×
12.04.2023
223.018.4251

Результат интеллектуальной деятельности: Способ подачи нанодисперсного компонента топливной композиции в камеру сгорания прямоточного воздушно-реактивного двигателя

Вид РИД

Изобретение

Аннотация: Способ подачи нанодисперсного компонента топливной композиции в камеру сгорания прямоточного воздушно-реактивного двигателя относится к области авиационного двигателестроения, может быть использован при разработке прямоточных воздушно-реактивных двигателей (ПВРД) и повышения эффективности сгорания топливных композиций на основе жидких реактивных горючих и нанодисперсных добавок (нанодисперсный углерод, металлические горючие и их соединения) к ним в камере сгорания ПВРД, за счет начала смешения нанодисперсных частиц компонента топливной композиции с набегающим потоком воздуха в воздухозаборнике, последующим разогревом в воздухозаборнике из-за торможения потока воздуха со сверхзвуковых скоростей до звуковых, перед смешением с жидким реактивным горючим, подаваемым после воздухозаборника в камеру сгорания прямоточного воздушно-реактивного двигателя. Сущность способа заключается в том, что подачу компонента топливной композиции осуществляют перед воздухозаборником или в воздухозаборнике дозированно и непрерывно в виде нанодисперсного порошка, через систему подачи, не связанную с системой подачи жидкого реактивного горючего в камеру сгорания прямоточного воздушно-реактивного двигателя. Такой способ подачи позволяет повысить эффективность, массовое совершенство и расширить область применения ПВРД в летательных аппаратах различных габаритов, обеспечить стабильность и эффективность подачи в камеру сгорания ПВРД в виде дыма или газовзвеси нанодисперсного компонента топливной композиции, повысить полноту сгорания нанодисперсного компонента топливной композиции на основе жидкого реактивного горючего, сохранить эксплуатационные характеристики реактивных горючих и способы подачи жидкого реактивного горючего в камеру сгорания ПВРД, исключив применение загустителей и поверхностно-активных веществ, сократить время полного сгорания топливно-воздушной смеси в камере сгорания ПВРД. 1 ил.

Способ подачи нанодисперсного компонента топливной композиции в камеру сгорания прямоточного воздушно-реактивного двигателя относится к области авиационного двигателестроения, может быть использован при разработке прямоточных воздушно-реактивных двигателей (ПВРД) и повышения эффективности сгорания топливно-воздушной смеси в камере сгорания ПВРД.

Известен способ повышения энергетических характеристик ПВРД путем введения в жидкое ракетное топливо порошков металлов (алюминий, бор, бериллий, магний) с дисперсностью частиц 100 нм и более [1]. Существенным недостатком таких суспензий является их расслоение при хранении и эксплуатации с выпадением металла в осадок. Для снижения этого эффекта используются загустители - вещества, добавление которых в незначительных количествах повышает вязкость топлива, при этом возникают трудности, связанные с подачей горючего в камеру сгорания и его распылением.

Требования по энергомассовым характеристикам топлив оцениваются двумя свойствами: их плотностью и удельным импульсом тяги, в связи с этим нанодисперсные горючие представляют интерес для ПВРД как горючие с высокой теплотворной способностью или высокой теплопроизводительностью при невысокой теплотворной способности. В качестве нанодисперсных горючих могут быть использованы углерод (шихта, детонационные наноалмазы) [2], металлы, соединения металла с водородом.

