×
12.04.2023
223.018.4689

Результат интеллектуальной деятельности: СПОСОБ ЭЛЕКТРОВЗРЫВНОГО НАПЫЛЕНИЯ БИОИНЕРТНЫХ ПОКРЫТИЙ НА ОСНОВЕ МОЛИБДЕНА И НИОБИЯ НА ИМПЛАНТАТЫ ИЗ ТИТАНОВЫХ СПЛАВОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу электровзрывного напыления биоинертных покрытий на основе молибдена и ниобия на имплантаты из титановых сплавов и может быть использовано в медицинской технике, в травматологии и ортопедии. Осуществляют электрический взрыв двухслойного композиционного электрически взрываемого проводника, один из слоев которого состоит из молибденовой фольги массой 50-500 мг, а второй слой - из ниобиевой фольги с массой, равной 0,5-2,0 массы первого слоя. Формируют из продуктов взрыва импульсную многофазную плазменную струю. Оплавляют поверхности имплантата из титанового сплава при поглощаемой плотности мощности 1,5-1,8 ГВт/м. Осуществляют осаждение на поверхность продуктов взрыва и формирование на ней биоинертного покрытия на основе молибдена и ниобия. В результате формируется поверхностный слой с высокой адгезией покрытия с подложкой из титанового сплава, низкой шероховатостью и гомогенизированной структурой, обладающий антибактериальным эффектом, что увеличивает срок службы имплантатов и расширяет область практического применения. 3 ил.

Изобретение относится к технологии нанесения покрытий на металлические поверхности с использованием концентрированных потоков энергии, в частности, к технологии получения на поверхности имплантатов из титановых сплавов, работающих в организме человека, покрытий на основе молибдена и ниобия, которые могут быть использованы в области медицины с целью получения биосовместимых низкомодульных сплавов.

Известно покрытие на имплантат из титана и его сплавов и способ его приготовления (RU 2502526, МПК A61L 27/06, A61L 27/02, А61Е 2/02, опубл. 27.12.2013). Покрытие на имплантат из титана и его сплавов состоит из двух слоев, первый слой состоит из оксидов титана, в основном ТiO2, второй слой состоит из оксида алюминия гамма-модификации, общая толщина двухслойного покрытия составляет от 40 до 180 мкм при следующем соотношении компонентов, мас. %: оксид титана, в пересчете на ТiO2 - 10-30; гамма-оксид алюминия - 70-90. Способ получения покрытия включает механическую обработку поверхности имплантата, обезжиривание, термическую обработку для получения на поверхности имплантата оксидов титана, последующее нанесение второго слоя. Обезжиривание ведут в растворе щелочи - KОН, NaOH, термическую обработку осуществляют в интервале температур 700-800°С с последующим получением двухслойного покрытия из оксида титана и оксида алюминия, при этом вначале наносят гидроксид алюминия в нагретом до 60-90°С растворе алюминатов щелочных металлов с последующей выдержкой в этом растворе до комнатной температуры, дальнейшей промывкой, сушкой и термической обработкой покрытия при температуре 500-600°С для получения вторичного покрытия из оксида алюминия.

Недостатком способа является низкая адгезия вторичного биоинертного или биосовместимого покрытия.

Наиболее близким к заявляемому изобретению является способ нанесения биоинертных покрытий на основе циркония на титановые имплантаты (RU №2686092, МПК A61L 27/04, A61F 2/02, С23С 4/00, C25D 11/26, опубл. 24.04.2019). Способ нанесения биоинертных покрытий на основе циркония на титановые имплантаты включает электрический взрыв циркониевой фольги массой 50-500 мг, формирование из продуктов взрыва импульсной многофазной плазменной струи, оплавление ею поверхности имплантата из титанового сплава при поглощаемой плотности мощности 1,5-1,8 ГВт/м2, осаждение на поверхность продуктов взрыва и формирование на ней биоинертного покрытия на основе циркония.

Недостатком способа является низкая антибактериальная активность биоинертных электровзрывных покрытий на основе циркония.

