×
22.07.2020
220.018.3562

Результат интеллектуальной деятельности: Способ лечения открытоугольной формы глаукомы, устройство для его осуществления и рабочий инструмент

Вид РИД

Изобретение

Аннотация: Группа изобретений относится к офтальмологии. Способ лечения открытоугольной формы глаукомы путем обеспечения оттока водянистой влаги через склеру в проекции цилиарного тела посредством серии лазерных аппликаций по его периметру. В месте каждой конкретной аппликации с помощью рабочего инструмента создают замкнутую полость, давление в которой давление меньше внутриглазного давления, находящейся внутри полости. Направляют лазерное излучение. Замеряют величину интенсивности отраженного от склеры лазерного излучения для определения ее минимальной и максимальной величины, когда коэффициент отношения указанных величин принимает значение в диапазоне 2,5-3,0 лазерное излучение прекращают и указанную последовательность операции повторяют в соседней точке склеры вдоль периметра цилиарного тела. Устройство содержит лазер с подключенным к нему через оптический волновод рабочим инструментом. Лазер через контроллер подключен по электрической линии к электронному блоку и по одной из двух оптических линий к оптикоэлектронному блоку, а по другой оптической линии через обратный ответвитель к рабочему инструменту, подключенному через обратный ответвитель к оптикоэлектронному блоку. При этом рабочий инструмент электрическими линиями связан с электронным блоком, а в линии связи лазера с контроллером установлен выключатель. Рабочий инструмент содержит корпус, внутри размещена металлическая трубка, внутри которой проходит оптический волновод, имеющий металлизированный внутренний слой, торцевая поверхность которого может соприкасаться с глазным яблоком. На конце трубки размещена упругая полусферическая присоска, имеющая с внутренней стороны металлизированную поверхность, причем металлизированные поверхности волновода и присоски подключены по электрическим линиям к контактным разъемам, предназначенным для подключения к электронному блоку устройства. Применение данной группы изобретений позволит повысить эффективность и безопасность лечения открытоугольной формы глаукомы. 3 н. и 2 з.п. ф-лы, 9 ил.

Группа изобретений относится к офтальмологии, а более конкретно, к способу лечения различных стадий открытоугольной формы глауком, устройству для его осуществления и рабочему инструменту.

Способам лечения путем лазерного облучения биологических тканей посвящено большое количество работ. При этом в медицине, в частности, в офтальмологии, режим облучения в основном контролируется визуально врачом, проводящим операцию на глазах пациента и зависит от его индивидуального опыта. Это возможно в случае лазерного воздействия на ткани глаза, где точно рассчитывается доза поглощаемой в ткани лазерной энергии. При этом заранее рассчитанная доза облучения должна корректироваться с учетом индивидуальных оптических свойств пациентов. Эта корректировка производится эмпирически вручную, и ее эффективность и безопасность зависит от опыта офтальмолога. Так проводится большинство лазерных операций на глазах в том числе и при различных формах глаукомы, начиная со способа, предложенного Красновым М.М. в 1970 г. (Авторское свидетельство на изобретения при различных формах глаукомы СССР №313544, МПК, опубл. (СССР).

В случае рутинных операций, например, при лазерной операции, по изменению рефракции роговицы «Ласик», контроль режима облучения осуществляется автоматически путем измерения толщины слоя роговицы, необходимого для удаления методом лазерной абляции. При этом с помощью компьютера рассчитывается режим облучения, энергетическая доза и далее осуществляется послойная кератопластика до момента достижения нужной толщины (ZIEMER S Femto LDV Z http://www.femtoldv.ru).

Система контроля лазерной абляции биологической ткани заявлена в патенте US 5.107.516 Apparatus for controlled ablation by laser radiation, МПК A61B 18/20, опубл. 21.04.1992. Система контроля лазерной сварки биотканей с обратной связью по рассеянному излучению представлена в патенте US 5334191 «Laser tissue welding control system» August 2, 1994 МПК A61B 18/20, опубл. 02.08.1994.