В жидкие реактивные горючие (ЖРГ) нанодисперсные горючие (НГ) могут вводиться в виде суспензий или в виде коллоидных растворов [1], добавление которых в незначительных количествах вызывает повышение вязкости топлива. Так для поддержания вязкости топливной композиции на основе ЖРГ и НТ в приемлемых пределах и предотвращения выпадения в осадок НГ при хранении или эксплуатации необходимо добавлять поверхностно-активные вещества (ПАВ). ПАВ в свою очередь могут оказывать существенное влияние на характеристики горения топливной композиции, особенно это важно в ПВРД используемых для достижения высоких скоростей полета. Также при перегрузках, возникающих при старте и полете летательного аппарата (ЛА), происходит полное или частичное осаждение твердых нанодисперсных частиц в топливных баках, даже при наличии загустителей (ПАВ), имеется ряд сложностей при организации сжигания топливной композиции на основе ЖРГ и НГ, так как время от начала поступления топливной композиции (ЖРГ с НГ) в камеру сгорания, смешения с воздухом (окислителем), воспламенения и сгорания имеют различное время. Из-за чего будет необходимо увеличивать длину камеры сгорания, соответственно всей двигательной установки (ДУ) и ЛА, что снизит эффективность использования НГ.

Характер горения частиц НГ зависит от соотношения температур кипения металла и образующегося при горении окисла [1]. Для НГ, температура кипения которого ниже температуры кипения их окислов (например, НГ представленное в виде алюминия, магния, бериллия), механизм горения представляется следующим образом, на примере металлических горючих. Первая стадия - нагрев частиц металла, оказавшихся в зоне горения, до температуры плавления металла с образованием мелких сферических капель с тонкой оболочкой окисла. Вторая стадия - температура металла возрастает от температуры воспламенения до температуры установившегося горения. К концу этой стадии частица покрывается сплошным слоем окисла. Под давлением паров металла жидкая окисная пленка растягивается, образуя вокруг капли расплавленного металла подобие мыльного пузыря. Третья стадия - взаимодействие между металлом и кислородом осуществляется вследствие диффузии паров металла через жидкоокисную пленку в окружающую среду и встречной диффузии кислорода внутрь пузыря. При этом размеры капли металла непрерывно уменьшаются. Как показывают исследования, на этой стадии горения часто происходят разрывы оболочки окисла с рассеиванием капель расплавленного металла, что сопровождается яркой вспышкой. Время, необходимое для сгорания твердых частиц, существенно больше времени, необходимого для сгорания газообразного горючего. Поэтому для того, чтобы обеспечить полноту сгорания твердых частиц в случае топливной композиции на основе ЖРГ с НГ, требуется большая длина камеры сгорания, в связи с чем необходимо осуществить подготовку НГ заблаговременно, до ввода в камеру сгорания.

Экзотермически реагирующие вещества широко используются в качестве источников энергии и рабочего тела во многих технических устройствах реактивных двигателях. Специфика химического превращения энергоемких веществ обычно характеризуется скоротечностью и не стационарностью, а также отличается высокими требованиями по надежности и стабильности процесса.

Любой ПВРД ЛА имеет инжекторы топлива, камеру сгорания, сопло и воздухозаборник, который сжимает и снижает скорость приходящего воздуха, тем самым разогревая его. На фиг. 1 схематично представлено устройство ПВРД ЛА и схема сечений газового потока, проходящего в ПВРД ЛА:

1 - корпус ЛА;

2 - устройство подачи нанодисперсного компонента топливной композиции перед воздухозаборником двигательной установки;

3 - устройство подачи компонента топливной композиции в воздухозаборник двигательной установки;

4 - корпус ПВРД ЛА. Сечения (фиг. 1):

I-II - вход диффузора сжатия;

II-IV - диффузор сжатия, в котором происходит преобразование набегающего потока забортного воздуха к параметрам необходимым для поддержания горения ТВС в камере сгорания ПВРД ЛА;

III-IV - в - подача жидкого реактивного горючего в КС, период задержки воспламенения, начало реакций горения ТВС;

IV - вход в камеру сгорания;

IV-VI - камера сгорания;

IV-V - ПЗВ ТВС;

VI - сопло расширения.

