×
12.04.2023
223.018.42dc

Результат интеллектуальной деятельности: Газоразрядный источник электронов

Вид РИД

Изобретение

№ охранного документа
0002792635
Дата охранного документа
22.03.2023
Аннотация: Изобретение относится к области плазменной техники, а именно к газоразрядным источникам электронов, и может быть использовано в электрореактивных двигателях, в том числе, работающих на химически активных газах, для нейтрализации ионного потока, а также в вакуумно-плазменной технологии обработки поверхности различных материалов и нанесения функциональных покрытий с использованием химически активных газов, а также в качестве автономно функционирующего источника плазмы. Технический результат - увеличение ресурса, снижение энергопотребления и стойкость к химически активным рабочим газам. Газоразрядный источник электронов содержит катод, выполненный в виде пустотелого цилиндра из немагнитного материала с торцевой стенкой, на которой расположено отверстие для подвода рабочего газа, изолятор и анод с выходным отверстием, которые образуют замкнутую газоразрядную полость, источник магнитного поля, формирующий в полости катода магнитное поле, силовые линии которого имеют составляющую, параллельную боковой стенке цилиндра, и источник электропитания самостоятельного газового разряда. В газоразрядную полость установлена перегородка со сквозным отверстием. 1 табл., 2 ил.

Изобретение относится к области плазменной техники, а именно, к газоразрядным источникам электронов (или катодам-компенсаторам) и может быть использовано в электрореактивных двигателях, в том числе, работающих на химически активных газах, для нейтрализации ионного потока, а также в вакуумно-плазменной технологии обработки поверхности различных материалов и нанесения функциональных покрытий с использованием химически активных газов, а также в качестве автономно функционирующего источника плазмы.

Основное преимущество безнакальных газоразрядных источников электронов состоит в том, что они могут длительное время работать при наличии в рабочем объеме химически активных газов: кислорода, азота и других.

Из предшествующего уровня техники известен катод-компенсатор, содержащий полую капсулу с термоэмиттером, которые охватывает накальная спираль, окруженная изоляционной трубкой, поверх которой расположены тепловые экраны, держатель спирали, поджигной электрод и трубку подвода газа, отличающийся тем, что изоляционная трубка выполнена с внутренним диаметром меньше наружного диаметра накальной спирали и на внутренней поверхности изоляционной трубки выполнена винтообразная канавка с шагом накальной спирали, при этом они взаимно сопряжены с согласованием их азимутального позиционирования [Патент RU № 2684633, H01J 37/077, H05H 1/54, F03H 1/00]

Недостатком такого источника электронов (катода-компенсатора накального типа) являются высокие требования к степени чистоты рабочего вещества, в качестве которого используют инертные газы, и низкий ресурс работы в присутствии химически активных газов.

Известен газоразрядный источник электронов, принятый за прототип, содержащий катод, выполненный в виде пустотелого цилиндра из немагнитного материала с торцевой стенкой, на которой расположено, по меньшей мере, одно отверстие для подвода рабочего газа, изолятор и анод с, по меньшей мере, одним выходным отверстием, которые образуют замкнутую газоразрядную полость, источник магнитного поля, формирующий в полости катода магнитное поле, силовые линии которого имеют составляющую параллельную боковой стенке цилиндра, источник электропитания самостоятельного газового разряда. [Разрядные и эмиссионные характеристики плазменного источника электронов на основе разряда в скрещенных E x H полях с различным материалом катода [Текст]/ А.П. Достанко, Д.А. Голосов // Журнал технической физики. - 2009. - №10. - С. 53-58.]

Такой известный газоразрядный источник электронов, по сравнению с аналогом, за счет использования самостоятельного газового разряда с холодным катодом и отсутствию накальных деталей в конструкции обладает значительно большей химической стойкостью и ресурсом работы в присутствии химически активных газов.

Однако и данная конструкция газоразрядного источника электронов имеет свои недостатки.

Самостоятельный газовый разряд, использованный в газоразрядном источнике электронов существует при напряжениях в сотни вольт, в то же время у предшествующего аналога рабочее напряжение составляет десятки вольт, что пропорционально увеличивает энергопотребление газоразрядного источника электронов относительно аналога при одинаковых электронных токах.

