×
29.07.2020
220.018.38ac

Результат интеллектуальной деятельности: БЕСКОЛЛЕКТОРНЫЙ ЭЛЕКТРОДВИГАТЕЛЬ

Вид РИД

Изобретение

Аннотация: Изобретение относится к электротехнике. Технический результат заключается в расширении рабочих диапазонов мощности и упрощении конструкции. Бесколлекторный электродвигатель содержит корпус с размещенным в нем статором с магнитными полюсами, ротор и датчик положения ротора. Ротор связан с внешним электронным коммутатором оптопарой и выполнен в виде крыльчатки. Оптопара образована лопастями ротора (крыльчатки), которые являются преобразователями оптического излучения, и двумя источниками мощного оптического излучения, направляемого на лопасти ротора (крыльчатки) с помощью системы доставки оптического излучения. Источники мощного оптического излучения расположены на геометрической нейтрали магнитных полюсов статора. Также они включены последовательно во внешний электронный коммутатор с возможностью обеспечения согласованного положения с магнитными полюсами статора и лопастями ротора (крыльчатки). 4 з.п. ф-лы, 2 ил.

Изобретение относится к электротехнике и может быть использовано в электродвигателях постоянного или переменного тока с бесконтактной коммутацией.

В отличие от электрических машин с контактным щеточно-коллекторным узлом, в данной машине отсутствуют скользящие электрические контакты и, соответственно, в ней устранены такие недостатки как искрение, помехи, износ щеток и пластин коллектора, шум и др.

Из известных решений наиболее близким аналогом предлагаемого устройства по технической сущности и назначению является бесколлекторная электрическая машина по патенту RU №2563974, МПК Н02Р 9/14, опубл. 27.09.2015 Бюл. № 27, в корпусе которой размещены статор с магнитыми полюсами, ротор, в пазах которого уложена обмотка, датчик положения ротора (ДПР) и внешний электронный коммутатор. Для обеспечения работы машины в режиме двигателя в обмотки ротора включены фотоэлектронные преобразователи (ФЭП), например фотодиоды, а в коммутатор – светоизлучатели (СИ), например светодиоды или лазерные диоды, расположенные на геометрической нейтрали магнитных полюсов статора. Действие машины основано на том, что при вращении ротора в моменты совпадения оптических осей движущегося и неподвижного элементов оптопар ФЭП – СИ автоматически обеспечивается негальваническая энергетическая связь обмотки ротора с неподвижным коммутатором. ДПР и электронный коммутатор также связаны между собой оптопарой.

Недостатком устройства, выбранного за прототип, является невысокая мощность бесколлекторного двигателя, определяемая свойствами ФЭП.

Современные ФЭП – это гетероструктурные тонкопленочные элементы твердых растворов A3B5. Эффективность ФЭП лазерного излучения в последние десятилетия существенно повышена и достигает 58.3% при мощности лазерного СИ 0.7 Вт (см. В.П.Хвостиков, С.В.Сорокина, Н.С.Потапович, О.А.Хвостикова, Н.Х.Тимошина, М.З.Шварц. Модификация фотоэлектрических преобразователей лазерного излучения (λ = 808 нм), получаемых методом жидкофазной эпитаксии. ФТП, 2018, том 52, вып. 3, с. 385-389). Однако, оставшаяся часть энергии СИ идет на разогрев, что требует охлаждения ФЭП, кроме того, применяемые оптические покрытия имеют невысокую лучевую прочность. Это ограничивает предельную мощность ФЭП единицами ватт, как показали исследования макета бесколлекторного двигателя, изготовленного в соответствии с патентом RU №2563974, (см. V.E.Terentiev, S.G.Artamokhin, N.A.Pikhtin, M.Z.Shvarts «Modeling the complex delivery of electric energy by optical chanel to dynamic electromechanical transformer», International journal of mechanical engineering and technology, volume 9, issue 2, Febrruary 1018, pp. 765-774).