Течение воздуха в диффузоре с замыкающим прямым скачком на входе имеет следующие скорости воздушного потока при сверхзвуковых скоростях полета (фиг. 1) сечение II более 1 Маха, интервал II-III менее или равное 1 Маху, интервал III-IV менее или равное 1 Маху, интервал IV-VI менее или равное 1 Маху. За счет торможение набегающего потока воздуха в диффузоре воздухозаборника (фиг. 1 интервал II-III) происходит разогрев воздуха.

На основе экспериментально полученных результатов и путем программного расчета получены данные по температуре воздушного потока в ПВРД ЛА при полете со сверхзвуковой скоростью (5 М) на высоте 25 км [3]:

- внешний кожух 750-815 К (1, фиг. 1);

- вход воздухозаборника 611 К (сечение II, фиг. 1);

- выход воздухозаборника 1300-1450 К (интервал III-IV, фиг. 1);

- вход камеры сгорания 1100-1160 К (сечение IV, фиг. 1);

- выход камеры сгорания 2580-2720 К (сечение VI, фиг. 1);

- на срезе сопла 2450 К.

Рассмотрев основные характеристики воздушного потока в воздухозаборнике и далее, процессы, происходящие в КС ДУ, возможно оценить известные способы организации рабочего процесса в ПВРД.

Известен способ организации рабочего процесса в гибридном ракетно-прямоточном воздушно-реактивном аэрокосмическом двигателе [4], который включает ракетный двигатель на топливе в виде взвеси нанопорошка алюминия с размером частиц не более 25 нм в жидкой водной фазе. Двигатель предназначен для создания тяги при старте и на начальном этапе полета, а также для наработки топлива, потребляемого совмещенным с ним ПВРД крейсерского полета на молекулярном водороде, образующимся при сжигании нанопорошка алюминия. Нанопорошок алюминия сжигается в парах воды в камере сгорания, которая является одновременно химическим реактором для получения водорода.

Недостатком данного способа является сложность реализации устойчивого режима горения, включающего многостадийные взаимовлияющие процессы диффузии, тепло- и массообмена, химической кинетики и газовой динамики.

Наиболее близким по технической сущности к заявляемому способу является организация рабочего процесса в прямоточном воздушно-реактивном двигателе включающая подачу равномерно перемешанной суспензии, порошка металлического горючего, в сжиженном горючем газе в камеру сгорания, его воспламенение и горение в потоке воздуха из воздухозаборника. Порошок в виде равномерно перемешанной суспензии в сжиженном горючем газе, размещенной в топливном баке, предварительно нагружают давлением вытеснения, нагревают и подают в камеру сгорания через форсунки [5].

Недостатком данного способа является то, что порошок подается непосредственно в камеру сгорания двигательной установки, при этом отсутствует время для подготовки порошкообразного горючего к процессу горения, что увеличивает общее время подготовки топливно-воздушной смеси (ТВС) для сгорания и может обуславливать неполноту сгорания ТВС в камере сгорания или необходимости увеличения длинны камеры сгорания (КС) ДУ ЛА, что приводит к увеличению массогабаритных характеристик ДУ и ЛА в целом, или невозможности реализации высокой скорости полета при фиксированной длине камеры сгорания ДУ ЛА. Подача равномерно перемешанной суспензии порошкообразного металлического горючего в сжиженном горючем газе, из топливного бака, предварительно нагруженного давлением вытеснения, и размещенных в топливном баке форсунок в камеру сгорания, ведет к увеличению массогабаритных характеристик ЛА. Наличие емкости со сжиженным горючим газом, системы подачи и смешения с металлическим горючим в отдельном баке ведет к снижению массового совершенства ЛА, увеличению времени и сложности подготовки ЛА к применению, усложняет процесс подготовки горючего. Также в качестве компонента топливной композиции предлагается использовать только порошок металлизированного горючего в виде суспензии, что определяет размер частиц используемого металлического порошка более 100 нм, что не позволяет обеспечить большую реакционную площадь, в сравнении с нанодисперсным порошком, не рассмотрен вариант, использования в качестве добавки к топливной композиции, углерода, так как в отличие от металлических добавок у него отсутствует оксидная пленка, увеличивающая время подготовки и общее время реакции в КС ПВРД.