Кроме этого, высокое напряжение усиливает распыление материала катода, что ограничивает ресурс его работы.

При создании изобретения решались задачи по увеличению ресурса и снижению энергопотребления устройства с сохранением стойкости к химически активным газам.

Указанный технический результат достигается тем, что в газоразрядном источнике электронов, содержащем катод, выполненный в виде пустотелого цилиндра из немагнитного материала с торцевой стенкой, на которой расположено, по меньшей мере, одно отверстие для подвода рабочего газа, изолятор и анод с, по меньшей мере, одним выходным отверстием, которые образуют замкнутую газоразрядную полость, источник магнитного поля, формирующий в полости катода магнитное поле, силовые линии которого имеют составляющую параллельную боковой стенке цилиндра, источник электропитания самостоятельного газового разряда, согласно изобретению, в газоразрядную полость установлена, по меньшей мере, одна перегородка с, по меньшей мере, одним сквозным отверстием, диаметр которого соотносится с внутренним диаметром катода как 0.01…0.5.

Перегородка может быть изготовлена из различных материалов как магнитных, так и немагнитных, в том числе материала катода.

Установка перегородки в газоразрядной полости позволяет снизить разрядное напряжение газоразрядного источника электронов и, соответственно, снизить энергопотребление за счет увеличения времени жизни электронов в разрядном промежутке и увеличения вероятности ионизации рабочего газа. Увеличение ресурса достигается за счет снижения распыления катода вследствие снижения напряжения.

Таким образом, газоразрядный источник электронов, изготовленный согласно изобретению, позволяет увеличить ресурс и снизить энергопотребление устройства с сохранением стойкости к химически активным газам.

Изобретение поясняется чертежами, которые не охватывают и, тем более не ограничивают весь объем притязаний данного технического решения, а являются лишь иллюстрирующими материалами частного случая выполнения:

На фиг.1 представлена конструкция газоразрядного источника электронов со всеми основными элементами в случае одной перегородки

На фиг.2 представлена конструкция газоразрядного источника электронов со всеми основными элементами в случае двух перегородок и различного количества сквозных отверстий в них.

Газоразрядный источник электронов, содержащий катод 1, выполненный в виде пустотелого цилиндра из немагнитного материала с торцевой стенкой, на которой расположено, по меньшей мере, одно отверстие для подвода рабочего газа, изолятор 2 и анод 3 с, по меньшей мере, одним выходным отверстием, которые образуют замкнутую газоразрядную полость, источник магнитного поля 4, формирующий в полости катода магнитное поле 5, силовые линии которого имеют составляющую параллельную боковой стенке цилиндра, источник электропитания 6 самостоятельного газового разряда, отличающийся тем, что в газоразрядную полость установлена, по меньшей мере, одна перегородка 7 с, по меньшей мере, одним сквозным отверстием. Для извлечения электронов может использоваться извлекающий электрод 8, на который подается положительное напряжение относительно анода 3 с помощью извлекающего источника электропитания 9.

Газоразрядный источник электронов работает следующим образом.

Рабочее тело (например, газообразный ксенон или воздух) поступает через отверстие для подвода рабочего газа в газоразрядную полость, образованную катодом и анодом. При подаче напряжения питания 300…500В между катодом и анодом в полости возникает самостоятельный разряд в магнитном поле. Плазма магнетронного разряда служит источником электронов, которые вытягиваются через выходное отверстие за счет возникающего разряда между анодом газоразрядного источника электронов и анодом плазменного ускорителя (на рисунке не показан), либо между анодом газоразрядного источника электронов и извлекающим электродом. Установка перегородки с, по меньшей мере, одним сквозным отверстием в газоразрядную полость увеличивает время жизни электронов в разрядном промежутке и увеличивает вероятность ионизации рабочего газа. Каждый электрон, таким образом, рождает большее количество пар частиц на пути от катода к аноду, более эффективно отдавая на ионизацию газа набранную в электрическом поле энергию, при этом необходимое для поддержания самостоятельного разряда напряжение снижается в среднем на 10%. В таблице 1 приведено сравнение параметров работы газоразрядного источника электронов и прототипа.