Технической проблемой, решаемой заявляемым изобретением является получение биоинертного или биосовместимого покрытия на основе молибдена и ниобия на поверхности различных имплантатов из титановых сплавов, обладающего антибактериальной активностью.

Существующая техническая проблема решается тем, что предложен способ электровзрывного напыления биоинертных покрытий на основе молибдена и ниобия на имплантаты из титановых сплавов, включающий электрический взрыв двухслойного композиционного электрически взрываемого проводника, один из слоев которого состоит из молибденовой фольги массой 50-500 мг, а второй слой - из ниобиевой фольги равной 0,5-2,0 массы первого слоя, формирование из продуктов взрыва импульсной многофазной плазменной струи, оплавление ею поверхности имплантата из титанового сплава при поглощаемой плотности мощности 1,5-1,8 ГВт/м2, осаждение на поверхность продуктов взрыва и формирование на ней биоинертного покрытия на основе молибдена и ниобия.

Технический результат, получаемый при осуществлении изобретения, заключается в том, что, при электрическом взрыве композиционного электрически взрываемого проводника, состоящего из молибденовой и ниобиевой фольг, продукты разрушения образуют плазменную струю, служащую инструментом формирования на поверхности имплантатов из титановых сплавов покрытия на основе молибдена и ниобия. Электровзрывное напыление приводит к формированию покрытия на основе молибдена и ниобия с высокой адгезией с имплантатом из титанового сплава. Использование недорогих металлов, обладающих антимикробной и антибактериальной эффективностью, приобретает все большую важность в последнее время. К таким металлам относятся молибден и ниобий. Формирование покрытия на основе молибдена и ниобия обеспечивает антимикробный и антибактериальный эффект. Преимущество заявляемого способа по сравнению с прототипом заключается в формировании поверхностного слоя с высокой адгезией покрытия с подложкой из титанового сплава, низкой шероховатостью и гомогенизированной структурой, обладающего антибактериальным эффектом, что увеличивает срок службы имплантатов, и расширяет область практического применения.

Пролиферативную активность клеточных линий определяли методом непосредственного подсчета количества клеток после их контакта с образцами с нанесенными покрытиями с помощью оптического микроскопа. Исследования проводили на клеточной культуре фибробластов подкожной соединительной ткани мыши (L929). Линия получена из коллекции культур клеток ФГУН ГНЦ «Вектор». Количество клеток определяли методом непосредственного подсчета при помощи 4-х сеточной камеры Горяева и оптического инвертированного микроскопа Axio Observer (Zeiss). Для подсчета клеток использовали витальную окраску трипановым синим для одновременного определения количества живых и погибших клеток.

Клеточную линию культивировали в среде Игла MEM с добавлением 10% фетальной бычьей сыворотки (FBS) и 5% пенициллин-стрептомицина-глутамина в сосудах площадью 75 см2. Культивирование клеток проводили при температуре 37±1°С и 5% СO2 в течение 24 часов. Культуру клеток рассевали в культуральные 24-луночные планшеты (общий объем 2 мл) в количестве 50000 клеток на одну лунку. Образцы помещали на монослой клеток в каждую лунку. Клетки инкубировали с образцами в течение 24 часов. В ходе эксперимента за контроль принимали культуру, не контактировавшую с образцами. После инкубирования производили непосредственный подсчет клеток. В результате проведенных исследований было выявлено, что процент выживших клеток на поверхности биоинертных покрытий на основе молибдена и ниобия составляет 100%, что указывает на высокую пролиферативную активность фибробластов. При этом на образце без покрытия (титановый сплав ВТ6) процентное содержание выживших клеток составило 91%.

Проводили исследования на растровом электронном микроскопе образцов с биоинертными электровзрывными молибденовыми покрытиями. Для этого образцы с высаженными на их поверхность культурами клеток промывали и фиксировали в специальных растворах, а затем высушивали в гексане. По окончании процесса высушивания культуру извлекали из держателя и помещали в эксикатор с влагопоглотителем для временного хранения. На полученных изображениях проводили подсчет клеток фибробластов с помощью программного обеспечения «Photoshop». В результате статистического анализа полученных изображений было выявлено, что наибольшее количество клеток обнаружено на образцах с покрытием на основе молибдена и ниобия. На образцах без покрытия (титановый сплав ВТ6) среднее количество клеток было на 20% меньше.