Задачей настоящего изобретения является создание способа, позволяющего повысить эффективность, массовое совершенство и расширить область применения ПВРД в ЛА различных габаритов, обеспечить стабильность и эффективность подачи в КС ПВРД в виде дыма или газовзвеси [6] нанодисперсного компонента ТК, повысить полноту сгорания нанодисперсного компонента топливной композиции на основе жидкого реактивного горючего в ПВРД ЛА для полета на сверхзвуковых скоростях, сохранить эксплуатационные характеристики реактивных горючих и способы подачи жидкого реактивного горючего в камеру сгорания ПВРД, исключив применение загустителей и ПАВ, обеспечить подготовку нанодисперсного компонента ТК до поступления в КС, что позволит сократить период задержки воспламенения и время полного сгорания ТВС в КС ПВРД,

Технический результат, на достижение которого направленно заявленное изобретение, достигается тем, что разработан способ подачи нанодисперсного компонента топливной композиции в камеру сгорания прямоточного воздушно-реактивного двигателя, включающий подачу компонента топливной композиции, осуществляемую перед воздухозаборником или в воздухозаборнике дозированно и непрерывно, в виде нанодисперсного порошка, через систему подачи, не связанную с системой подачи жидкого реактивного горючего в камеру сгорания прямоточного воздушно-реактивного двигателя.

Новым в заявляемом способе является то, что подачу компонента топливной композиции осуществляют в виде нанодисперсного порошка перед воздухозаборником или в воздухозаборнике дозированно и непрерывно, через систему подачи, не связанную с системой подачи жидкого реактивного горючего в камеру сгорания прямоточного воздушно-реактивного двигателя, что позволяет осуществить подготовку и предварительный разогрев нанодисперсного компонента ТК, за счет торможения воздушного потока в воздухозаборнике со сверхзвуковых скоростей до звуковых. Предварительное смешение с воздухом, поступающим в воздухозаборник, нанодисперсного компонента топливной композиции до поступления в камеру сгорания ПВРД и смешение с реактивным горючим в КС в стехиометрическом соотношении. Отсутствие дополнительных топливных баков, баков для хранения сжиженного горючего газа, системы создания давления выдавливания суспензии через форсунки в КС, системы смешения и подогрева металлического горючего порошка со сжиженным горючим газом, системы подачи, клапанов и управления подачей суспензии в КС, позволяет расширить область применения ПВРД в ЛА различных габаритов, уменьшить размеры ПВРД с сохранением эффективности ДУ.

При использовании НГ проблемным вопросом является их подготовка и введение в состав ТК, так как функциональные характеристики, способные обеспечить качественный подъем, находятся в прямой зависимости от качества смешивания. Поэтому важным требованием к применяемым способам введения НГ, которые исключают коагуляцию частиц, предотвращают их агломерацию в ходе выполнения технологических операций является предварительная подготовка компонентов к смешению и обеспечение равномерности распределения НГ по объему, в связи с чем предложенный способ подачи нанодисперсного компонента топливной композиции в камеру сгорания прямоточного воздушно-реактивного двигателя является наиболее оптимальным и эффективным для использования, т.к. вводя НГ перед воздухозаборником мы обеспечиваем подготовку и разогрев подаваемого НГ, температурные показатели в ДУ ПВРД представлены выше, и качественное смешение с воздухом перед поступлением его в КС и как итог обеспечивается высокая полнота и эффективность сгорания ТВС, сокращается время подготовки ТВС в КС и сгорания. Так же предложенный способ позволяет расширить область применения ПВРД в ЛА различных габаритов, повысить энергомассовые характеристики ПВРД, упростить способ подачи нанодисперсного компонента ТК в КС, повысить безопасность эксплуатации ПВРД в ЛА, сократить время подготовки ЛА к применению, повысить массовое совершенство ПВРД и ЛА.

