×
29.07.2020
220.018.38ba

Результат интеллектуальной деятельности: Способ переработки полиимидных материалов

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу переработки полимерных материалов, получаемых по реакции поликонденсации диангидридов тетракарбоновых кислот с диаминами. Предложен способ переработки полиимидных материалов, содержащих в своей молекулярной структуре пятичленные имидные циклы, отличающийся тем, что полиимидный материал подвергают воздействию паров или растворов производного аммиака R-NH (где R=H, NH, алкильная группа). Технический результат – разработка рентабельной технологии переработки полиимидных материалов, которая с минимальными затратами позволила бы выделять ценные продукты из отработанных полимеров. 1 з.п. ф-лы, 2 ил., 4 пр.

Изобретение относится к способу переработки полимерных материалов общей структуры III, получаемых по реакции поликонденсации диангидридов тетракарбоновых кислот I с диаминами II (Фиг. 1 - Общая схема получения полиимидов III по реакции поликонденсации ангидридов тетракарбоновых кислот I с диаминами II.). Благодаря таким свойствам полиимидов III, как термическая стабильность, гибкость и универсальность (возможность использования полиимидов в качестве полимерной матрицы для создания композиционных материалов), такие материалы находят все большее применение в различных отраслях промышленности. На сегодняшний день наиболее широкое распространение получили следующие коммерческие полимиды: Aurum, Duratron, Gemon, Kapton, Kerimid, Pyralin, Regulus, Sinthimid, Torlon, Vespel, и т.д. Причем сфера применения перечисленных выше полиимидных продуктов постоянно расширяется, в связи с чем чрезвычайно актуальной является задача поиска способов их переработки или утилизации.

К настоящему моменту из уровня техники известно ограниченное число методов, позволяющих проводить переработку полиимидных структур. В работе [Huang, F.; Huang, Y.; Pan, Z. Depolymerization of ODPA/ODA Polyimide in a Fused Silica Capillary Reactor and Batch Autoclave Reactor from 320 to 350°C in Hot Compressed Water // Ind Eng Chem Res. 2012, 51(20), p. 7001-7006.] для этих целей предлагается использовать горячую сжатую воду в капиллярном реакторе в автоклаве. Процесс деполимеризации протекает при температурах порядка 300°С. Еще один метод высокотемпературной обработки полиимидов описан в работах [Kumagai, S.; Hosaka, Т.; Kameda, Т. Steam Pyrolysis of Polyimides: Effects of Steam on Raw Material Recovery // Environ. Sci. Technol., 2015, 49 (22), p. 13558-13565; Kumagai, S.; Hosaka, Т.; Kameda, T. Pyrolysis and hydrolysis behaviors during steam pyrolysis of polyimide // J Anal Appl Pyrolysis, 2016, Volume 120, p. 75-81] - для деполимеризации предлагается использовать паровой пиролиз. К недостаткам приведенных выше методов следует отнести трудоемкость, дороговизну, а также получаемую на выходе смесь из большого количества трудно разделяемых низкомолекулярных продуктов, строение которых значительно отличается от исходных мономеров. Помимо высоких температур для переработки полиимидных материалов предлагается использование твердотельной механохимии [Olifirov, L.K.; Kaloshkin, S.D.; Ergin, K.S. Solid-State Recycling of Polyimide Film Waste // J Appl Polym Sci, 2013, Vol. 127, 4.]. В этом методе полиимидные отходы измельчаются в шаровой мельнице в присутствии различных добавок с целью получения новых термостабильных смесей и композитов. Однако подобный подход помимо высокой стоимости имеет довольно узкую сферу применения, поскольку переработанный полиимид в дальнейшем невозможно использовать в качестве полимерной матрицы.