При лечении глаукомы с помощью диодной контактной транссклеральной циклофотокоагуляции (Yap-Veloso M.I. et al. J. Glaukoma. - 1998. - Vol.7. - No. 5. - P. 319-328.) режим облучения устанавливается вручную, а контроль внутриглазного давления проводят на следующий день после проведения операции одним из известных способов тонометрии.

Контроль изменения проницаемости ткани в точке ее облучения осуществляется по потоку внутриглазной жидкости через склеру (Аветисов С.Э. и др. Национал. Журн. Глаукома. - 2015. - Т14. - №2. - С. 5-15.) в замкнутом объеме, прилегающем к облучаемому участку. Возможность усиления фильтрации внутриглазной жидкости через склеру установлена (Большунов А.В. и др. Вестн. Офтальмологии. - 2013. - Т.129. - №1. - С. 46-53). Замкнутый объем низкого давления создается с помощью присососки, которая устанавливается на склеру в место, облученное лазерным излучением.

При проведении аналогичной транссклеральной циклофотокоагуляции с помощью диодного лазера на длине волны 820 нм «Micro Pulse», выпускаемого компанией IRIDEX (http://www.iridex.com) применяют последовательное точечное воздействие лазерными микро-импульсами на склеру в проекции цилиарного тела с целью усиления увеального оттока внутриглазной жидкости, приводящего к постепенному снижению внутриглазного давления. Облучение проводят с помощью специального инструмента, т.н. «G-probe», который располагают под углом к поверхности склеры. В процессе облучения никакой диагностики не проводится. После лазерной терапии проводится отложенная тонометрия.

В указанных выше способах лазерного воздействия на ткани глаза диагностика состояния внутриглазной жидкости проводится после облучения и не позволяет определить момент начала усиления транссклерального оттока жидкости, от которого зависит внутриглазное давление. Следует отметить, что до предлагаемого способа лечения различных стадий открытоугольной формы глаукомы ин-сито (in-situ) диагностики внутриглазного давления в процессе лазерного облучения не проводилось. Обратная связь в контрольных системах управления лазером при транссклеральной циклофотокоагуляции не применялась. В виду отсутствия контроля внутриглазного давления при операции указанные способы не способны обеспечить эффективность лазерного воздействия и безопасность операции.

Наиболее близким к предлагаемому способу является способ по патенту RU 2463029 «Способ лечения резистентных форм открытоугольной глаукомы», МПК A61F 9/08, опубл. 10.10.2011 г.

В соответствии с этим способом склере в проекции цилиарного тела по всей окружности склеры наносят аппликации с формированием микроканалов на одинаковом расстоянии друг от друга с помощью контактного воздействия излучением лазера. При этом обеспечивается отток водянистой влаги через склеру и падение внутриглазного давления.

Режим облучения выбирают на основе среднестатистических параметров увеличения проницаемости склеры для увеального оттока влаги, обеспечивающего снижение внутриглазного давления за счет формирования микроканалов в склере и усиления фильтрации жидкости. Процесс облучения контролируется врачом - офтальмологом и выбирается на основе опытных данных из расчета, выполненного для среднестатистического пациента. Оперативный контроль внутриглазного давления (ВГД) при лечении глаукомы указанным способом не проводится. Эффективность лазерного лечения определяется на основе субъективных данных пациента и измерения ВГД после проведения операции

Недостатками этого способа является то, что измерение ВГД при лечении проводят непосредственно после облучения ткани или спустя некоторое время. Невозможность контролирования текущих изменений гидропроницаемости склеры и, вследствие этого, уменьшения ВГД в процессе облучения приводит к снижению эффективности лазерного лечения, а передозировка облучения делает процедуру небезопасной.

Технической задачей предлагаемого способа является обеспечение текущего контроля ВГД путем контроля за гидропроницаемостью склеры.

Технический результат от применения способа - повышение эффективности и безопасности лечения различных стадий открытоугольной формы глаукомы.

