×
31.07.2020
220.018.3ad1

Результат интеллектуальной деятельности: Бессвинцовый пьезоэлектрический керамический материал

Вид РИД

Изобретение

Аннотация: Изобретение относится к пьезотехнике и может быть использовано для создания высокочастотных пьезопреобразователей, работающих в широкой области температур (20-800°С) и частот, в частности, используемых в ультразвуковой дефектоскопии, для измерения вибрации и удара теплонагружаемых конструкций, подвергающихся динамическим воздействиям. Бессвинцовый пьезоэлектрический керамический материал, включающий LiO и NbO, дополнительно содержит оксид элемента из группы, мас.%: Zn, Mg, La, Sc, Sn, Zr или W, а его состав соответствует формуле xLiO-yNbO-AO, где x+y+z=100, при этом 9.33≤х≤9.35, 83.02≤у≤83.21, 7.44≤z≤7.65, A - оксид элемента с четной валентностью n из группы Zn, Mg, Sn, Zr, W, или xLiO-yNbO-zAO, где x+y+z=100, при этом 10.09≤x≤10.10, 89.74≤y≤89.81, 0.09≤z≤0.17, A - La, Sc. Технический результат - повышение удельного объемного электрического сопротивления ρ, снижение тангенса угла диэлектрических потерь tgδ при сохранении низких значений относительной диэлектрической проницаемости εε/ε и достаточно высоких значений пьезомодуля d. 3 табл.

Изобретение относится к пьезотехнике и может быть использовано для создания высокочастотных пьезопреобразователей, работающих в широком диапазоне температур (20-800°С) и частот, в частности, в ВЧ- и СВЧ-диапазоне, используемых в ультразвуковой дефектоскопии, для измерения вибрации и удара теплонагружаемых конструкций, подвергающихся динамическим воздействиям.

Для указанных применений пьезоэлектрический керамический материал должен иметь высокую температуру Кюри, Тк (1200°С); широкий диапазон рабочих температур (до 800°С); высокую относительную плотность, не менее 95% от теоретической плотности, ρтеор; низкие значения относительной диэлектрической проницаемости, ε33т0 менее 50 и тангенса угла диэлектрических потерь, tgδ не более 0.01; высокие значения удельного объемного электрического сопротивления, ρv не менее 10⋅109 Ом⋅м при 100°С; достаточно высокие значения пьезоэлектрического модуля, d33 в интервале (10-12) пКл/Н, высокую механическую прочность, σраст не ниже 25 МПа, повышенную стабильность пьезомодуля d33 при внешних воздействиях - температуры до 800°С и механических нагрузок до 150 МПа.

Известен пьезоэлектрический керамический материал с высокой Тк (1200°С) - метаниобат лития (МНЛ), полученный по обычной керамической технологии [1] или дорогостоящим непромышленным методом горячего прессования [2, 3], включающими твердофазный синтез, формование шихты и спекание в условиях атмосферного или извне приложенного давления. Однако, изготовленный при таких условиях материал имеет невысокую плотность и склонен к саморазрушению, что препятствует его поляризации и достижению высоких показателей пьезоактивности.

Известен пьезоэлектрический керамический материал на основе МНЛ, включающий пирониобат стронция, Sr2Nb2O7 [4]. Недостатком этого материала является высокий tgδ (≥0.017). Кроме того, сложная технология его изготовления с элементами ковки на стадии рекристаллизации спекаемого синтезированного продукта затрудняют масштабирование производства.

Известен пьезоэлектрический керамический материал на основе МНЛ с добавками стекла, получаемый по обычной керамической технологии [5]. Недостатки материала - высокий tgδ (0.010-0.015) и недостаточно высокий пьезмодуль d33 (10 пКл/Н).

Известен пьезоэлектрический керамический материал на основе МНЛ с добавками кальция и стекла, получаемый по обычной керамической технологии [6]. Указанный материал содержит (масс. %): LiNbO3 (95.9-96.5), СаО (0.50-0.75), Li2O (0.55-0.66), B2O3 (0.27-0.31), SiO2 (2.06-2.40). Материал имеет высокие значения диэлектрических потерь tgδ-=0.011-0.019, низкие значения удельного объемного электрического сопротивления, ρv⋅(1.8-2.0)⋅109 Ом⋅м при 25°С) при относительной диэлектрической проницаемости ε33т0=38-39 и пьезомодуле d33=10-12 пКл/Н.