Источники информации:

1. Орлов Б.В., Мазинг Г.Ю., Рейдель А.Л., Степанов М.Н., Топчеев Ю.И. Основы проектирования ракетно-прямоточных двигателей. - М.: Машиностроение, 1967. - 434 с. С. 159-166.

2. Горбачев В.А., Горбачев О.В. Инженерные методы расчета энергомассовых характеристик и формирования оптимальных составов безметальных смесевых твердых ракетных топлив и взрывчатых веществ. - М.: ООО «Сам Полиграфист», 2017. - 548 с. С. 385-439.

3. Масюков М.В., Петрухин Н.В. Разработка новых способов химической активации топлив на основе реактивных углеводородных горючих для импульсных детонационных двигателей, проведение исследований предложенных рецептур топлив // XXXVIII НТК «Инновационные материалы, технологии и социально-экономические аспекты развития экономики и обороноспособности РФ» Сборник научных трудов - г. Балашиха. Изд-во ВТУ МО РФ, 2013 - с. 222-240. Часть 1.

4. Патент РФ №2563641, 2015 г.

5. Патент РФ №2633730, 2017 г.

6. Ягодников Д.А. Воспламенение и горение порошкообразных металлов / - М.: Изд-во МГТУ им. Н.Э. Баумана, 2009. 432 с. С. 9-20.

Способ подачи нанодисперсного компонента топливной композиции в камеру сгорания прямоточного воздушно-реактивного двигателя, заключающийся в том, что подачу осуществляют в виде равномерно перемешанной суспензии в сжиженном горючем газе, из размещенных в топливном баке форсунок в камеру сгорания, отличающийся тем, что подачу компонента топливной композиции осуществляют перед воздухозаборником или в воздухозаборнике дозированно и непрерывно в виде нанодисперсного порошка, через систему подачи, не связанную с системой подачи жидкого реактивного горючего в камеру сгорания прямоточного воздушно-реактивного двигателя.
Источник поступления информации: Роспатент

Показаны записи 21-30 из 97.
29.12.2017
№217.015.f521

Биометрическое устройство верификации субъекта доступа

Изобретение относится к вычислительной технике и может найти применение при организации санкционированного доступа к ресурсам вычислительной системы. Технический результат заключается в повышении надежности устройства и уменьшении его аппаратных ресурсов. Устройство содержит сканер...
Тип: Изобретение
Номер охранного документа: 0002637987
Дата охранного документа: 08.12.2017
29.12.2017
№217.015.f558

Логический вычислитель в системе остаточных классов

Изобретение относится к вычислительной технике и может быть использовано для аппаратной реализации криптографических примитивов. Технический результат изобретения заключается в обеспечении вычисления в системе остаточных классов. Технический результат достигается за счет логического вычислителя...
Тип: Изобретение
Номер охранного документа: 0002637488
Дата охранного документа: 04.12.2017
29.12.2017
№217.015.f5cb

Устройство сложения (вычитания) n чисел с настраиваемым модулем

Изобретение относится к вычислительным устройствам, функционирующим в системе остаточных классов, и может быть использовано при аппаратной реализации криптографических алгоритмов. Технический результат - повышение быстродействия устройства. Для этого устройство содержит блоки памяти хранения...
Тип: Изобретение
Номер охранного документа: 0002637988
Дата охранного документа: 08.12.2017
29.12.2017
№217.015.f8c7

Устройство обнаружения и распознавания объектов

Изобретение относится к устройствам для обнаружения и распознавания сложных технических объектов на основе сравнения топологий электромагнитных точек объектов. Технический результат заключается в повышении чувствительности устройства обнаружения и классификации объектов, имеющих точки...
Тип: Изобретение
Номер охранного документа: 0002639689
Дата охранного документа: 21.12.2017
29.12.2017
№217.015.fc59

