×
12.04.2023
223.018.469b

Результат интеллектуальной деятельности: Способ совместного определения массового содержания Ru, Rh, Pd, Mo, Zr в нитридном облученном ядерном топливе

Вид РИД

Изобретение

№ охранного документа
0002766226
Дата охранного документа
10.02.2022
Аннотация: Изобретение относится к области ядерной техники, в частности к способам аналитического определения массового содержания Ru, Rh, Pd, Mo и Zr в нитридном облученном ядерном топливе. Способ включает осаждение Ru, Rh, Pd, Mo и Zr из раствора нитридного облученного ядерного топлива с последующим определением их массового содержания с использованием атомно-эмиссионного спектрального метода с дуговым источником спектров. Осаждение Ru, Rh, Pd, Mo и Zr осуществляют путем введения в раствор нитридного облученного ядерного топлива раствора соосадителя, состоящего из смеси растворов Zn, Ga и Bi с концентрациями по Zn - 6,5 г/дм, по Ga - 3,5 г/дм и по Bi - 7,9 г/дм, упаривания его до влажных солей и прокаливания для удаления азотной кислоты с получением осадка, который растворяют в воде в присутствии осадителя в виде карбоната калия и тетрабората натрия, фильтруют и промывают раствором карбоната калия, высушивают на воздухе. Изобретение позволяет одновременно определить содержание Ru, Rh, Pd, Mo и Zr в нитридном облученном ядерном топливе с погрешность определения, не превышающей 25 % относительных. 3 з.п. ф-лы, 1 табл.

Изобретение относится к ядерной технологии, преимущественно к аналитическому обеспечению процесса переработки облученного ядерного топлива (ОЯТ), в частности таких видов, как оксидное, нитридное, металлическое и другие виды ядерного топлива.

Актуальной задачей исследования состава и технологии переработки нитридного облученного ядерного топлива является количественное определение содержания металлов платиновой группы Ru, Rh, Pd, а также Zr и Mo.

Известен способ группового выделения осколочных платиноидов из азотнокислых растворов отработанного ядерного топлива, включающий отгонку воды и азотной кислоты, получение осадков с добавлением соединений бора (нитрида бора, карбида бора или борогидрида, натрия), восстановительную плавку шихты при 2000°С и отделение сплава платиновых металлов от расплавленной оксидной фазы (патент US №5082603, кл. G21F 009/00, 1992. Horie M., Fukumoto M., Yoneya M. Method of treatment of high-level radioactive waste).

Недостатками способа являются потери рутения при отгонке азотной кислоты, высокая температура проведения процесса и сложность отделения металлической фазы от оксидной при этой температуре.

Известен также способ осаждения платиноидов из водных растворов, заключающийся в том, что в растворы при переработке отработавшего ядерного топлива вводят при нагревании натриевую соль формальдегидсульфоксиловой кислоты и выделившийся осадок платиновых металлов отделяют от раствора. (WU, С., LIN, Y., JIANG, L. J. Nucl. Radiochem. 8, 3 (1986), р.147).

Недостатком данного способа является необходимость создания низкой концентрации азотной кислоты (0,01-1,4 моль/л), что в свою очередь приводит к увеличению объема раствора. Также стоит отметить, что низкая концентрация азотной кислоты приводит к гидролизу платиновых металлов. Кроме того, осаждение необходимо проводить в интервале температур 70-80° С. Также, этот метод не позволяет выделить палладий в чистом виде, что требует дополнительной операции отделения палладия от других платиновых металлов.

Известен способ получения концентрата родия, палладия и рутения из азотнокислых растворов отработанного ядерного топлива, а также переработки отработанных катализаторов и лома электротехнических и электронных изделий, посредством осаждения из растворов азотной кислоты с концентрацией 2-3 моль/л с введением в качестве осадителя тиоцианата щелочного металла, вводимого в твердом виде с избытком, составляющим 1/3 от количества азотной кислоты в растворе, в интервале температур 18-80°С. Последующее прокаливание полученного осадка ведут при 750-800°С (патент на изобретение RU № 2239666 «Способ получения концентрата родия, палладия и рутения из азотнокислых растворов»).

Недостатками способа являются возможные потери рутения при прокалке осадка в воздушной среде, при высокой температуре 750-800° С. Высокая температура прокалки дополнительно создает сложности проведения процесса в условиях защитного бокса. Кроме того, среди осаждаемых элементов отсутствуют Mo и Zr.

Известен способ выделения палладия, родия и рутения из растворов отработанного ядерного топлива (выбран нами в качестве прототипа) (Пат. US №5393322, кл. С 22 В 011/00, 1995. Ugo R. "Process for recovering noble metals from solutions deriving from the treatment of nuclear fuels"), основанный на осаждении платиновых металлов путем восстановительного карбонилирования азотнокислых растворов при рН 2-4 монооксидом углерода при давлении 1 атм и температуре от 20 до 100°С в течение 6-100 часов.