Задача, на решение которой направлено заявляемое изобретение, заключается в расширении рабочих диапазонов мощности и температуры бесколлекторного двигателя за счет применения преобразователей оптического излучения (ПОИ), работающих на других принципах по сравнением с получаемых методом жидкофазной эпитаксии ФЭП, при одновременном упрощении конструкции электродвигателя и сохранении преимуществ прототипа.

Для достижения указанного технического результата используется следующая совокупность существенных признаков: в бесколлекторном электродвигателе, содержащем, также как и прототип, корпус с размещенным в нем статором с магнитными полюсами, ротор, связанный с внешним электронным коммутатором оптопарой, и датчик положения ротора, в отличие от прототипа, ротор выполнен в виде крыльчатки, оптопары образованы лопастями ротора (крыльчатки), являющимися преобразователями оптического излучения (ПОИ), и двумя источниками мощного оптического излучения, направляемого на лопасти ротора (крыльчатки) с помощью системы доставки оптического излучения, при этом источники мощного оптического излучения расположены на геометрической нейтрали магнитных полюсов статора и включены последовательно во внешний электронный коммутатор с возможностью обеспечения согласованного положения с магнитными полюсами статора и с лопастями ротора (крыльчатки). В бесколлекторном электродвигателе система доставки оптического излучения может быть выполнена в виде зеркал, установленных на пути следования излучения или в виде световолоконной линии. Для повышения спектрально-температурной стабильности двигателя коммутатор дополнительно снабжен оптическим термостабилизирующим фильтром. Для уменьшения сопротивления воздуха при вращении ротора (крыльчатки) лопастям придана аэродинамическая форма.

Сущность изобретения заключается в обеспечении вращения электродвигателя за счет негальванической энергетической связи, возникающей между электромагнитным полем статора и потоком фотоэлектронов, активированных мощным оптическим излучением в твердом теле лопастей ротора-крыльчатки, и усиленной давлением потока фотонов на лопасти. При этом, в отличие от прототипа, ПОИ образованы не ФЭП, а твердотельными лопастями ротора (крыльчатки), а светоизлучатель (СИ) – не светодиодами, а мощными источниками оптического излучения. Высокая лучевая прочность и работа ПОИ в более широком диапазоне температур без охлаждения, позволяют ввести в ротор по системе доставки мощное оптическое излучение, и в конечном итоге – повысить мощность бесколлекторного двигателя.

Для обеспечения работы двигателя при высоких интенсивностях оптического излучения до ~ 1013 Вт/м2 , реализуемых на твердотельных, газовых, волоконных лазерах, лопасти крыльчатки изготовлены из твердотельных материалов с высоким коэффициентом отражения (R ≥ 97%), таких как: алюминий, медь, титан и др. (см., например, Николаев А.К. Медь и жаропрочные медные сплавы/ А.К.Николаев, С.Д.Костин. М.: ДПК Пресс, 2012, 715 с.; Рогалин В.Е. Оптические свойства металлических зеркал для CO2-лазеров/ В.Е.Рогалин, И.А.Каплунов. Известия Сочинского государственного университета. 2013, №4-2 (28), с. 120-127).

Сопоставление предлагаемого устройства и прототипа показало, что поставленная задача решается в результате новой совокупности признаков, что доказывает соответствие предлагаемого изобретения критерию патентноспособности «новизна».

В свою очередь, проведенный информационный поиск в области электрических двигателей не выявил отдельных отличительных признаков заявляемого изобретения, что позволяет сделать вывод о его соответствии критерию «изобретательский уровень».

Сущность изобретения поясняется графическими материалами, где на фиг. 1 представлена функциональная схема предлагаемого устройства, на фиг. 2, дано схематическое изображение ротора.