Наиболее близким к заявляемому материалу по технической сущности и достигаемому результату является пьезоэлектрический керамический материал на основе МНЛ, содержащий следующие группы модификаторов: с четной валентностью Zn2+, Mg2+, Sn4+, Zr4+, W6+ и с нечетной валентностью - La3+, Sc3+, получаемый по обычной керамической технологии [7] (прототип). Указанный материал содержит в пересчете в масс. %, Li2O 9.36-10.09, Nb2O5 83.31 - 89.80, оксид с четной валентностью элемента из группы Zn2+, Mg2+, Sn4+, Zr4+, W6+ 0.11-7.33, а также Li2O (9.88-10.08), Nb2O5 (87.88-89.70), оксид с нечетной валентностью элемента из группы La3+, Sc3+ (0.22-2.24). Материал имеет значения относительной диэлектрической проницаемости ε33т0=42-54, диэлектрических потерь tgδ⋅=0.0061-0.0074, удельного объемного электрического сопротивления, ρv⋅=(1.0-9.6)⋅1010 Ом м при 100°С и пьезомодуля d33=(6.8-10.6) пКл/Н.

Техническим результатом настоящего изобретения является повышение удельного объемного электрического сопротивления, ρv, при сохранении низких значений относительной диэлектрической проницаемости, ε33т0, тангенса угла диэлектрических потерь, tgδ, и достаточно высоких значений пьезомодуля, d33.

Указанный технический результат достигается тем, что пьезоэлектрический керамический материал, включающий Li2O и Nb2O5, согласно изобретению, дополнительно содержит оксид элемента из группы, масс. %: Zn2+, Mg2+, La3+, Sc3+, Sn4+, Zr4+ или W6+, а его состав соответствует формуле xLi2O - yNb2O5 - AnOn/2, где x+y+z=100, при этом 9.33≤x≤9.35, 83.02≤у≤83.21, 7.44≤z≤7.65, An - оксид с четной валентностью n элемента из группы Zn2+, Mg2+, Sn4+, Zr4+, W6+, или xLi2O - yNb2O3 - zA2O3, где x+y+z=100, при этом 10.09≤x≤10.10, 89.74≤у≤89.81, 0.09≤z≤0.17, A - оксид с нечетной валентностью n элемента из группы La3+, Sc3+.

При гетеровалентном модифицировании исходного (базового) материала путем замещения А- или В-катионов (в перовскитовой структуре вида АВО3) ионами большей или меньшей валентности реализуются следующие схемы модифицирования:

I. Замещения в А-подрешетке двухвалентными ионами Zn2+, Mg2+:

Li1+1-xZn2+xNb5+O2-3+x/2; Li1+1-xMg2+xNb5+O2-3+x/2.

II. Замещения в В-подрешетке трех- и четырехвалентными ионами La3+, Sc3+, Sn4+, Zr4+:

Li1+Nb5+1-yLay3+O2-3-y y; Li1+Nb5+1-yScy3+O2-3-y y;

Li1+Nb5+1-ySn4+O2-3-y/2 y/2; Li1+Nb5+1-yZry4+O2- 3-y/2 y/2,

где - обозначение вакансий.

III. Замещения в В-подрешетке шестивалентным ионом W6+:

Li1+Nb5+1-yW6+yO2-3+y/2.

Как видно, в I и III случаях реализуются анионизбыточные материалы, а во II-м - аниондефицитные, вакансионнонасыщенные. Появление кислородных вакансий во II-м случае приводит к активизации диффузионных процессов и массопереноса при спекании объектов, что благоприятствует улучшению их технологичности, и, как следствие, формированию более совершенной структуры, с чем связано повышение ρv и снижение tgδ.

В случае образования анионизбыточных сред (I, III) механизм формирования макрооткликов несколько другой. Следуя [8, стр. 233], избыток кислорода размещается либо в междуузельных позициях, либо скапливается на определенных кристаллографических плоскостях, организуя некие расширенные кластеры Уиллиса, в составе которых присутствуют вакансии. Воздействие последних на структуру и свойства объектов аналогично описанному выше для случая II.