Таблица 1. Рабочие параметры газоразрядного источника электронов в сравнении с прототипом

Параметр Газоразрядный источник электронов Прототип
Напряжение, В 306 340
Ток, А 0,5 0,5
Магнитное поле на оси, Тл 0,09 0,09
Расход, г/с 0,4 0,4
Внутренний диаметр катода, мм 24 24
Диаметр отверстия во вставке, мм 3,5 -
Материал катода Медь Медь
Рабочий газ Аргон Аргон

Газоразрядный источник электронов, содержащий катод, выполненный в виде пустотелого цилиндра из немагнитного материала с торцевой стенкой, на которой расположено по меньшей мере одно отверстие для подвода рабочего газа, изолятор и анод с по меньшей мере одним выходным отверстием, которые образуют замкнутую газоразрядную полость, источник магнитного поля, формирующий в полости катода магнитное поле, силовые линии которого имеют составляющую, параллельную боковой стенке цилиндра, источник электропитания самостоятельного газового разряда, отличающийся тем, что в газоразрядную полость установлена по меньшей мере одна перегородка с по меньшей мере одним сквозным отверстием.
Источник поступления информации: Роспатент

Показаны записи 1-2 из 2.
10.10.2015
№216.013.811d

Способ нанесения электропроводящего покрытия для электрообогреваемого элемента органического остекления

Изобретение относится к вакуумному нанесению покрытий, а именно к нанесению электропроводящего прозрачного покрытия на полимерную пленку для электрообогреваемого элемента органического остекления. Проводят реактивное магнетронное распыление металлической мишени в атмосфере газовой смеси...
Тип: Изобретение
Номер охранного документа: 0002564650
Дата охранного документа: 10.10.2015
25.08.2017
№217.015.9e01

Способ получения абразивостойкого электрообогреваемого полимерного слоистого материала

Изобретение относится к многослойным легким ударостойким деталям остекления с применением полимерных стекол и может применяться во многих отраслях промышленности. Способ изготовления многослойного стекла включает сборку пакета из листов стекла, где в качестве внешнего слоя применяют...
Тип: Изобретение
Номер охранного документа: 0002610774
Дата охранного документа: 15.02.2017
Показаны записи 1-4 из 4.
10.10.2015
№216.013.811d

Способ нанесения электропроводящего покрытия для электрообогреваемого элемента органического остекления

Изобретение относится к вакуумному нанесению покрытий, а именно к нанесению электропроводящего прозрачного покрытия на полимерную пленку для электрообогреваемого элемента органического остекления. Проводят реактивное магнетронное распыление металлической мишени в атмосфере газовой смеси...
Тип: Изобретение
Номер охранного документа: 0002564650
Дата охранного документа: 10.10.2015
25.08.2017
№217.015.9e01

Способ получения абразивостойкого электрообогреваемого полимерного слоистого материала

Изобретение относится к многослойным легким ударостойким деталям остекления с применением полимерных стекол и может применяться во многих отраслях промышленности. Способ изготовления многослойного стекла включает сборку пакета из листов стекла, где в качестве внешнего слоя применяют...
Тип: Изобретение
Номер охранного документа: 0002610774
Дата охранного документа: 15.02.2017
10.01.2019
№219.016.ae13

Многослойный низкоэмиссионный материал

Изобретение относится к производству многослойного низкоэмиссионного текстильного материала, обеспечивающего сохранение камуфлирующих свойств наружного слоя и отражающего электромагнитное излучение в тепловизионном инфракрасном диапазоне, обладающего высоким уровнем воздухопроницаемости и...
Тип: Изобретение
Номер охранного документа: 0002676574
Дата охранного документа: 09.01.2019
19.04.2019
№219.017.3374

Способ нанесения прозрачного электропроводящего покрытия

Изобретение относится к нанесению прозрачных электропроводящих покрытий и может найти применение в авиационной, оптической и других областях техники. Способ включает реактивное магнетронное распыление металлической мишени из сплава индия с оловом и осаждение в рабочей камере покрытия на...
Тип: Изобретение
Номер охранного документа: 0002448197
Дата охранного документа: 20.04.2012
+ добавить свой РИД