На фиг. 1 обозначено: 1 – корпус двигателя, на внутренней стороне которого укреплен с помощью фиксаторов статор с магнитными полюсами 2, символом «В+» указано направление вектора магнитной индукции. Внутри статора расположен ротор 3 в форме крыльчатки (символом «e» указано направление ЭДС, вызванной взаимодействием магнитного поля статора и током фотоэлектронов образуемых при облучении крыльчатки мощным оптическим излучением). Предлагаемый электродвигатель отличается от прототипа тем, что в нем отсутствуют обмотки ротора и ФЭП, при этом лопасти крыльчатки в магнитном поле статора непосредственно преобразуют мощную оптическую энергию в электромагнитную, механическую и тепловую виды энергии. Зеркала 4,11, располагаемые между полюсными наконечниками на геометрической нейтрали полюсов статора, направляют два мощных потока оптического излучения на лопасти крыльчатки, образующих с источниками излучения динамическую мультиэлементную оптопару. Позициями 5, 13 обозначены направляющие пластины датчика положения ротора (ДПР) для вывода излучения к внешнему частотомеру, 6,7 – пластины оптической зеркальной системы доставки излучения от мощного внешнего источника. Остальные позиции обозначают: 8 – вал электродвигателя, 9, 14 – подшипники в торцевых стенках корпуса (позиции 10, 15), 12 – переключатель тока в обмотках статора, 19 – внешний электронный коммутатор в составе: 16 – источник мощного оптического излучения, 17 – частотомер, с помощью которого можно (если необходимо) контролировать вращение вала электродвигателя по сигналам, поступающим с прозрачных пластин 5, 13 ДПР, 18 – источник электропитания элементов электронного коммутатора. На фиг. 2 обозначено: 20 – электроизоляция из термостойкого материала; 21 – лопасть крыльчатки, для примера схематично представлена конструкция из пяти лопастей плоской формы; 22, 23 – потоки мощного оптического излучения, направляемые с помощью зеркал 4, 11 на геометрической нейтрали (магнитная индукция B = 0), установленные в промежутки между полюсными наконечниками статора 2; τ – длина крыльчатки, равная полюсному делению статора; d – диаметр сквозного канала под вал; D – диаметр окружности между полюсными наконечниками внутри статора за вычетом зазора между наконечниками и лопастями.

Бесколлекторный электродвигатель работает следующим образом: переключателем 12 подается ток в обмотки статора от источника электроэнергии 18. С помощью зеркал 4,6,7,11 подводится мощное оптическое излучение к лопастям 17 ротора. Ток фотоэлектронов, возникающий при ударном возбуждении мощным оптическим излучением атомов твердого тела лопасти в результате обратимого лавинного пробоя, взаимодействуя с магнитным полем статора, создает вращающий момент. Момент вращения ротора с валом Мвр пропорционален: току фотоэлектронов, магнитной индукции статора, а также давлению падающего излучения, как следует из выражений:

Мвр = Мэм + Мp,

Мэм = Кэм × В ×Iф,

Мp = Кр × w × (1 + R)/C.

где: Мвр – момент вращения ротора, Мэм – электромагнитная составляющая момента вращения ротора, Мp – составляющая момента вращения ротора, определяемая давлением оптического излучения p = w × (1 + R)/C; В – магнитная индукция поля статора, Iф – ток фотоэлектронов ротора, w – плотность электромагнитной энергии в потоке оптического излучения, R – коэффициент отражения поверхности лопасти на длине волны оптического излучения, C – скорость света в зазоре между лопастью и полюсным наконечником, Кэм, Кр – коэффициенты, характеризующие тип бесколлекторного электродвигателя.

При w = 1010Вт/см2, R = 1 давление падающего излучения на плоскую поверхность в воздухе составляет p ≈ 6,7 атм.

Нагрев лопастей в предлагаемом электродвигателе в режиме обратимого лавинного пробоя твердого тела допустим в широком рабочем диапазоне температур, поскольку нагрев снижает порог генерации фотоэлектронов. Для повышения КПД двигателя материал лопастей крыльчатки, оптические термостабилизирующие фильтры согласовывают по лучевой прочности со спектрофизическими характеристиками источника излучения. В качестве термостабилизирующих фильтров может быть применено устройство на основе интерферометра Фабри-Перо с неподвижным и подвижным зеркалами, на последнем из которых укреплены пьезоэлектрические элементы (см. Патент RU 2054639).