Задачей настоящего изобретения является разработка рентабельной технологии переработки полиимидных материалов, которая с минимальными затратами позволила бы выделять ценные продукты из отработанных полимеров. Для решения поставленной задачи был применен подход Инга-Манске к синтезу аминов по реакции Габриэля (Фиг. 2 - Общая схема протекания реакции полимера Kapton® с производным аммиака R-NH2 (где R=Н, NH2, алкильная группа). В настоящем изобретении впервые показано, что подход Инга-Манске применим не только для низкомолекулярных производных фталимида, но и для полимерных структур. В результате проделанной работы удалось выделить исходный мономер 4,4'-диаминодифениловый эфир (V) из коммерчески доступной полиимидной пленки Kapton® (IV). В отличие от широко известной методологии подхода Инга-Манске, предлагаемая в настоящем изобретении обработка полиимида проводится при комнатной температуре с использованием таких производных аммиака как гидразин, этилендиамин и сам аммиак (тогда как в классическом подходе Инга-Манске используется только гидразин). В случае использования алкиламинов и гидразина, переработка полиимида проводилась путем помещения образца пленки в соответствующий раствор реагента. При использовании аммиака, для обработки использовались пары его водных растворов. Для этих целей образец полиимида выдерживался в течение нескольких дней при комнатной температуре над парами водного раствора аммиака в герметично закрытой емкости. Затем из получаемого в результате такой обработки порошка путем экстракции количественно выделяют 4,4'-диаминодифениловый эфир.

ЯМР-спектры регистрировали на приборе Bruker DRX 500 с рабочей частотой 500,13 MHz при температуре 298 К и использовании в качестве внутреннего стандарта тетраметилсилана. ИК спектры снимали на спектрометре Bruker alfa. Элементный анализ проводили на CHNS/O элементном анализаторе Vario Micro cube. В качестве образца полиимида была взята пленка Kapton® (IV) (без клеевой основы) толщиной 0.07 мм.

Ниже представлены примеры, характеризующие сущность настоящего изобретения.

Сущность предлагаемого изобретения характеризуется следующими примерами.

Пример 1.

Полиимидную пленку Kapton ® (1.434 г) на чашке Петри помещают в эксикатор (объемом 1.5 л) над парами 100 мл 25% раствора аммиака. Эксикатор герметично закрывают крышкой и выдерживают в таком состоянии при температуре 20°С в течение пяти дней. Затем обработанный образец полимера извлекают из эксикатора, сушат на воздухе в течение 8 часов, помещают в экстрактор и проводят экстракцию этилацетатом в течение 10 часов. После экстракции из этилацетата выделяют 0.41 г 4,4'-диаминодифенилового эфира (выход 54.6% при пересчете на элементарное звено исходного полимера). Элементный анализ. Найдено, %: С 71.02; Н 5.924; N 13.56. Расчет для C12H12N2O, %: С 71.98; Н 6.04; N 13.99; О 7.99. ИК спектр, см-1: 1618 (ср), 1492 (с), 1317 (сл), 1280 (сл), 1211 (с), 1120 (сл), 1084 (сл), 1006 (сл), 868 (ср), 822 (с), 814 (с), 718 (сл), 690 (сл), 561 (сл), 501 (ср), 434 (сл), 394 (сл). Масс-спектр (ЭУ, 70 эВ), m/z (Iотн, %): 201 (19.4), 200 (100, М+), 171 (19.4), 108 (35.6), 80 (20.6). Спектр ЯМР 1H (ДМСО-d6), δ, м.д., (J, Гц): 4.6-4.9 (с, 4Н, NH2-Ar), 6.50-6.53 (м, 4Н, Ar-Н), 6.61-6.65 (м, 4Н, Ar-Н).

Пример 2.