Решение поставленной технической задачи и достижение технического положительного результата обеспечиваются тем, что в способе лечения различных стадий (начальных, развитых или далеко зашедших) открытоугольной формы глаукомы путем обеспечения оттока водянистой влаги через склеру путем нанесения серии лазерных аппликаций по периметру в месте каждой конкретной аппликации создают замкнутую полость, давление в которой меньше атмосферного, на поверхность склеры, находящейся внутри полости, н направляют лазерное излучение, замеряют величину интенсивности отраженного от склеры лазерного излучения для определения ее минимальной и максимальной величины, когда коэффициент отношения указанных величин принимает значение в диапазоне 2,5-3,0 лазерное излучение прекращают и указанную последовательность операций повторяют в соседней точке периметра цилиарного тела.

Известно устройство для лечения резистентной открытоугольной формы глаукомы, содержащее эрбиевый лазер с длиной волны 1,56 мкм в квазинепрерывном режиме генерации 200/200 мкс мощностью 0,75 Вт и экспозицией 4 с на каждую аппликацию (RU 2463029 «Способ лечения резистентных форм открытоугольной глаукомы», МПК A61f 9/08, опубл. 10.10.2011).

Недостатком известного устройства является невозможность контролирования времени лазерного облучения склеры в зависимости от ее гидропроницаемости. Время облучения выбирается расчетным путем на основании усредненных данных, что снижает эффективность лечения и может быть опасным для пациента.

Технической задачей при создании устройства для лечения различных стадий открытоугольной формы глаукомы является обеспечение прекращения лазерного излучения в месте аппликации при достижении заданного значения ВГД. Кроме того, для обеспечения эффективности и безопасности работы устройства в системе управления лазером предусмотрены две цепи обратной связи. Одна - местная (локальная), управляющая отключением лазера при достижении заданного уровня гидравлической проницаемости склеры в месте приложения лазерной аппликации, а вторая - общая (глобальная), блокирующая включение лазера после того, как достигается заданный уровень внутриглазного давления.

Техническим результатом является создание устройства, позволяющего автоматизировать процесс операции, повысить ее эффективность и обеспечить безопасность приложения лазерной энергии к тканям глаза.

Решение поставленной технической задачи и достижение технического результата обеспечиваются тем, что в устройстве для лечения различных стадий открытоугольной формы глаукомы, содержащем лазер с подключенным к нему через оптический волновод рабочим инструментом, лазер через контроллер подключен по электрической линии (цепи) к электронному блоку и по одной из двух оптических линий к оптикоэлектронному блоку, а по другой оптической линии через обратный ответвитель к рабочему инструменту, подключенному через обратный ответвитель к оптикоэлектронному блоку, при этом рабочий инструмент электрическими линиями связан с электронным блоком, а в линии связи лазера с контроллером установлен выключатель. В качестве обратного ответвителя возможно применение дихроичноого зеркала.

Нанесение лазерных аппликаций производится инструментом, связанным оптическим волноводом с лазером. Такой инструмент применен при реализации способа по патенту RU 2463029. Однако такой инструмент не позволяет обеспечить автоматическое отключение лазера при достижении нормального ВГД в месте аппликации.

Технической задачей является преодоление указанного недостатка.

Техническим результатом является повышение эффективности лечения различных стадий открытоугольной формы глаукомы, облегчение работы врача офтальмолога.

Решение поставленной технической задачи и достижение технического результата обеспечиваются тем, что внутри корпуса размещена металлическая трубка, внутри которой проходит оптический волновод, имеющий металлизированный внутренний слой. Торцевая поверхность этого слоя может соприкасаться с глазным яблоком, на конце трубки размещена упругая полусферическая присоска, имеющая с внутренней стороны металлизированную поверхность, причем металлизированные поверхности волновода и присоски подключены по электрическим линиям к контактным разъемам, предназначенным для подключения к электронному блоку устройства. При этом оптический волновод может быть выполнен в виде жгута из отдельных волокон, которые внутри присоски распределяются по периметру поверхности цилиарного тела в точках лазерных аппликаций.

Существо группы изобретений поясняется схемами на фигурах.

Фиг. 1 - Схема устройства.

Фиг. 2 - Схема рабочего инструмента.

Фиг. 3 - Схема размещения присоски присоски рабочего инструмента на глазном яблоке.

Фтг. 4 - Схема положения присоски на глазном яблоке в период лазерного облучения.

Фиг. 5 - Схема положения присоски на глазном яблоке после прекращения лазерного облучения.