Противомикробная активность образцов была проверена методом подсчетов жизнеспособных бактерий. В этом методе in vitro динамика уничтожения бактерий в образце измерялась путем подсчета остаточных бактерий по сравнению с контролем. Культуры микроорганизмов Staphylococcus aureus (MRSA) культивировали в течение 24 часов при температуре 37±1°С, затем готовили взвесь микроорганизмов в концентрации 105 КОЕ/мл. Staphylococcus aureus 209 - грамположительные шаровидные клетки диаметром 0,5-1,5 мкм. Измерение эффективности сорбции поводили на бактериях Staphylococcus aureus согласно рекомендациям (Ворошилова А.А. Окисляющие нефть бактерии показатели интенсивности биологического окисления нефти в природных условиях / А.А. Ворошилова, Е.Д. Дианова // Микробиология. - 1952. - Т. 21. - С. 408-415.). Для определения эффективности сорбции, образцы стерилизованного в автоклаве продукта с массой 100 мг помещали в стерильные колбы и добавляли 30 мл бактериальной суспензии с концентрацией 1,0×10 КОЕ/мл. Адсорбцию микроорганизмов на образцах проводили при постоянном перемешивании суспензии в течение 30 мин на магнитной мешалке РЕ-6600 (Ecroskhim, Россия) со скоростью 500 об/мин. Далее пробы центрифугировали в течение 3 минут при скорости вращения 1300 об/мин и осуществляли посев 1 мл надосадочной жидкости на МПА. Посевы инкубировали в термостате при температуре 37±1°С в течение 24 ч. Через сутки после инкубирования проводили подсчет колоний. Остаточные жизнеспособные бактерии (КОЕ/мл) подсчитывали после 3 и 6 ч инкубации при 37°С. Микроорганизмы в PBS использовали только в качестве контролей. Для каждого образца были проведены два независимых эксперимента с пятью повторениями на образец на один эксперимент. Статистический анализ проводили с помощью непарного t-теста Стьюдента, а р<0,05 считали статистически значимым. Биоинертное покрытие на основе молибдена и ниобия обладает антибактериальным эффектом. Количество КОЕ уменьшается после 6 часов культивирования до 7 523 с имплантатом из титанового сплава без покрытия (титановый сплав ВТ6) - 10 225.

Цитотоксическое действие образцов с биоинертными молибденовыми покрытиями определяли при помощи МТТ-теста на клеточной культуре фибробластов подкожной соединительной ткани мыши (L929). (ФБУН ГНЦ ВБ «Вектор», Россия). Конечная концентрация клеток составила 0,5⋅104 клеток/100 мкл в лунке 96-луночного микропланшета. Клетки культивировали в виде монослоя в среде Игла MEM (Lonza, Швейцария) с добавлением 10% FCS, 2 mМ L-глутамина и 5% пенициллин/стрептомицина/глутамина. Культивирование клеток проводили при температуре 37±1°С и 5% СO2 в течение 24 часов. После инкубирования питательную среду осторожно удаляли и два раза промывали клетки раствором DPBS. Клетки с образцами инкубировали при температуре 37±1°С и 5% СO2 в течение 24, 48 и 72 часов. Затем в каждую лунку добавляли по 100 мкл питательной среды и по 10 мкл раствора МТТ (3-4,5-диметилтиазол-2,5 дифенил тетразилия бромида). Инкубирование с раствором МТТ проводили в течение 2 часов при температуре 37±1°С и 5% СO2. По окончании инкубирования питательную среду осторожно удаляли и добавляли в каждую лунку по 100 мкл диметилсульфоксида для растворения кристаллов формазана. Через 15 минут определяли оптическую плотность на микропланшетном спектрофотометре Multiscan FC при длине волны 620 нм. Далее вычисляли процент живых клеток (CL) по формуле CL=(As/Ac)⋅100%, где As - оптическая плотность исследуемого образца, Ас - оптическая плотность контрольного образца. Контрольной группой служили клетки без добавления образца с покрытиями. Для статистической обработки данных использовались параметрические методы с уровнем достоверности р≤0,05. Образцы с покрытиями на основе молибдена и ниобия не являются токсичными, что подтверждают исследования цитотоксичности. При этом, количество выживших клеток после контакта с образцом с покрытиями на основе молибдена и ниобия на 3% выше, чем у образца без покрытия (титановый сплав ВТ6).