Основным недостатком метода является предварительное удаление основной массы азотной кислоты из раствора с помощью формальдегида. Такой прием, как было показано (King R.B., Bhattacharyya N.K. // Environ. Sci. Technol. 1997, 31, №4, p.984-992) приводит к частичному восстановлению азотной кислоты до аммиака с последующим образованием аммиачных комплексов платиновых металлов, которые практически не поддаются восстановлению. При проведении процесса в области рН 2-4 для предотвращения гидролиза и выпадения его продуктов в твердую фазу требуется введение в систему маскирующего комплексообразователя - Трилона Б (ЭДТА), что усложняет процесс.

Задачей предполагаемого изобретения являлась разработка способа выделения Ru, Pd, Rh, Zr, Mo из азотнокислых растворов нитридного ОЯТ, с последующим их количественным определением.

Для этого в способе совместного определения массового содержания Ru, Rh, Pd, Mo, Zr в нитридном облученном ядерном топливе, включающем осаждение, в раствор ОЯТ вводят смесь растворов Zn, Ga и Bi, упаривают его на первой стадии до влажных солей, прокаливают (для денитрации) при 150 – 200 oC., растворяют осадок в воде в присутствии карбоната калия (K2CO3) и тетрабората натрия (Na2B2O7*10H2O), фильтруют, промывают осадок раствором K2CO3 с концентрацией не более 0.6 г/дм3 (порционно по 1см3). Осадок высушивают на воздухе, далее определяют Ru, Pd, Rh, Zr, Mo атомно-эмиссионным спектральным методом с дуговым источником спектров.

Введение в раствор Zn, Ga и Bi позволяет соосаждить определяемые примеси.

В качестве соосадителей используют Zn, Ga, Bi – элементы, имеющие простой малолинейчатый спектр, различные ионные радиусы, кристаллическую структуру, сорбционные свойства, низкую растворимость осадков их карбонатов и гидроксидов;

Способ позволяет одновременно определить Ru, Rh, Pd, Mo и Zr в нитридном облученном ядерном количестве до 1,5*10-3 масс. %. Погрешность определения не превышает 25 % относительных.

От прототипа этот способ отличается тем, что:

- объем раствора нитридного ОЯТ для анализа не превышает 1,0 – 1,5 см3;

- осаждение ведут из исходных растворов ОЯТ с концентрацией азотной кислоты 6 - 8 моль/л;

- процесс денитрации проводят в интервале температур 150 – 200 °С;

- в качестве соосадителей используются Zn, Ga, Bi – элементы, имеющие простой малолинейчатый спектр, различные ионные радиусы, кристаллическую структуру, сорбционные свойства, низкую растворимость осадков их карбонатов и гидроксидов;

- осаждение Ru, Pd, Rh, Zr, Mo из азотнокислого раствора ОЯТ проводят вводимым в виде порошка карбонатом калия;

- осаждение проводится при рН раствора 9.0 - 9.5, буферная емкость раствора обеспечивается путем введения тетрабората натрия (Na2B4O7);

- весь процесс определения Ru, Pd, Rh, Zr, Mo составляет 44-48 часов.

Подготовка анализируемой пробы заключается в отборе аликвоты раствора нитридного ОЯТ таким объемом, чтобы масса U в аликвоте составляла 15-25 мг. Аликвота отбирается в химически чистый кварцевый тигель, в него также добавляется 0,67 см3 раствора соосадителя. Раствор соосадителя состоит из смеси Zn с концентрацией 6.5 г/дм3, Ga с концентрацией 3.5 г/дм3 и Bi с концентрацией 7.9 г/дм3.

Полученная смесь упаривается на электрической плитке при температуре 50 - 90o C до влажных солей, с последующей прокалкой полученного остатка при 150 - 200 oC, в течение 2-х часов, для удаления азотной кислоты.

По окончании процесса кварцевый тигель охлаждается на воздухе до температуры помещения. После чего в тигель последовательно вносится не менее 60 мг осадителя (K2CO3), не менее 17 мг буфера (Na2B2O7*10H2O) и не менее 1 см3 H2O. Тетраборат натрия (Na2B2O7*10H2O) обеспечивает поддержание оптимального значения рН раствора для осаждения равного 9.0 - 9.5.

В результате осаждения Ru, Pd, Rh, Zr и Mo переходят в осадок, в виде карбонатных осадков, а в маточном растворе остаётся уран, плутоний, щелочные, щелочноземельные элементы и часть продуктов деления.