Фиг. 6 - График изменения интенсивности прямого и обратного излучения в процессе лазерного воздействия на склеру с постоянной средней мощностью.

Фиг. 7 - Схема присоски инструмента с волноводом в виде жгута отдельных волокон

Фиг. 8 - Сечение по А-А фиг. 7.

Фиг. 9 - График изменения давления под присоской в процессе лазерного облучения от момента включения лазера и до момента отскока ее от склеры и выключения лазера.

Способ реализуют с помощью устройства, содержащего лазер 1, который по электрической линии подключен через выключатель 2 к контроллеру 3. Последний по электрической цепи 4 подключен к электронному блоку 5, используемому в цепи общей обратной электрической связи, которая блокирует включение лазера после наступления момента снижения внутриглазного давления до заданного (нормального) уровня. По оптической сигнальной цепи 6 контроллер подключен к опто-электронному блоку 7 используемому в цепи местной (локальной) обратной оптической связи. Световод 8 установлен между лазером 3 и оптическим ответвителем 9, который по оптоволоконным линиям связан с рабочим инструментом 10 и оптико-электронным блоком 7. Рабочий инструмент 10 имеет корпус 11, к которому крепится присоска 12 из упругого материала. Между корпусом 11 и присоской 12 размещено уплотнение 13, обеспечивающее герметизацию полости присоски при работе устройства. На поверхности корпуса 10 размещены электрические контакты 14, 15 (фиг. 2), подключенные, соответственно, к металлизированной внутренней поверхности присоски 12 и металлизированному внутреннему слою оптического волновода, размещенного внутри трубки 16, проходящей через корпус 10. Контакты 14. 15 по электрическим линиям 17, 18 подключены к электронному блоку 5.

Предлагаемый способ лечения различных стадий открытоугольной формы глаукомы реализуют следующим образом. На склеру глаза в месте планируемой аппликации путем надавливания устанавливают с помощью упругой присоски 12 рабочий инструмент 10 (фиг. 3). При надавливании воздух из полости присоски вытесняется, радиус ее кривизны R увеличивается до значения R1 (фиг. 4). Внутри полости возникает разрежение с пониженным давлением Pap. Давление внутри полости Pap значительно ниже атмосферного Pa и ниже внуриглазного давления Р. Таким образом, возникает перепад гидравлического давления на склеральной оболочке ΔР. Согласно закону Дарси, возникает поток влаги из глаза в полость пропорциональный перепаду давления и гидропроницаемости К. В нормальных условиях (без облучения ткани) этот поток не велик и не вызывает увеличения давления в полости. При этом в контакт со склерой входит металлизированная внутренняя поверхность 19 присоски 12 и металлизированый торец 20 (показано условно) световода, проходящего через трубку 16.

Для проведения аппликации замыкают контакты выключателя 2 и напряжение поступает на лазер 1, который генерирует световое излучение, поступающее через световод 8 и оптический ответвитель 9 в световод, находящийся внутри рабочего инструмента. К точке аппликации поступает световое излучение от лазера 1 (показано на фиг. 1 сплошной линией). Одновременно происходит замыкание электрического контура устройства. Ток I0 (фиг. 4) проходит по цепи: контроллер 3, линия 4, электронный блок 5, линия 17, контакт 14, металлизированная поверхность волновода, проходящего в инструменте, поверхность склеры, контакт 15, линия 18. Полученный при прохождении тока сигнал обрабатывается в электронном блоке 5.