Повышение ρv облегчает процессы поляризации - одной из самых трудоемких операций при получении пьезокерамики МНЛ и материалов на его основе, так как снижает вероятность «пробоя» образцов, их растрескивания, спадания тока в процессе поляризации. Все это значительно сокращает количество образцов, подвергнувшихся «пробою» при поляризации, что позволяет уменьшить брак продукции, увеличить выход годных образцов (до 80%), уменьшить расход сырьевых материалов, что делает их перспективными для практических применений. При высоком значении ρv в широком интервале температур 100-700°С сохраняется устойчивое поляризованное состояние, что способствует эффективному использованию материалов в качестве основы пьезоактивных элементов, в частности, в высокоточных пьезодатчиках быстроменяющихся давлений в системах контроля объектов, испытывающих экстремальные внешние воздействия (T≥800°С, Р≥150 МПа).

Составы реализуются введением в смесь Li2O (Li2CO3) и Nb2O5 (на стадии смешивания) сверх стехиометрии одного из оксидов группы - Zn2+, Mg2+, La3+, Sc3+, Sn4+, Zr4+, W6+. В качестве исходных компонентов для синтеза использовались оксиды и карбонаты металлов квалификации: Li2CO3 - х.ч., Nb2O5-Нбо-П.Т., ZnO - х.ч., MgO - ч.д.а., La2O3 - ч., Sc2O3 - о.с.-99, SnO2 - ч.д.а., ZrO2-ч., WO3-ч.д.а.

Синтез составов осуществлялся следующим образом. Приведенные количества Li2O (Li2CO3), Nb2O5 и одного из оксидов группы Zn2+, Mg2+, La3+, Sc3+, Sn4+, Zr4+, W6+, смешивались сухим способом в вибромельнице в фугированных резиной барабанах в течение 5 час. Обжиг шихты проводился в две стадии при Т1=800°С, Т2=850°С в течение 5 час. Помол спеков осуществлялся в присутствии воды в течение 3 час. Спекание осуществлялось по обычной керамической технологии при 950-990°С (в зависимости от состава), изотермическая выдержка при максимальной температуре в течение 4 час.

Металлизация (нанесение электродов) проводилась путем нанесения на плоские поверхности образцов серебросодержащей пасты и последующего ее вжигания при температуре 750°С в течение 0.5 час.

Поляризация образцов проводилась в полиэтиленсилоксановой жидкости ПЭС-5 при температуре 180°С в постоянном электрическом поле напряженностью (60-70)⋅102 кВ/м в течение 1 час.

В соответствии с ОСТ 11 0444-87 определялись электрофизические характеристики: относительная диэлектрическая проницаемость поляризованных образцов, ε33т0, тангенс угла диэлектрических потерь, tgδ, пьезомодуль, d33, удельное объемное электрическое сопротивление, ρv, в интервале температур (20-700°С).

В таблице 1 приведены составы и электрофизические параметры заявляемого пьезоэлектрического керамического материала xLi2O - yNb2O5 -AnOn/2, где An=Zn2+, Mg2+, Sn4+, Zr4+, W6+, оксид элементов с четной валентностью.

В таблице 2 приведены составы и электрофизические параметры заявляемого пьезоэлектрического керамического материала xLi2O - yNb2O5 - zA2O3, где А - La3+, Sc3+, оксид элементов с нечетной валентностью.

В таблице 3 приведены сравнительные параметры составов заявляемого пьезоэлектрического керамического материала и прототипа.

Как следует из таблиц №1 (примеры 2, 3, 6, 7, 10, 11, 14, 15, 18, 19) и №2 (примеры 22, 23, 26, 27, 28), заявляемый пьезоэлектрический керамический материал обладает совокупностью параметров, отвечающих задаче изобретения, повышение удельного объемного электрического сопротивления, ρv, при сохранении низких значений относительной диэлектрической проницаемости, ε33т0, диэлектрических потерь, tgδ, и достаточно высоких значений пьезомодуля, d33. Выход за пределы заявленных концентраций компонентов (примеры 1, 4, 5, 8, 9, 12, 13, 16, 17, 20 из табл. №1 и примеры 21, 24, 25, 29 из табл. №2) приводит к снижению целевых параметров, в частности, снижению ρv и d33.