Полученная таким образом смесь перемешивается тефлоновым шпателем и оставляется на 2 часа для созревания карбонатных осадков благородных металлов. По истечении установленного времени сформированный осадок переносится на фильтр “синяя лента”, промывается 4 см3 раствора K2CO3 с концентрацией 0.6 г/дм3 (порционно по 1см3) с целью удаления остаточных U, Pu.

Полученный осадок высушивается в течение 24 - 36 часов. Высушенный осадок размельчается, взвешивается и навесками по 5 мг помещается в графитовые электроды типа «рюмка», для дальнейшего атомно-эмиссионного спектрального анализа.

Спектры возбуждают в дуге постоянного тока при силе тока 14 А на генераторе «Везувий-3», время экспозиции составляет 30 с. Спектры получают на спектрометрах СТЭ–1 и PGS–2, с установленными многоканальными анализаторами эмиссионных спектров – МАЭС и программным комплексом «Атом-3.3».

Аналитические линии определяемых элементов свободные от наложения спектральных линий урана и плутония: Mo - 317.043 нм, Pd - 342.124 нм, 340.458 нм; Rh - 343.489 нм, 339.682 нм; Ru - 342.832 нм, Zr – 339.198 нм, 327.926 нм., 327.305 нм.

Массовое содержание Mo, Zr, Rh, Pd, Ru рассчитывается по градуировочным зависимостям (интенсивность спектральной линии от концентрации анализируемого элемента), которые строятся по образцам сравнения, полученными аналогичным, описанным выше способом.

Исследование предложенного способа проводили с использованием модельных растворов, приготовленных на основе урана с концентрацией 20 г/л и введенными элементами Ru, Pd, Rh, Zr, Mo, концентрация азотной кислоты в растворе составила 8 моль/л. Для приготовления модельного раствора использовали стандартные растворы Ru, Pd, Rh, Zr, Mo фирмы Inorganic Ventures с концентрацией 10 г/дм3, аттестованных согласно ISO 9001.

В раствор вводили смесь растворов Zn, Ga и Bi, упаривали его на первой стадии до влажных солей, прокаливают (для денитрации) при 150 – 200 oC., растворяли осадок в воде в присутствии карбоната калия (K2CO3) и тетрабората натрия (Na2B2O7*10H2O), фильтровали, повторно промывали осадок раствором K2CO3 с концентрацией не более 0.6 г/дм3 (порционно по 1см3).

Полученный карбонатный осадок Ru, Rh, Pd, Mo и Zr размельчали, взвешивали и навесками по 5 мг помещали в графитовые электроды типа «рюмка», для дальнейшего атомно-эмиссионного спектрального анализа.

Расчёт массового содержания Ru, Pd, Rh, Zr, Mo проводили по результатам шести параллельных определений для каждого из приготовленных растворов.

В таблице представлены средние значения, полученные в каждой серии измерений.

Таблица

Элементы Концентрация внесенная, мг/л Концентрация найденная, мг/л Концентрация найденная, % от теоретического СКО Предел обнаружения, масс. %
Mo 1,47 1,34 91,20 0,08 1,5*10-3
4,76 3,80 79,83 0,06
13,33 11,50 86,27 0,40
Rh 1,47 1,20 81,63 0,12 1,5*10-3
13,33 13,10 98,27 0,77
25,00 24,50 98,00 0,36
Pd 4,76 4,10 86,13 0,74 1,5*10-3
13,33 15,00 112,53 0,47
25,00 23,80 98,00 0,68
Ru 4,76 3,70 77,73 0,27 5,0*10-3
13,33 15,30 114,78 0,68
25,00 23,50 94,00 0,37
Zr 1,47 1,00 68,03 0,08 1,5*10-3
13,33 6,00 45,01 0,07
25,00 17,00 68,00 0,25

Источник поступления информации: Роспатент

Показаны записи 1-8 из 8.
02.10.2019
№219.017.cfc0

Способ переработки оксидного ядерного топлива

Изобретение относится к ядерной энергетике и может быть использовано преимущественно в замкнутом ядерном топливном цикле (ЗЯТЦ). Способ включает восстановление компонентов оксидного ядерного топлива при электролизе расплава хлорида лития с добавкой оксида лития в количестве не менее 1 мас. % с...
Тип: Изобретение
Номер охранного документа: 0002700934
Дата охранного документа: 24.09.2019
01.12.2019
№219.017.e966

Способ переработки тепловыделяющих элементов

Изобретение относится к ядерной энергетике. Способ переработки тепловыделяющих элементов с нитридным отработавшим ядерным топливом включает растворение их фрагментов до получения электролитного раствора, содержащего соединения актинидов, пригодного для их выделения. Растворение тепловыделяющих...
Тип: Изобретение
Номер охранного документа: 0002707562
Дата охранного документа: 28.11.2019
04.06.2020
№220.018.2405