Полиимидную пленку Kapton® (1.382 г) на чашке Петри помещают в эксикатор (объемом 1.5 л) над парами 100 мл 25% раствора аммиака. Эксикатор герметично закрывают крышкой и выдерживают в таком состоянии при температуре 20°С в течение пяти дней. Затем обработанный образец полимера извлекают из эксикатора, сушат на воздухе в течение 8 часов, помещают на 24 часа в эксикатор (объемом 1.5 л) над парами 100 мл концентрированной соляной кислоты. Полученную обработанную массу прибавляют к смеси 50 мл метанола и 30 мл воды, тщательно перемешивают и отфильтровывают. Фильтрат упаривают до ~35 мл, после чего к остатку добавляют 25% водный раствор аммиака до рН ~10. Выпавший осадок 4,4'-диаминодифенилового эфира отфильтровывают, сушат. Выход 0.58 г (80.6% при пересчете на элементарное звено исходного полимера) бесцветных кристаллов. Элементный анализ. Найдено, %: С 71.54; Н 5.886; N 13.37. Расчет для C12H12N2O, %: С 71.98; Н 6.04; N 13.99; О 7.99. ИК спектр, см-1: 1618 (ср), 1492 (с), 1317 (сл), 1280 (сл), 1211 (с), 1120 (сл), 1084 (сл), 1006 (сл), 868 (ср), 822 (с), 814 (с), 718 (сл), 690 (сл), 561 (сл), 501 (ср), 434 (сл), 394 (сл). Масс-спектр (ЭУ, 70 эВ), m/z (Iотн, %): 201 (19.4), 200 (100, М+), 171 (19.4), 108 (35.6), 93 (10), 80 (20.6), 65 (13). Спектр ЯМР 1Н (ДМСО-d6), δ, м.д., (J, Гц): 4.6-4.9 (с, 4Н, NH2-Ar), 6.50-6.53 (м, 4Н, Ar-Н), 6.61-6.65 (м, 4Н, Ar-Н).

Пример 3.

17.9 мг полиимидной пленки Kapton ® помещают в раствор 400 мг гидразина моногидрата в 15 мл метанола. Смесь выдерживается в течение 6 суток без перемешивания при температуре 20°С. Полученную суспензию концентрируют до 4-6 мл, прибавляют к ней 5 мл этилацетата, тщательно перемешивают и центрифугируют. Отделенный от осадка раствор упаривают, сухой остаток сушат при пониженном давлении и температуре 50°С в течение 8 часов. Выход 4,4'-диаминодифенилового эфира 8.6 мг (91% при пересчете на элементарное звено исходного полимера). ИК спектр, см-1: 1618 (ср), 1492 (с), 1317 (сл), 1280 (сл), 1211 (с), 1120 (сл), 1084 (сл), 1006 (сл), 868 (ср), 822 (с), 814 (с), 718 (сл), 690 (сл), 561 (сл), 501 (ср), 434 (сл), 394 (сл).

Пример 4.

18.4 мг полиимидной пленки Kapton ® помещают в раствор 400 мг этилендиамина в 15 мл метанола. Смесь выдерживается в течение 15 суток без перемешивания при температуре 20°С. Полученную суспензию концентрируют до 4-6 мл, прибавляют к ней 5 мл этилацетата, тщательно перемешивают и центрифугируют. Отделенный от осадка раствор упаривают, сухой остаток сушат при пониженном давлении и температуре 50°С в течение 8 часов. Выход 4,4'-диаминодифенилового эфира 8.4 мг (87% при пересчете на элементарное звено исходного полимера). ИК спектр, см-1: 1618 (ср), 1492 (с), 1317 (сл), 1280 (сл), 1211 (с), 1120 (сл), 1084 (сл), 1006 (сл), 868 (ср), 822 (с), 814 (с), 718 (сл), 690 (сл), 561 (сл), 501 (ср), 434 (сл), 394 (сл).

Таким образом, заявляемое изобретение позволяет перерабатывать полиимидные материалы, содержащих в своей молекулярной структуре пятичленные имидные циклы.

В результате обработки получается смесь низкомолекулярных продуктов: диамин (один из двух исходных мономеров полиимидной структуры) и производные тетракарбоновой кислоты (ангидрид которой использовался в качестве второго мономера). Дальнейшая переработка полиимида сводится к выделению диамина путем экстракции из полученной смеси продуктов.