Исследования методом сканирующей электронной микроскопии показали, что при электровзрывном напылении на имплантатах из титановых сплавов путем электрического взрыва композиционного электрически взрываемого проводника, один из слоев которого состоит из молибденовой фольги массой 50-500 мг, а второй слой - из ниобиевой фольги равной 0,5-2,0 массы первого слоя при поглощаемой плотности мощности 1,5-1,8 ГВт/м2 происходит формирование покрытия на основе молибдена и ниобия. Указанный режим, при котором поглощаемая плотность мощности составляет 1,5-1,8 ГВт/м2, установлен эмпирически и является оптимальным, поскольку при интенсивности воздействия ниже 1,5 ГВт/м2 не происходит образование рельефа между покрытием и подложкой из титанового сплава, вследствие чего возможно отслаивание покрытия, а выше 1,8 ГВт/м2 происходит формирование развитого рельефа поверхности напыляемого покрытия. При значении массы молибденовой фольги менее 50 мг становится невозможным изготовление из нее двухслойного композиционного электрически взрываемого проводника. При значении массы молибденовой фольги более 500 мг покрытие на основе молибдена и ниобия на поверхности имплантатов из титановых сплавов обладает большим количеством дефектов. При значении массы ниобия менее 0,5 или более 2,0 массы фольги покрытие на основе молибдена и ниобия на поверхности имплантатов из титановых сплавов также обладает дефектной структурой. Граница электровзрывного покрытия с подложкой не является ровной, что позволяет увеличить адгезию покрытия с подложкой.

Микротвердость измеряли на микротвердомере HVS-1000A. Значение микротвердости по Виккерсу сформированных покрытий составляет 1,1-1,25 ГПа. Модуль упругости сформированных покрытий составил 200-250 Гн/м2, предел прочности при растяжении 750-780 Мн/м2.

Способ поясняется рисунками, где:

на фиг. 1 представлена структура поперечного сечения поверхностного слоя биоинертного покрытия на основе молибдена и ниобия - покрытие получено на титановом сплаве марки ВТ6;

на фиг. 2 - структура поперечного сечения поверхностного слоя биоинертного покрытия на основе молибдена и ниобия и подложкой (титановый сплав ВТ6);

на фиг. 3 - увеличенное изображение структуры биоинертного покрытия на основе молибдена и ниобия.

Примеры конкретного осуществления способа:

Пример 1.

Обработке подвергали штифт (ввинчивается в челюстную кость) дентального имплантата (титановый сплав марки ВТ6, химический состав %: Ti 90,04, Fe 0,5, С 0,1, Si 0,1, V 3,5, N 0,05, Al 5,3, Zr 0,2, О 0,2, H 0,01) площадью 1 см2. Использовали двухслойный композиционный электрически взрываемый проводник, один из слоев которого состоял из молибденовой фольги массой 50 мг, а второй слой - из ниобиевой фольги массой 25 мг. Сформированной плазменной струей оплавляли поверхность титанового штифта при поглощаемой плотности мощности 1,5 ГВт/м2 и формировали на ней электровзрывное покрытие на основе молибдена и ниобия. Электровзрывное напыление осуществляли на электровзрывной установке ЭВУ 60/10 М (Автоматизированная электровзрывная установка для повышения эксплуатационных характеристик материалов / Ю.Д. Жмакин, Д.А. Романов, Е.А. Будовских и др. // Промышленная энергетика. - 2011. - №6. С. 22-25).