Ресурсосберегающий способ ликвидации сооружений шахтного типа

Изобретение относится к области взрывных работ специального назначения. В донной части ствола шахты на цилиндрической стенке металлического стакана устанавливают кольцевой удлиненный кумулятивный заряд бризантного взрывчатого вещества и подрывают его. Затем на дно шахты помещают компактный...
Тип: Изобретение
Номер охранного документа: 0002638047
Дата охранного документа: 11.12.2017
29.12.2017
№217.015.fdb3

Малогабаритный инфракрасный твердотельный лазер

Изобретение относится к лазерной технике. Малогабаритный инфракрасный твердотельный лазер содержит лазер накачки и кристалл Fe:ZnSe - пассивный модулятор добротности, При этом на грани кристалла Fe:ZnSe, параллельные оптической оси лазера накачки, нанесены полупрозрачное и отражающее...
Тип: Изобретение
Номер охранного документа: 0002638078
Дата охранного документа: 11.12.2017
19.01.2018
№218.016.0412

Устройство определения разновысотных высокоточных геодезических базовых направлений в полевых условиях

Изобретение относится к области гироскопических систем и может быть использовано для определения азимута базового геодезического направления в полевых условиях, располагаемого на различной высоте по отношению к горизонту, азимут которого определяется с высокой точностью гироскопическим методом....
Тип: Изобретение
Номер охранного документа: 0002630524
Дата охранного документа: 11.09.2017
19.01.2018
№218.016.0445

Азимутальная ориентация платформы трехосного гиростабилизатора

Изобретение относится к области приборостроения и может быть использовано для определения азимутального положения платформы трехосного гиростабилизатора, например в высокоточных навигационных системах различного назначения. Технический результат - повышение точности и сокращение времени...
Тип: Изобретение
Номер охранного документа: 0002630526
Дата охранного документа: 11.09.2017
19.01.2018
№218.016.0657

Устройство для адаптивной оценки помехоустойчивости широкополосного радиоканала

Изобретение относится к области электросвязи. Технический результат заключается в повышении надежности и помехоустойчивости радиоканала. Устройство содержит: анализатор принимаемых сигналов, два счетчика ошибок, блок сравнения, дешифратор, реверсивный счетчик, дешифратор номера состояния,...
Тип: Изобретение
Номер охранного документа: 0002631157
Дата охранного документа: 19.09.2017
19.01.2018
№218.016.07ae

Способ определения критических условий разрушения оболочек детонирующих удлиненных зарядов и устройство для его осуществления

Изобретение относится к средствам и системам разведения детонационных команд и устройствам взрывной логики. Оболочку детонирующего удлиненного заряда (ДУЗ) с переменной по длине толщиной стенки снаряжают одним из известных способов бризантным взрывчатым веществом – ВВ. Твердым порошкообразным...
Тип: Изобретение
Номер охранного документа: 0002631457
Дата охранного документа: 22.09.2017
Показаны записи 21-30 из 31.
11.10.2018
№218.016.8fc6

Устройство для повышения скорости метания снарядов или пуль

Устройство для метания снарядов или пуль включает ствол с каморой сгорания порохового заряда и гильзы, прицельное приспособление, устройство размещения и крепления ствола. Камора сгорания выполнена в виде двух секций, передней для размещения сгораемой гильзы с пороховым зарядом и задней для...
Тип: Изобретение
Номер охранного документа: 0002669242
Дата охранного документа: 09.10.2018
21.10.2018
№218.016.94cc

Способ обнаружения утечек в кожухотрубном теплообменном аппарате

Способ относится к области неразрушающего контроля и технической диагностики кожухотрубных теплообменных аппаратов с использованием акустической эмиссии, эксплуатирующихся в контакте с аварийно химически опасными или горючими веществами, и может быть использован для определения утечек в...
Тип: Изобретение
Номер охранного документа: 0002670222
Дата охранного документа: 19.10.2018
03.07.2019
№219.017.a402