Способ переработки полиимидных материалов
Источник поступления информации: Роспатент

Показаны записи 1-6 из 6.
05.09.2019
№219.017.c739

Способ получения 2-нитроксисукцината 3-окси-6-метил-2-этилпиридина

Предложен способ получения 2-нитроксисукцината 3-окси-6-метил-2-этилпиридина путем нитрования яблочной кислоты серно-азотной смесью, до образования нитроксиянтарной кислоты с последующей ее обработкой 2-этил-6-метил-3-оксипиридином, где нитрояблочную кислоту, синтезируемую в качестве...
Тип: Изобретение
Номер охранного документа: 0002699070
Дата охранного документа: 03.09.2019
04.11.2019
№219.017.de2c

Способ изготовления дисковых секторов для захвата, удержания и анализа магнитных микрочастиц и меченных ими биологических объектов на поверхности спиновых вентилей с помощью фемтосекундного лазерного облучения

Изобретение относится к области разработки биомедицинских сенсоров новых поколений, а именно к созданию секторов на поверхности приборов спинтроники. В биомедицине разделение здоровых и больных клеток основано на разной вероятности захвата магнитных наночастиц или микрочастиц клетками в...
Тип: Изобретение
Номер охранного документа: 0002704972
Дата охранного документа: 01.11.2019
01.04.2020
№220.018.1224

Способ получения монозеренных кестеритных порошков из тройных халькогенидов меди и олова и соединений цинка

Изобретение относится к технологии создания экологически чистых солнечных батарей. Изобретение может найти применение при создании мембранных солнечных батарей с гетеропереходом CZT(S,Se)/CdS. Более конкретно изобретение относится к созданию монозеренных кестеритных порошков CuZnSn(SSe). В...
Тип: Изобретение
Номер охранного документа: 0002718124
Дата охранного документа: 30.03.2020
31.07.2020
№220.018.390a

Биядерные кристаллические комплексы редкоземельных ионов (3+), способ их получения, способ получения магнитных полимерных композитов, применение магнитных полимерных композитов в качестве светочувствительных магнитных сред для спинтроники и устройств памяти

Изобретение относится к способу получения кристаллических комплексов редкоземельных ионов (3+) общей формулы (РЗЭ)L(NO)⋅nCHOH, где РЗЭ - ионы лантаноидов (3+), n=2-4, L представляет собой фотохромный лиганд ряда дитиенилэтена...
Тип: Изобретение
Номер охранного документа: 0002728127
Дата охранного документа: 28.07.2020
16.05.2023
№223.018.5f70

Способ получения фоточувствительных кестеритных пленок

Изобретение относится к технологии создания гибких тонкопленочных солнечных батарей. Оно может найти применение при создании солнечных батарей с гетеропереходом CZTS(Se)/CdS. Более конкретно изобретение относится к низкотемпературному синтезу тонких пленок CZTS(Se), применяемых в качестве...
Тип: Изобретение
Номер охранного документа: 0002744157
Дата охранного документа: 03.03.2021
16.06.2023
№223.018.7a97

Способ получения 5-метил-3-гептанона и полифункциональный катализатор

Настоящее изобретение относится к способу получения 5-метил-3-гептанона - потенциального полупродукта в тонком органическом синтезе и высокооктановой добавки к моторному топливу, а также к полифункциональному катализатору. Предлагаемый способ включает проведение альдольно-кротоновой конденсации...
Тип: Изобретение
Номер охранного документа: 0002739257
Дата охранного документа: 22.12.2020
Показаны записи 11-19 из 19.
11.03.2019
№219.016.dd96

Катализатор полимеризации и сополимеризации этилена, способ его приготовления и способ получения полиэтиленов с использованием этого катализатора

Изобретение относится к области химической промышленности, в частности к созданию катализаторов, позволяющих получать полиэтилены средней и низкой плотности из этилена в качестве единственного сырья с использованием однореакторной схемы. Катализатор включает тетрациклопентадиенилцирконий...
Тип: Изобретение
Номер охранного документа: 0002462479
Дата охранного документа: 27.09.2012
24.05.2019
№219.017.5df9