Получили биоинертное покрытие на основе молибдена и ниобия с высокой адгезией покрытия с подложкой на уровне когезии, обладающее антибактериальной активностью.

Пример 2.

Обработке подвергали пластину Т-образную косую (титановый сплав марки ВТ1-0, химический состав %: Ti 99,48, Fe 0,18, С 0,07, Si 0,1, N 0,04, О 0,12, Н 0,01) площадью 15 см2, применяемую для остеосинтеза дистального метаэпифиза лучевой кости. Использовали двухслойный композиционный электрически взрываемый проводник, один из слоев которого состоял из молибденовой фольги массой 500 мг, а второй слой - из ниобиевой фольги массой 1000 мг. Сформированной плазменной струей оплавляли поверхность пластины Т-образной косой при поглощаемой плотности мощности 1,8 ГВт/м2 и формировали на ней электровзрывное покрытие на основе молибдена и ниобия. Получили биоинертное покрытие на основе молибдена и ниобия с высокой адгезией с подложкой на уровне когезии, обладающее антибактериальной активностью. Электровзрывное напыление осуществляли на электровзрывной установке ЭВУ 60/10 М (Автоматизированная электровзрывная установка для повышения эксплуатационных характеристик материалов / Ю.Д. Жмакин, Д.А. Романов, Е.А. Будовских и др. // Промышленная энергетика. - 2011. - №6. С. 22-25).

Предлагаемый способ позволяет сформировать поверхностный слой с высокой адгезией покрытия с подложкой из титанового сплава, низкой шероховатостью, гомогенизированной структурой и антибактериальной активностью, что увеличивает срок службы имплантатов, и расширяет область практического применения.

Способ электровзрывного напыления биоинертных покрытий на основе молибдена и ниобия на имплантаты из титановых сплавов, включающий электрический взрыв двухслойного композиционного электрически взрываемого проводника, один из слоев которого состоит из молибденовой фольги массой 50-500 мг, а второй слой - из ниобиевой фольги массой, равной 0,5-2,0 массы первого слоя, формирование из продуктов взрыва импульсной многофазной плазменной струи, оплавление ею поверхности имплантата из титанового сплава при поглощаемой плотности мощности 1,5-1,8 ГВт/м и осаждение на поверхность продуктов взрыва с формированием на ней биоинертного покрытия на основе молибдена и ниобия.
Источник поступления информации: Роспатент

Показаны записи 11-20 из 47.
23.03.2019
№219.016.ec76

Флюс для механизированной сварки и наплавки сталей

Изобретение может быть использовано для электродуговой механизированной сварки под флюсом. Флюс содержит шлак производства силикомарганца, включающий диоксид кремния, оксид алюминия, оксид кальция, оксид магния, оксид марганца, оксид железа, и флюс-добавку при следующем соотношении компонентов,...
Тип: Изобретение
Номер охранного документа: 0002682730
Дата охранного документа: 21.03.2019
29.03.2019
№219.016.edf3

Флюс для механизированной сварки и наплавки сталей

Изобретение может быть использовано при электродуговой механизированной сварке и наплавке сталей под флюсом. Флюс содержит пыль газоочистки производства силикомарганца 59-67 мас. % и жидкое стекло 33-41 мас. %. Изобретение обеспечивает уменьшение стоимости производства флюса и сварочного...
Тип: Изобретение
Номер охранного документа: 0002683164
Дата охранного документа: 26.03.2019
29.03.2019
№219.016.ee2d

Флюс для механизированной сварки и наплавки сталей

Изобретение может быть использовано при электродуговой механизированной сварке и наплавке сталей под флюсом. Флюс содержит шлак производства силикомарганца, включающий диоксид кремния, оксид алюминия, оксид кальция, оксид магния, оксид марганца, оксид железа, и флюс-добавку, состоящую из...
Тип: Изобретение
Номер охранного документа: 0002683166
Дата охранного документа: 26.03.2019
02.05.2019
№219.017.48c0

