установки в широких диапазонах, за счет подбора параметров и последовательного соединения пружин без использования работы сжатия газа заданного объема, обладает высокой долговечностью рабочих элементов, а также небольшим весом, малыми габаритными размерами и низкой металлоемкостью, что повышает экономическую эффективность при производстве, транспортировке и ремонте компенсатора.

Скважинная штанговая насосная установка, содержащая насос, колонны насосных труб и штанг, вертикальный пружинный компенсатор, установленный на нагнетательной линии с помощью отвода и фланцевого соединения, отличающаяся тем, что пружинный компенсатор оборудован расположенным внутри корпуса литым поршнем, внутренняя поверхность которого выполнена в виде двух полусфер, содержащим два отверстия, располагающихся под некоторым углом к потоку жидкости, с перпендикулярным расположением осей и пересечением в центре поршня, совершающего возвратно-поступательное движение под действием жидкости, рабочей секцией, включающей втулки и три пружины сжатия с вертикальным расположением для равномерного распределения продольной нагрузки, сжатие которых происходит при низком, среднем и высоком диапазоне колебаний давления соответственно.
Источник поступления информации: Роспатент

Показаны записи 91-100 из 167.
24.05.2019
№219.017.5f65

Способ отбора попутного нефтяного газа и комплекс агрегатов для его осуществления

Изобретение относится к нефтяной промышленности и предназначено для повышения эффективности и надежности механизированной добычи газированных нефтяных флюидов из скважин снятием избыточного давления попутного нефтяного газа в затрубном пространстве. Технический результат - повышение дебита...
Тип: Изобретение
Номер охранного документа: 0002688818
Дата охранного документа: 22.05.2019
24.05.2019
№219.017.5f7b

Станок-качалка

Изобретение относится к области нефтегазодобывающей промышленности и предназначено для привода скважинных штанговых насосов. Станок-качалка содержит основание, опорную стойку, балансир с шарнирно прикрепленной к нему головкой, связанный с подшипником, электродвигатель. Дополнительная...
Тип: Изобретение
Номер охранного документа: 0002688598
Дата охранного документа: 21.05.2019
06.06.2019
№219.017.73df

Тепловой агрегат для совместного получения цементного клинкера, сернистого газа, тепловой и электроэнергии

Изобретение относится к тепловому агрегату для производства строительных материалов, в частности цементного клинкера, и безотходного производства тепловой и электрической энергии. Тепловой агрегат содержит паровой энергетический котел, работающий на твердом топливе горючих промышленных и...
Тип: Изобретение
Номер охранного документа: 0002690553
Дата охранного документа: 04.06.2019
13.06.2019
№219.017.80d9

Способ определения давления насыщения нефти газом

Изобретение относится к способам определения давления насыщения нефти газом Р во внутрискважинной зоне. Способ реализуется на скважинах, оборудованных электроцентробежным насосом (ЭЦН) и частотным преобразователем электрического тока погружного электродвигателя. С помощью двух датчиков...
Тип: Изобретение
Номер охранного документа: 0002691256
Дата охранного документа: 11.06.2019
03.07.2019
№219.017.a3e5

Способ получения горячей асфальтобетонной смеси

Изобретение относится к дорожному строительству, а именно к технологии приготовления асфальтобетонных смесей на основе нефтяных органических связующих, и может быть использовано при строительстве, ремонте и эксплуатации дорожных покрытий во всех дорожно-климатических зонах. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002693170
Дата охранного документа: 01.07.2019
06.07.2019
№219.017.a6f6

Кожухотрубчатый теплообменный аппарат

Изобретение относится к теплообменным аппаратам и может быть использовано в химической, нефтехимической и других отраслях промышленности. Предложен кожухотрубчатый теплообменный аппарат с трубным пучком, размещенным в кожухе, в котором в зазоре между трубным пучком и кожухом аппарата расположен...
Тип: Изобретение
Номер охранного документа: 0002693804
Дата охранного документа: 04.07.2019
10.07.2019
№219.017.a987

Способ заделки трещин в стенке трубопровода и устройство для его осуществления

Группа изобретений относится к трубопроводному транспорту. Способ включает очистку наружной поверхности восстанавливаемого участка трубопровода, разделку трещин, установку полумуфты или муфты вокруг восстанавливаемого участка трубопровода с образованием полости между ее внутренней поверхностью...
Тип: Изобретение
Номер охранного документа: 0002693940
Дата охранного документа: 08.07.2019
16.08.2019
№219.017.c012

Способ добычи сланцевой нефти

Изобретение относится к области нефтедобычи. Технический результат – обеспечение плавных изменений капилярно-пористой структуры пласта и текучести углеводородного сырья, использование одной скважины, облегчение доставки оборудования к месту прогрева, в части разработки эффективных способов...
Тип: Изобретение
Номер охранного документа: 0002697339
Дата охранного документа: 13.08.2019
29.08.2019
№219.017.c45f

Способ получения этил(2e,4z)-5-хлорпента-2,4-диеноата

Изобретение относится к области органической химии, в частности к способу получения этил(2E,4Z)-5-хлорпента-2,4-диеноата. Этил(2E,4Z)-5-хлорпента-2,4-диеноат является перспективным исходным соединением в синтезе практически важных (2E,4Z)-диеновых кислот и их производных. Задачей изобретения...
Тип: Изобретение
Номер охранного документа: 0002698452
Дата охранного документа: 27.08.2019
02.09.2019
№219.017.c5e8

Насосный агрегат для газированных нефтяных флюидов

Изобретение относится к нефтяной промышленности и может быть использовано для откачки газированных нефтяных флюидов при любом механизированном способе эксплуатации скважины. Технический результат - снижение отрицательного влияния затрубного попутного газа на производительность установок...
Тип: Изобретение
Номер охранного документа: 0002698788
Дата охранного документа: 29.08.2019
Показаны записи 61-63 из 63.
12.04.2023
№223.018.47fd

Стенд для моделирования работы установки скважинного штангового насоса

Изобретение относится к исследованиям в области добычи нефти, в частности к лабораторно-измерительной технике для моделирования процессов работы установок скважинных штанговых насосов, позволяющей фиксировать колебательные процессы в колонне штанг, оценить потребляемую мощность установки и, как...
Тип: Изобретение
Номер охранного документа: 0002741821
Дата охранного документа: 28.01.2021
20.04.2023
№223.018.4b0b

Устройство для стабилизации давления на приеме электроцентробежного насоса

Изобретение относится к нефтедобыче и может быть использовано для стабилизации давления на приеме установки электроцентробежного насоса (УЭЦН) в условиях эксплуатации малодебитных скважин. Устройство для стабилизации давления на приеме электроцентробежного насоса снабжено механизмом перепуска...
Тип: Изобретение
Номер охранного документа: 0002770776
Дата охранного документа: 21.04.2022
Тип: Изобретение
Номер охранного документа: 0002748711
Дата охранного документа: 31.05.2021
+ добавить свой РИД