Способ переработки нефтезаводских газов

Настоящее изобретение относится к способу переработки нефтезаводских газов в ценные химические продукты и компоненты моторных топлив. Способ заключается в том, что на первой стадии проводят мембранно-абсорбционное выделение этилена из нефтезаводского газа с применением водных растворов солей...
Тип: Изобретение
Номер охранного документа: 0002688932
Дата охранного документа: 23.05.2019
05.09.2019
№219.017.c739

Способ получения 2-нитроксисукцината 3-окси-6-метил-2-этилпиридина

Предложен способ получения 2-нитроксисукцината 3-окси-6-метил-2-этилпиридина путем нитрования яблочной кислоты серно-азотной смесью, до образования нитроксиянтарной кислоты с последующей ее обработкой 2-этил-6-метил-3-оксипиридином, где нитрояблочную кислоту, синтезируемую в качестве...
Тип: Изобретение
Номер охранного документа: 0002699070
Дата охранного документа: 03.09.2019
27.12.2019
№219.017.f2e4

Способ мембранно-абсорбционного разделения нефтезаводских газовых смесей, содержащих олефины и монооксид углерода

Изобретение относится к области мембранных технологий, а именно к процессу мембранно-абсорбционного разделения газовых смесей, и может быть использовано для извлечения олефинов и монооксида углерода из нефтезаводских газовых смесей. Задача предлагаемого изобретения состоит в создании простого и...
Тип: Изобретение
Номер охранного документа: 0002710189
Дата охранного документа: 24.12.2019
22.01.2020
№220.017.f850

Родийсодержащие гетерогенные катализаторы для процессов получения пропаналя и диэтилкетона гидроформилированием этилена

Группа изобретений относится к области получения гетерогенных родийсодержащих катализаторов для процесса гидроформилирования непредельных соединений, а именно к получению закрепленных родиевых комплексов на поверхности гибридных материалов, имеющих свободные аминогруппы, также группа...
Тип: Изобретение
Номер охранного документа: 0002711579
Дата охранного документа: 17.01.2020
05.02.2020
№220.017.fdf7

Бис-(4,5-оксиметил-2-метил-3-окси)пиридиниевая соль 2-нитрокси-бутан-1,4-диовой кислоты и способ его получения

Изобретение относится к новому физиологически активному соединению формулы (1), а именно бис (4,5-оксиметил-2-метил-3-окси)пиридиниевая соль 2-нитрокси-бутан-1,4-диовой кислоты и способу его получения. Соединение 1 может быть использовано в косметологии и фармакологии как перспективное...
Тип: Изобретение
Номер охранного документа: 0002712914
Дата охранного документа: 03.02.2020
14.03.2020
№220.018.0bcd

Способ получения пленочных медьсодержащих нанокомпозиционных материалов для защиты металлопродукции от коррозии

Использование: для получения пленочных нанокомпозиционных материалов. Сущность изобретения заключается в том, что способ получения полимерного медьсодержащего нанокомпозиционного материала, включающий образование наночастицы металла при термическом разложении предшественника в момент его...
Тип: Изобретение
Номер охранного документа: 0002716464
Дата охранного документа: 11.03.2020
20.04.2023
№223.018.4bfe

Способ получения водородсодержащего газа

Изобретение относится к способу получения водородсодержащего газа, включающему две последовательные стадии. Способ характеризуется тем, что на первой стадии при температуре Т=1000-1100°С осуществляет некаталитическую матричную конверсию метана в синтез-газ в присутствии водяного пара, а на...
Тип: Изобретение
Номер охранного документа: 0002769311
Дата охранного документа: 30.03.2022
16.06.2023
№223.018.7a97

Способ получения 5-метил-3-гептанона и полифункциональный катализатор

Настоящее изобретение относится к способу получения 5-метил-3-гептанона - потенциального полупродукта в тонком органическом синтезе и высокооктановой добавки к моторному топливу, а также к полифункциональному катализатору. Предлагаемый способ включает проведение альдольно-кротоновой конденсации...
Тип: Изобретение
Номер охранного документа: 0002739257
Дата охранного документа: 22.12.2020
+ добавить свой РИД