При поступлении лазерного излучения в глазной ткани происходит образование пор, что приводит к увеличению гидропроницаемости и снижению внутриглазного давления. Одновременно происходящее при этом увеличение потока жидкости внутрь полости присоски вызывает повышение давления в этой полости. В результате повышения давления в названной полости происходит деформация упругой присоски. Радиус кривизны внутренней поверхности присоски изменяется от величины R1 до величины R (фиг. 5), причем R>R1. В результате изменения радиуса кривизны контакт между металлизированным торцом 20 световода, проходящего через трубку 16, и поверхностью глазного яблока нарушается, между ними возникает зазор h. Возникновение зазора вызывает разрыв цепи вышеназванного электрического контура. Момент исчезновения электрического контакта со склерой сигнализирует о завершении процесса увеличения гидропроницаемости до значения, при котором давление паров под присоской равно ВД. В процессе облучения, одновременно с образованием пор увеличивается интенсивность поступающего в оптический ответвитель 9 обратно рассеянного излучения, являющаяся сигналом обратной связи для работы оптико-электронного блока 7 (Фиг. 1). В процессе экспериментов была установлена зависимость между интенсивностью прямого излучения и обратного рассеянного от склеры излучения (на фиг. 6 показано пунктиром). Установлено, что в диапазоне коэффициента отношения интенсивности прямого и обратного излучения 2,5-3,0 (фиг. 6) ВД уменьшается до нормального значения. Разрыв электрического контакта означает необходимость прекращения лазерной аппликации. Сигнал о прекращении электрического контакта поступает на электронный блок 5, от которого эта информация поступает в контроллер 5. При поступлении такой информации контроллер отключает питание лазера и процесс аппликации завершается.

Очевидно, что для снижения ВГД одной аппликации может быть не достаточно. Проницаемость склеры в одном месте приложения аппликации может быть достигнута, а ВГД не упадет до нормального уровня. Поэтому процесс приложения лазерной энергии в одном месте прекращают и переходят к другой точке на склере. Рабочий инструмент устанавливают в другой точке цилиарного тела и начинают новый процесс аппликации. И так повторяют, до тех пока не снизится ВГД до нормального уровня. При этом происходит «отскок» присоски, размыкание общей цепи обратной связи и блокирование включения лазера.

Таким образом, если начало запуска аппликации производится врачом путем замыкания контакта 2, то прекращение аппликаций происходит автоматически путем блокирования контакта 2.

С целью обеспечения одновременной аппликации в нескольких точках цилиарного тела и, следовательно, для сокращения времени операции присоску делают по размеру соответствующему глазному яблоку, а часть волновода, находящуюся внутри присоски, выполняют в виде жгута из отдельных волноводов. Каждый из таких отдельных волноводов 21 жгута входит в контакт с поверхностью цилиарного тела в конкретном месте аппликации (фиг. 7 и 8). Перемещения присоски по поверхности глазного яблока не происходит, а нанесение аппликаций осуществляется одновременно, или последовательно путем переключения подачи лазерной энергии в разные оптические волноводы 21 жгута (фиг. 7 и 8).

С помощью предлагаемого устройства были проведены эксперименты по облучению склеры выделенного глаза кролика в одном месте в проекции цилиарного тела. Одновременно с облучением проводился контроль давления в области контакта со склерой, непосредственно под присоской. При увеличении этого давления до уровня, при котором присоска отскакивала, достигалась снижение ВГД. На Фиг. 9 показана динамика давления под присоской в процессе лазерного облучения от момента включения лазера и до момента отскока ее от склеры и выключения лазера.

Проведенные эксперименты показали возможность применения технических решений настоящей группы изобретений для лечения начальных, развитых, далеко зашедших и резистентных стадий открытоугольной формы глаукомы.


Способ лечения открытоугольной формы глаукомы, устройство для его осуществления и рабочий инструмент
Способ лечения открытоугольной формы глаукомы, устройство для его осуществления и рабочий инструмент
Способ лечения открытоугольной формы глаукомы, устройство для его осуществления и рабочий инструмент
Способ лечения открытоугольной формы глаукомы, устройство для его осуществления и рабочий инструмент
Способ лечения открытоугольной формы глаукомы, устройство для его осуществления и рабочий инструмент
Способ лечения открытоугольной формы глаукомы, устройство для его осуществления и рабочий инструмент
Способ лечения открытоугольной формы глаукомы, устройство для его осуществления и рабочий инструмент
Способ лечения открытоугольной формы глаукомы, устройство для его осуществления и рабочий инструмент
Источник поступления информации: Роспатент

Показаны записи 31-39 из 39.
14.05.2023
№223.018.5491

Способ формирования 3d микроструктур в оптических материалах

Изобретение относится к способу формирования 3D микроструктур в оптически прозрачном материале и может быть использовано, например, для изготовления элементов микрооптики, волоконной и интегральной оптики, фотоники, плазмоники, сенсорики и микрофлюидики. Осуществляют воздействие импульсного...
Тип: Изобретение
Номер охранного документа: 0002729253
Дата охранного документа: 05.08.2020
14.05.2023
№223.018.54a6