Благодаря широким диапазонам мощности и рабочих температур в сочетании с низким уровнем электрических и механических потерь предлагаемый бесколлекторный электродвигатель может быть использован на водном транспорте, в измерительно-информационных и бытовых комплексах. Более простая конструкция двигателя сокращает его стоимость, повышает надежность и расширяет область применения.

Конструкция бесколлекторного электродвигателя разработана на кафедре «Электротехники и автоматики» ФГБОУ ВПО «Государственный университет морского и речного флота имени адмирала С.О.Макарова» при выполнении научно-исследовательской работы. Были произведены расчеты, показавшие возможность использования предлагаемого электродвигателя в энергосберегающих автоматизированных комплексах.

Изложенное позволяет сделать вывод о соответствии изобретения критерию «промышленная применимость».


БЕСКОЛЛЕКТОРНЫЙ ЭЛЕКТРОДВИГАТЕЛЬ
БЕСКОЛЛЕКТОРНЫЙ ЭЛЕКТРОДВИГАТЕЛЬ
Источник поступления информации: Роспатент

Показаны записи 11-16 из 16.
23.05.2023
№223.018.6cea

Способ натурных испытаний безэкипажных судов

Изобретение относится к судостроению, а именно к способам натурных испытаний безэкипажных и автономных судов. Способ заключается в задании маршрута движения судна и сравнении его с реальной траекторией движения, определяемой по текущему местоположению объекта с помощью установленного на нем...
Тип: Изобретение
Номер охранного документа: 0002775813
Дата охранного документа: 11.07.2022
23.05.2023
№223.018.6cff

Система мониторинга технического состояния средств связи и навигационного оборудования

Изобретение относится к радиотехнике и предназначено для осуществления в режиме реального времени проверок технического состояния берегового и плавучего навигационного и телекоммуникационного оборудования базовых станций (БС) автоматической идентификационной системы (АИС) внутренних водных...
Тип: Изобретение
Номер охранного документа: 0002774400
Дата охранного документа: 21.06.2022
23.05.2023
№223.018.6d02

Индикатор напряжения (варианты)

Настоящие изобретения относятся к устройствам индикации напряжения и предназначены для индикации наличия или отсутствия контролируемого напряжения. Предлагаемые устройства могут быть использованы в высоковольтных электрических сетях, устройствах распределения электроэнергии, а также в...
Тип: Изобретение
Номер охранного документа: 0002772737
Дата охранного документа: 25.05.2022
23.05.2023
№223.018.6d1f

Способ мониторинга технического состояния средств связи и навигационного оборудования

Изобретение относится к радиотехнике и предназначено для осуществления в режиме реального времени проверок технического состояния берегового и плавучего навигационного и телекоммуникационного оборудования базовых станций (БС) автоматической идентификационной системы (АИС) внутренних водных...
Тип: Изобретение
Номер охранного документа: 0002773048
Дата охранного документа: 30.05.2022
23.05.2023
№223.018.6d5c

Ледовый причал

Изобретение относится к гидротехническому строительству, а именно к причальным сооружениям, возводимым преимущественно в районах Крайнего Севера. Сооружение предназначено для швартовки судов, курсирующих по трассе Северного морского пути, в побережье которого расположены грунты с вечной...
Тип: Изобретение
Номер охранного документа: 0002764806
Дата охранного документа: 21.01.2022
23.05.2023
№223.018.6e17

Способ предупредительного управления судовой электроэнергетической системой

Изобретение относится к области электротехники, в частности к средствам предупредительного управления судовыми электроэнергетическими системами (СЭЭС). Технический результат заключается в обеспечении возможности предупредительного управления СЭЭС в случае отказов, вызванных уменьшением подачи...
Тип: Изобретение
Номер охранного документа: 0002758453
Дата охранного документа: 28.10.2021
+ добавить свой РИД