Удлиненный кумулятивный заряд

Изобретение относится к области взрывных работ и может найти применение при разделке на металлолом громоздких металлических конструкций, реконструкции и демонтаже бетонных и железобетонных сооружений, плановой ликвидации вооружения и военной техники, ликвидации аварийных ситуаций. Согласно...
Тип: Изобретение
Номер охранного документа: 0002693065
Дата охранного документа: 01.07.2019
23.07.2019
№219.017.b7af

Способ защиты от коррозии и восстановления поверхностей теплообменника

Изобретение относится к способам нанесения покрытия. Описан способ защиты от коррозии и восстановления поверхностей теплообменника, заключающийся в том, что на поверхность стенки, разделяющей смежные контуры теплообменника, наносят покрытие, в котором в контур вводят жидкость или текучее...
Тип: Изобретение
Номер охранного документа: 0002695204
Дата охранного документа: 22.07.2019
15.11.2019
№219.017.e2c1

Удлиненный кумулятивный заряд и способ его изготовления

Изобретение относится в области взрывного дела, в частности к зарядам для взрывных работ и может быть использовано при демонтаже крупногабаритных инженерных сооружений, конструкций, а также при ликвидации с утилизацией тяжелой военной техники и вооружений. Устройство относится к составным...
Тип: Изобретение
Номер охранного документа: 0002706155
Дата охранного документа: 14.11.2019
19.12.2019
№219.017.ef37

Взрывной генератор электромагнитных импульсов

Изобретение относится к области использования энергии взрыва и предназначено для преобразования ее в энергию электромагнитного импульса повышенной мощности. Взрывной генератор состоит из металлического корпуса в форме либо двух изолированных друг от друга плоских пластин из алюминия или...
Тип: Изобретение
Номер охранного документа: 0002709255
Дата охранного документа: 17.12.2019
29.01.2020
№220.017.fb10

Автоматизированная установка для определения энерго-баллистических характеристик жидких углеводородных горючих

Изобретение относится к области испытаний материалов, в частности жидких углеводородных горючих для исследования применимости жидких углеводородных горючих с требуемыми характеристиками в заданных условиях. Установка содержит установленную с возможностью колебаний обогреваемую рабочую камеру в...
Тип: Изобретение
Номер охранного документа: 0002712227
Дата охранного документа: 27.01.2020
07.06.2020
№220.018.24cb

Способ оценки остаточного ресурса конструкций теплообменного аппарата

Изобретение относится к области неразрушающего контроля и технической диагностики конструкций теплообменных аппаратов с использованием акустической эмиссии, преимущественно кожухотрубных теплообменных аппаратов в составе холодильных установок или систем. Сущность способа заключается в...
Тип: Изобретение
Номер охранного документа: 0002722860
Дата охранного документа: 04.06.2020
25.06.2020
№220.018.2ac3

Привязная мониторинговая платформа с системой питания

Привязная мониторинговая платформа с системой питания на постоянном токе содержит гибкую тягу с возможностью изменения длины, станцию приема и передачи сигналов, четыре и более бесщеточных или бесколлекторных электродвигателя с тяговыми винтами, автономную питающую электрическую станцию с...
Тип: Изобретение
Номер охранного документа: 0002724509
Дата охранного документа: 23.06.2020
12.04.2023
№223.018.42b5

Установка для определения тяговых характеристик жидких реактивных горючих

Изобретение относится к области испытаний материалов, в частности жидких реактивных горючих, с помощью измерительных средств путем автоматизированного определения тяговых характеристик, таких как удельная тяга R и удельный импульс тяги I жидких реактивных горючих (ЖРГ), для исследования...
Тип: Изобретение
Номер охранного документа: 0002757652
Дата охранного документа: 19.10.2021
+ добавить свой РИД