Устройство для измерения термо-эдс тонких пленок

Изобретение относится к измерительной технике и предназначено для измерения термо-ЭДС в тонких пленках металлических, полупроводниковых термоэлектрических материалов. Сущность: устройство для измерения термо-ЭДС тонких пленок длиной L и шириной S, содержит термопары и средства для замера ЭДС....
Тип: Изобретение
Номер охранного документа: 0002737341
Дата охранного документа: 27.11.2020
15.05.2023
№223.018.5a31

Устройство для термической обработки металлических, полупроводниковых подложек и аморфных плёнок

Изобретение относится к технологии термической обработки металлических, полупроводниковых подложек и аморфных пленок. Устройство содержит корпус с размещенной внутри него теплоизоляцией, подложкодержатель и нагреватель, нагреватель содержит два дистанционно расположенных кварцевых кольца,...
Тип: Изобретение
Номер охранного документа: 0002761867
Дата охранного документа: 13.12.2021
15.05.2023
№223.018.5a51

Способ многократного использования раствора-расплава при синтезе febo

Изобретение относится к области получения высокосовершенных монокристаллов FeBO. Способ многократного использования раствора-расплава при синтезе FeBO заключается в том, что после синтеза FeBO раствор-расплав сливают, среди синтезированных кристаллов отбирают высокосовершенные монокристаллы...
Тип: Изобретение
Номер охранного документа: 0002769681
Дата охранного документа: 05.04.2022
15.05.2023
№223.018.5a52

Способ многократного использования раствора-расплава при синтезе febo

Изобретение относится к области получения высокосовершенных монокристаллов FeBO. Способ многократного использования раствора-расплава при синтезе FeBO заключается в том, что после синтеза FeBO раствор-расплав сливают, среди синтезированных кристаллов отбирают высокосовершенные монокристаллы...
Тип: Изобретение
Номер охранного документа: 0002769681
Дата охранного документа: 05.04.2022
16.05.2023
№223.018.5f4b

Устройство для выращивания кристаллов из раствора при постоянной температуре

Изобретение относится к области кристаллографии, а более конкретно к устройствам для выращивания кристаллов из растворов, например к технике скоростного выращивания кристаллов группы КДР (KHPO), в том числе, в промышленных масштабах. Устройство для выращивания кристаллов из раствора при...
Тип: Изобретение
Номер охранного документа: 0002745770
Дата охранного документа: 31.03.2021
16.05.2023
№223.018.628d

Способ азотирования покрытий из оксида титана на твердой подложке

Изобретение относится к области термохимической обработки материалов, находящихся в твердой фазе, в частности, к азотированию покрытий титана на твердой подложке. Способ азотирования покрытий из титана на твердой подложке включает воздействие на открытом воздухе на покрытие без его...
Тип: Изобретение
Номер охранного документа: 0002785576
Дата охранного документа: 08.12.2022
16.05.2023
№223.018.6330

Способ травления поверхности сапфировых пластин

Изобретение относится к области радиационно-химической обработки кристаллических материалов. Способ травления поверхности сапфировых пластин включает обработку электронным пучком, предварительно на поверхность сапфира наносят слой золота толщиной 100÷120 нм, отжигают полученный композит на...
Тип: Изобретение
Номер охранного документа: 0002771457
Дата охранного документа: 04.05.2022
16.05.2023
№223.018.6382

Способ азотирования покрытий из оксида титана на твердой подложке

Изобретение относится к способу азотирования покрытий титана на твердой подложке. Способ включает воздействие на покрытие низкотемпературной плазмой азота атмосферного давления на открытом воздухе без его предварительного прогрева со среднемассовой температурой в диапазоне от 3727°С до 4727°С в...
Тип: Изобретение
Номер охранного документа: 0002775988
Дата охранного документа: 12.07.2022
Показаны записи 41-50 из 74.
23.02.2020
№220.018.0501