Данные, приведенные в таблице 3, подтверждают преимущества предлагаемого пьезоэлектрического керамического материала по сравнению с материалом - прототипом для составов, модифицированных оксидами элементов с четной и нечетной валентностью, а именно, повышение удельного объемного электрического сопротивления ρv=(10.9-12.3)⋅1010 Ом⋅м при температуре 100°С и (9.5-10.0)⋅102 Ом м при 700°С по сравнению с прототипом ρv=(1.0-9.6)⋅1010 Ом⋅м и (1.0-6.0)⋅102 Ом⋅м, соответственно, при сохранении низких значений относительной диэлектрической проницаемости, ε33т0=43-52, диэлектрических потерь tgδ=0.0060-0.0069 и достаточно высоких значений пьезомодуля, d33=10.8-11.2 пКл/Н.

Источники информации:

1. Шапиро З.И., Федулов С.А., Веневцев Ю.Н., Ригерман Л.Г. Исследование системы LiTaO3 - LiNbO3 // Изв. АН СССР. Сер. физ. 1965. Т. 29. №6. С.1047-1050.

2. Фесенко Е.Г., Чернышков В.А., Резниченко Л.А., Баранов В.В., Данцигер А.Я., Прокопало О.И. Исследование горячепрессованной керамики метаниобата лития в широком интервале температур // ЖТФ. 1984. Т. 54. №2. С.412-415.

3. Фесенко Е.Г., Смотраков В.Г., Чернышков В.А., Клевцов А.Н., Сервули В.А., Резниченко Л.А. // А.С.1087489. МПК С04В 35/00. Способ изготовления керамики метаниобата лития. Опубл. 23.04.1984. Бюл. №15.

4. Резниченко Л.А., Разумовская О.Н., Вербенко И.А., Юрасов Ю.И., Титов С.В. // Патент РФ №2358953 С2. МПК С04В 35/495. Пьезоэлектрический керамический материал. Опубл. 20.06.2009. Бюл. №17.

5. Смотраков В.Г., Панич А.Е., Еремкин В.В., Полонская A.M., Вусевкер Ю.А. // Патент РФ №2017700 С1. МПК С04В 35/00. Способ получения керамики метаниобата лития. Опубл. 15.08.1994.

6. Смотраков В.Г., Панич А.Е., Еремкин В.В., Полонская A.M., Вусевкер Ю.А. // Патент РФ №2040506 С1. МПК С04В 35/00. Пьезокерамический материал. Опубл. 25.07.1995.

7. Резниченко Л.А., Вербенко И.А., Андрюшина И.Н., Чернышков В.А., Андрюшин К.П. Способ изготовления сегнетопьезокерамики на основе метаниобата лития // Электронный научный журнал «Инженерный вестник Дона». 2015. №2. ivdon.ru/ru/magazine/archive/n2y2015/2860. - прототип.

8. Рао Ч.Н.Р., Гопалакришнан Дж. Новые направления в химии твердого тела. Новосибирск: «Наука», Сиб. отд-ие, пер. с англ. 1990. 519 с, стр. 233.

Бессвинцовый пьезоэлектрический керамический материал, включающий LiO и NbO, отличающийся тем, что он дополнительно содержит оксид элемента из группы, мас.% - Zn, Mg, La, Sc, Sn, Zr или W, а его состав соответствует формуле xLiO-yNbO-AO, где x+y+z=100, при этом 9.33≤х≤9.35, 83.02≤у≤83.21, 7.44≤z≤7.65, A - оксид элемента с четной валентностью n из группы Zn, Mg, Sn, Zr, W, или xLiO-yNbO-zAO, где x+y+z=100, при этом 10.09≤x≤10.10, 89.74≤y≤89.81, 0.09≤z≤0.17, A - La, Sc.
Источник поступления информации: Роспатент

Показаны записи 1-10 из 49.
10.04.2016
№216.015.3004

Способ изготовления сегнетоэлектрического керамического материала на основе феррита висмута