Сенсор для измерения кислородосодержания расплава licl-lio-li и атмосферы над расплавом

Изобретение относится к аналитической технике и может быть использовано в технологиях переработки оксидного ядерного топлива преимущественно в замкнутом ядерном топливном цикле. Сенсор содержит пробирку из твердого электролита, эталонный электрод, токосъемник с эталонного электрода, токосъемник...
Тип: Изобретение
Номер охранного документа: 0002722613
Дата охранного документа: 02.06.2020
24.06.2020
№220.018.29ed

Способ переработки нитридного ядерного топлива

Изобретение относится к ядерной энергетике, в частности, к технологии переработки отработавшего нитридного ядерного топлива и может быть использовано преимущественно в замкнутом ядерном топливном цикле (ЗЯТЦ). Способ включает конверсию компонентов нитридного топлива в хлориды при температуре не...
Тип: Изобретение
Номер охранного документа: 0002724117
Дата охранного документа: 22.06.2020
15.05.2023
№223.018.5776

Способ удаления оксидов редкоземельных элементов при переплавке металлического урана

Изобретение относится к области переработки облученного ядерного топлива, в частности пироэлектрохимической технологии переработки облученного ядерного топлива, на стадии переплава металлического урана. Предложен способ переплава металлического урана, содержащего примеси оксидов редкоземельных...
Тип: Изобретение
Номер охранного документа: 0002766610
Дата охранного документа: 15.03.2022
30.05.2023
№223.018.7305

Устройство для гранулирования

Изобретение относится к области машиностроения и может быть использовано для формирования топливных гранул из мелкодисперсных материалов. Устройство для гранулирования содержит бункер для порошка, узел вертикальной шнековой подачи для дозированной подачи порошка из бункера на механизм...
Тип: Изобретение
Номер охранного документа: 0002771196
Дата охранного документа: 28.04.2022
16.06.2023
№223.018.7ad0

Модульная система контроля термодинамической активности кислорода в тяжелом жидкометаллическом теплоносителе ядерного реактора

Изобретение относится cистеме контроля термодинамической активности кислорода в тяжелом жидкометаллическом теплоносителе ядерного реактора. Система содержит измерительный блок и датчики термодинамической активности кислорода, установленные в периферийной части ядерного реактора и снабженные...
Тип: Изобретение
Номер охранного документа: 0002732732
Дата охранного документа: 22.09.2020
16.06.2023
№223.018.7af6

Радиолокационная система для удаленного контроля наполнителя внутри замкнутого объема

Изобретение относится к контрольно-измерительной технике, в частности к радиолокационным системам. Система содержит корпус замкнутого объема с агрессивной средой внутри и блок электронный для управления и обработки информации, территориально удаленный от корпуса замкнутого объема на...
Тип: Изобретение
Номер охранного документа: 0002733813
Дата охранного документа: 07.10.2020
Показаны записи 1-3 из 3.
10.05.2018
№218.016.3bf1

Способ совместного определения массового содержания нептуния, америция и плутония в растворах спектрофотометрическим методом

Изобретение относится к ядерной технологии, в частности к аналитическому обеспечению процесса переработки облученного ядерного топлива, и раскрывает способ совместного спектрофотометрического определения нептуния, америция и плутония. Способ характеризуется тем, что упаривают аликвоту...
Тип: Изобретение
Номер охранного документа: 0002647837
Дата охранного документа: 19.03.2018
18.05.2018
№218.016.5223

Способ совместного определения массового содержания урана и плутония в растворах кулонометрическим методом при постоянной силе тока

Использование: для определения массового содержания урана и плутония в растворах кулонометрическим методом. Сущность изобретения заключается в том, что при постоянной силе тока упаривают аликвоту раствора смешанного уран-плутониевого топлива до влажных солей, для определения плутония часть...
Тип: Изобретение
Номер охранного документа: 0002653090
Дата охранного документа: 07.05.2018
23.05.2023
№223.018.6d5f

Способ совместного определения массового содержания катионных примесных элементов в соединениях плутония, нептуния, америция и кюрия методом атомно-эмиссионной спектрометрии

Изобретение относится к ядерной технологии, к аналитическому обеспечению технологии замкнутого топливного цикла, в частности к анализу химической чистоты соединений плутония, нептуния, америция и кюрия. Способ совместного определения массового содержания Al, В, Fe, Cr, Pb, Mo, Ni, Ti, Са, Cu,...
Тип: Изобретение
Номер охранного документа: 0002764779
Дата охранного документа: 21.01.2022
+ добавить свой РИД