Способ определения сопротивляемости горных пород хрупкому разрушению

Изобретение относится к горному делу и может быть использовано для определения сопротивляемости горных пород хрупкому разрушению. Способ включает воздействие на горную породу твердосплавным индентором с последующей фиксацией усилия в момент хрупкого разрушения породы. Индентор представляет...
Тип: Изобретение
Номер охранного документа: 0002686783
Дата охранного документа: 30.04.2019
27.05.2019
№219.017.61d5

Пространственный механизм для захвата, удержания и перемещения объектов

Изобретение относится к механизмам, применяемым в технике для получения заданного движения выходного звена, и может быть использовано, в частности, в медицине при проведении лапароскопических операций. Механизм содержит стойку, кривошип, винтовой шатун, гайку с жестко установленным на ней...
Тип: Изобретение
Номер охранного документа: 0002689270
Дата охранного документа: 24.05.2019
27.05.2019
№219.017.61e6

Способ повышения энергоэффективности паросиловой установки и устройство для его осуществления

Способ может быть использован в области энергетики на тепловых электрических станциях (ТЭС) и атомных электрических станциях (АЭС) при утилизации низкопотенциальной теплоты циркуляционной воды тепловым насосом с целью повышения энергоэффективности. Утилизацию низкопотенциальной теплоты от...
Тип: Изобретение
Номер охранного документа: 0002689233
Дата охранного документа: 24.05.2019
08.06.2019
№219.017.75c3

Шихта порошковой проволоки

Изобретение может быть использовано при наплавке рабочих поверхностей деталей металлургического оборудования, к которым предъявляются повышенные требования по твердости и износостойкости. Шихта порошковой проволоки содержит компоненты в следующем соотношении, мас.%: пыль газоочистки...
Тип: Изобретение
Номер охранного документа: 0002690874
Дата охранного документа: 06.06.2019
08.06.2019
№219.017.75d2

Способ выделения металлического кремния из шлака технического кремния

Изобретение относится к области цветной металлургии и может быть использовано в производстве технического кремния и ферросилиция. Способ включает приготовление шихты из шлака, полученного при рафинировании кремния с введением шлакообразующих и растворителя, плавление шихты и выдержку,...
Тип: Изобретение
Номер охранного документа: 0002690877
Дата охранного документа: 06.06.2019
19.07.2019
№219.017.b6b2

Оригами механизм

Изобретение относится к области машиностроения, а более конкретно к устройствам, применяемым в технике для трансформации плоских конструкций в пространственные. Оригами механизм содержит стойку, ведущее звено, шатун и коромысло. Сферические шарниры в обеих кинематических цепях установлены на...
Тип: Изобретение
Номер охранного документа: 0002694704
Дата охранного документа: 16.07.2019
07.09.2019
№219.017.c882

Способ многослойной наплавки теплостойкими сталями высокой твердости в азотсодержащей среде

Изобретение может быть использовано при наплавке рабочих поверхностей деталей горно-металлургического оборудования, к которым предъявляются повышенные требования по твердости и износостойкости. Осуществляют предварительный подогрев наплавляемой заготовки до температуры выше температуры начала...
Тип: Изобретение
Номер охранного документа: 0002699488
Дата охранного документа: 05.09.2019
Показаны записи 11-20 из 35.
10.05.2016
№216.015.3c57

Способ нанесения износостойких покрытий на основе диборида титана и молибдена на стальные поверхности

Изобретение относится к технологии нанесения покрытий на металлические поверхности с использованием концентрированных потоков энергии и может быть использовано в горнодобывающей и других отраслях промышленности. Способ включает электрический взрыв композиционного электрически взрываемого...
Тип: Изобретение
Номер охранного документа: 0002583227
Дата охранного документа: 10.05.2016
25.08.2017
№217.015.ae68