Изобретение относится к технологии производства сегнетоэлектрических керамических материалов на основе феррита висмута и может быть использовано для создания новых материалов, применяемых в устройствах записи, хранения и обработки информации. Технический результат - снижение относительной...
Тип: Изобретение
Номер охранного документа: 0002580114
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3107

Сегнетоэлектрический керамический материал

Изобретение относится к сегнетоэлектрическим керамическим материалам на основе феррита висмута и может быть использовано при создании емкостных магнитоэлектрических элементов головок записи и считывания информации. Технический результат - снижение значений относительной диэлектрической...
Тип: Изобретение
Номер охранного документа: 0002580117
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.31d4

Пьезоэлектрический керамический материал

Изобретение относится к пьезоэлектрическим керамическим материалам на основе титаната свинца. Технический результат изобретения заключается в повышении значений относительной диэлектрической проницаемости при сохранении высоких значений пьезомодуля |d|=131-156 пКл/Н и коэффициента...
Тип: Изобретение
Номер охранного документа: 0002580116
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.35bf

Пассивный беспроводный датчик на поверхностных акустических волнах для измерения концентрации моноокиси углерода

Изобретение относится к пьезоэлектрическим датчикам, предназначенным для дистанционного контроля различных физических и химических величин. Технический результат - исключение разрушения встречно-штыревых преобразователей (ВШП) и отражателей, повышение чувствительности и уменьшение затухания...
Тип: Изобретение
Номер охранного документа: 0002581570
Дата охранного документа: 20.04.2016
20.05.2016
№216.015.3e4f

Цифровой способ измерения параметров пьезоэлектрических элементов

Изобретение относится к измерительной технике. Особенностью заявленного цифрового способа измерения параметров пьезоэлектрических элементов является то, что импульсный сигнал возбуждения имеет длительность T=Т-τ, где τ - длительность паузы между окончанием сигнала с линейной частотной...
Тип: Изобретение
Номер охранного документа: 0002584719
Дата охранного документа: 20.05.2016
12.01.2017
№217.015.5924

Способ дифференциальной диагностики стадий гонартроза

Изобретение относится к медицине и представляет собой способ дифференциальной диагностики стадий гонартроза, включающий исследование крови и определение в ее плазме концентрации мочевой кислоты (МК), в мкМ/л, отличающийся тем, что в мононуклеарной фракции крови также определяют активность...
Тип: Изобретение
Номер охранного документа: 0002588372
Дата охранного документа: 27.06.2016
13.01.2017
№217.015.6c9f

Пьезоэлектрический керамический материал

Изобретение относится к пьезоэлектрическим керамическим материалам на основе титаната свинца. Технический результат - снижение значений коэффициента электромеханической связи радиальной моды колебаний до K=0.06-0.07, повышение механической добротности до Q=1539-2135 при сохранении высоких...
Тип: Изобретение
Номер охранного документа: 0002597352
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.70da

Способ измерения расстояния между объектами

Способ измерения расстояния между объектами относится к контрольно-измерительной технике, в частности к способам контроля взаимного положения объектов (или отдельных частей одного объекта) оптико-электронными методами, и может быть использован для контроля взаимного положения объектов в...
Тип: Изобретение
Номер охранного документа: 0002596607
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7199

Пьезоэлектрический керамический материал

Изобретение относится к пьезоэлектрическим керамическим материалам. Технический результат изобретения заключается в повышении значений относительной диэлектрической проницаемости, снижении диэлектрических потерь, механической добротности и коэффициента электромеханической связи радиальной моды...
Тип: Изобретение
Номер охранного документа: 0002596837
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7d16

Способ прогнозирования предрасположенности к развитию посттравматического остеоартроза коленного сустава

Изобретение относится к области медицины и предназначено для диагностики предрасположенности к посттравматическому остеоартрозу коленного сустава. У пациентов существляют генотипирование полиморфизма rs2276109 (A-82G) гена ММР-12. При выявлении генотипа GG диагностируют генетическую...
Тип: Изобретение
Номер охранного документа: 0002600860
Дата охранного документа: 27.10.2016
Показаны записи 1-10 из 30.
20.11.2013
№216.012.8202

Пьезоэлектрический керамический материал

Изобретение относится к пьезоэлектрическим керамическим материалам и может быть использовано в низкочастотных приемных устройствах, гидрофонах, сонарах, работающих в гидростатическом режиме, акустических приемниках, датчиках давления. Состав материала, мас.%: PbO 69,39-69,68, NbO 17,98-19,28,...
Тип: Изобретение
Номер охранного документа: 0002498958
Дата охранного документа: 20.11.2013
20.11.2013
№216.012.8203

Пьезоэлектрический керамический материал

Изобретение относится к производству пьезоэлектрических керамических материалов и может быть использовано для создания высокочастотных электромеханических преобразователей, применяемых, в частности, в ультразвуковых линиях задержки (эксплуатируемых в частотном диапазоне (20÷30) мГц),...
Тип: Изобретение
Номер охранного документа: 0002498959
Дата охранного документа: 20.11.2013
20.11.2013
№216.012.8204

Пьезоэлектрический керамический материал

Изобретение относится к пьезоэлектрическим керамическим материалам на основе ниобата натрия и может быть использовано для создания низкочастотных приемных устройств - гидрофонов, микрофонов, гидроприемников, а также для создания низкочастотных электромеханических преобразователей, возбуждающих...
Тип: Изобретение
Номер охранного документа: 0002498960
Дата охранного документа: 20.11.2013
20.11.2013
№216.012.8205

Пьезоэлектрический керамический материал

Изобретение относится к пьезоэлектрическим керамическим материалам на основе ниобатов натрия-калия и может быть использовано в среднечастотных радиоэлектронных устройствах, работающих в режиме приема, в том числе в трансдукторах ультразвуковых передатчиков. Техническим результатом изобретения...
Тип: Изобретение
Номер охранного документа: 0002498961
Дата охранного документа: 20.11.2013
20.02.2015
№216.013.2933

Пьезоэлектрический керамический материал

Изобретение относится к пьезоэлектрическим керамическим материалам. Технический результат изобретения заключается в снижении относительной диэлектрической проницаемости и температуры спекания материала. Пьезоэлектрический керамический материал содержит следующие компоненты, мас.%: PbO...
Тип: Изобретение
Номер охранного документа: 0002542004
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2937

Пьезоэлектрический керамический материал

Изобретение относится к пьезоэлектрическим керамическим материалам. Технический результат изобретения заключается в снижении механической добротности, относительной диэлектрической проницаемости поляризованных образцов, в повышении пьезомодуля, пьезочувствительности, удельной чувствительности,...
Тип: Изобретение
Номер охранного документа: 0002542008
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2938

Пьезоэлектрический керамический материал

Изобретение относится к пьезоэлектрическим керамическим материалам. Технический результат изобретения заключается в повышении коэффициента электромеханической связи планарной моды колебаний, снижении относительной диэлектрической проницаемости. Пьезоэлектрический керамический материал содержит...
Тип: Изобретение
Номер охранного документа: 0002542009
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.293b

Пьезоэлектрический керамический материал

Изобретение относится к пьезоэлектрическим керамическим материалам. Технический результат изобретения заключается в снижении относительной диэлектрической проницаемости и механической добротности, в повышении пьезочувствительности, коэффициента электромеханической связи планарной моды...
Тип: Изобретение
Номер охранного документа: 0002542012
Дата охранного документа: 20.02.2015
10.04.2015
№216.013.4003

Пьезоэлектрический керамический материал

Изобретение относится к пьезоэлектрическим керамическим материалам на основе соединений свинца, титана, ниобия, магния, германия, циркония и может быть использовано в электромеханических преобразователях, стабильно работающих в диапазоне температур от 25°C до 240°C, одним из основных критериев...
Тип: Изобретение
Номер охранного документа: 0002547875
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.418c

Пьезоэлектрический керамический материал

Изобретение относится к пьезоэлектрическим керамическим материалам и может быть использовано при создании высокочастотных акустоэлектрических преобразователей. Пьезоэлектрический керамический материал содержит оксиды натрия, ниобия, стронция, лития, алюминия, висмута и железа при следующем...
Тип: Изобретение
Номер охранного документа: 0002548278
Дата охранного документа: 20.04.2015
+ добавить свой РИД