Способ повышения микротвёрдости медных изделий

Изобретение относится к обработке меди и может быть использовано в различных отраслях промышленности, в которых применение находят медь и медные сплавы. Способ обработки изделия из поликристаллической меди заключается в воздействии на изделие постоянным магнитным полем с индукцией от 0,1 до 0,4...
Тип: Изобретение
Номер охранного документа: 0002612862
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.bdcb

Способ электронно-лучевой обработки изделия из технического титана вт1-0

Изобретение относится к упрочняющей обработке металлов с использованием концентрированных потоков энергии, в частности к получению на техническом титане ВТ1-0 поверхностных слоев с градиентной многофазной структурой, которые могут быть использованы для повышения ресурса работы деталей машин и...
Тип: Изобретение
Номер охранного документа: 0002616740
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.be92

Способ повышения долговечности изделия из меди, работающего в условиях ползучести

Изобретение относится к обработке меди и сплавов на ее основе и может быть использовано для регулирования ресурса работы изделий, изготавливаемых из поликристаллической меди марки М00б, эксплуатирующихся в условиях ползучести. Способ повышения долговечности изделия из поликристаллической меди,...
Тип: Изобретение
Номер охранного документа: 0002616742
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.bf83

Способ нанесения электроэрозионностойких покрытий на основе вольфрама, меди и никеля на медные электрические контакты

Изобретение относится к области получения электрических контактов, в частности к формированию на медных электрических контактах покрытий на основе вольфрама, никеля и меди, которые могут быть использованы в электротехнике. Способ включает электрический взрыв композиционного электрически...
Тип: Изобретение
Номер охранного документа: 0002617190
Дата охранного документа: 21.04.2017
26.08.2017
№217.015.d8e7

Способ нанесения электроэрозионностойких покрытий на основе молибдена, меди и никеля на медные электрические контакты

Изобретение относится к формированию на поверхности медных электрических контактах покрытий и может быть использовано в электротехнике. Способ включает электрический взрыв композиционного электрически взрываемого проводника, состоящего из двухслойной плоской медной оболочки массой 60-360 мг и...
Тип: Изобретение
Номер охранного документа: 0002623546
Дата охранного документа: 27.06.2017
26.08.2017
№217.015.d927

Способ нанесения электроэрозионностойких покрытий на основе хрома, карбидов хрома и меди на медные электрические контакты

Изобретение относится к технологии нанесения покрытий на металлические поверхности с использованием концентрированных потоков энергии и может быть использовано в электротехнике. Способ нанесения электроэрозионного покрытия системы медь – хром, содержащего карбиды хрома, на медные электрические...
Тип: Изобретение
Номер охранного документа: 0002623548
Дата охранного документа: 27.06.2017
13.02.2018
№218.016.1f79

Способ электродуговой наплавки износостойкого покрытия на сталь hardox 400

Изобретение относится к области сварочного производства и может быть использовано при получении износостойких покрытий на деталях из углеродистых и низколегированных сталях, работающих в условиях абразивного износа. Способ включает электродуговую наплавку износостойкого покрытия на сталь Hardox...
Тип: Изобретение
Номер охранного документа: 0002641200
Дата охранного документа: 16.01.2018
18.05.2018
№218.016.50b7

Способ нанесения износостойких покрытий на основе карбида титана, crcи алюминия на штамповые стали

Изобретение относится к формированию на стальных поверхностях износостойких покрытий, которые могут быть использованы в штамповочном производстве. Способ включает электрический взрыв композиционного электрически взрываемого проводника, состоящего из двухслойной плоской алюминиевой оболочки...
Тип: Изобретение
Номер охранного документа: 0002653395
Дата охранного документа: 08.05.2018
09.06.2018
№218.016.5a96

Способ нанесения износостойких покрытий на основе карбида титана, никеля и молибдена на штамповые стали

Изобретение относится к формированию на стальных поверхностях покрытий на основе карбида титана, никеля и молибдена, которые могут быть использованы в штамповочном производстве и других отраслях промышленности. Способ включает электрический взрыв композиционного электрически взрываемого...
Тип: Изобретение
Номер охранного документа: 0002655408
Дата охранного документа: 28.05.2018
+ добавить свой РИД