Активный элемент твердотельного лазера

Изобретение относится к лазерной технике, в частности, к твердотельным лазерам. Активный элемент твердотельного лазера представляет собой легированный активирующей примесью оптический стержень, на внешней поверхности стержня вдоль всей его длины выполнена канавка с минимально возможной шириной...
Тип: Изобретение
Номер охранного документа: 0002714863
Дата охранного документа: 19.02.2020
29.02.2020
№220.018.0723

Способ контроля вероятности достоверных измерений

Изобретение относится к технике обнаружения сигналов при воздействии помех, например, в лазерной дальнометрии или в системах охранной сигнализации. Техническим результатом является сокращение объема испытаний при обеспечении необходимой надежности оценки вероятности недостоверных измерений....
Тип: Изобретение
Номер охранного документа: 0002715167
Дата охранного документа: 25.02.2020
05.03.2020
№220.018.0967

Способ изготовления полупроводниковых бета-вольтаических ячеек на основе радионуклида никель-63

Изобретение относится к способу изготовления полупроводниковых бета-вольтаических преобразователей на основе радионуклида никель-63 для использования в автономных источниках электрического питания. Способ изготовления полупроводниковых бета-вольтаических ячеек на основе радионуклида никель-63,...
Тип: Изобретение
Номер охранного документа: 0002715735
Дата охранного документа: 03.03.2020
17.04.2020
№220.018.1517

Способ автоматической стабилизации частоты пересечения порогового уровня выбросами шумового процесса

Изобретение относится к приему сигналов, в частности к технике выделения сигналов из шума. Технический результат изобретения заключается в сокращении времени выхода на рабочий режим порогового обнаружителя сигналов при обеспечении максимальной вероятности обнаружения сигнала. Согласно...
Тип: Изобретение
Номер охранного документа: 0002718856
Дата охранного документа: 15.04.2020
20.05.2020
№220.018.1e1c

Пороговое устройство с шумовой стабилизацией порога

Изобретение относится к приему сигналов, в частности к технике выделения сигналов из шума. Технический результат изобретения заключается в сокращении времени выхода на рабочий режим. В пороговое устройство с шумовой стабилизацией порога, содержащее пороговое устройство с сигнальным и...
Тип: Изобретение
Номер охранного документа: 0002721174
Дата охранного документа: 18.05.2020
24.06.2020
№220.018.298f

Способ прогнозирования риска осложнений лазерного кераторефракционного вмешательства у пациентов с сахарным диабетом 1 типа

Изобретение относится к офтальмологии и предназначено для определения риска осложнений лазерного кераторефракционного вмешательства у пациентов с сахарным диабетом (СД) 1 типа. Выполняют лазерную конфокальную микроскопию роговицы с визуализацией нервных волокон в слоях переднего эпителия и...
Тип: Изобретение
Номер охранного документа: 0002724281
Дата охранного документа: 22.06.2020
24.06.2020
№220.018.29b1

Система регулировки периметра зеемановского лазерного гироскопа

Изобретение относится к гироскопам и измерительной технике и может быть использовано для регулировки периметра зеемановского лазерного гироскопа. Система регулировки периметра зеемановского лазерного гироскопа дополнительно содержит включенные в кольцевой лазер второе зеркало с пьезоприводом и...
Тип: Изобретение
Номер охранного документа: 0002724242
Дата охранного документа: 22.06.2020
12.04.2023
№223.018.436d

Способ формирования и наведения лазерного излучения излучателей с оптоволоконными выводами на цель

Изобретение относится к оптико-электронному приборостроению, к лазерным комплексам формирования и наведения лазерного излучения на удаленные цели. Способ формирования и наведения лазерного излучения излучателей с оптоволоконными выводами на цель отличается от известного тем, что для каждого...
Тип: Изобретение
Номер охранного документа: 0002793612
Дата охранного документа: 04.04.2023
12.04.2023
№223.018.43ad

Система формирования и наведения лазерного излучения излучателей с оптоволоконными выводами на цель

Использование: изобретение относится к оптико-электронному приборостроению и может использоваться при разработке лазерных комплексов в части формирования и наведения лазерного излучения на удаленные цели. Сущность: система формирования и наведения лазерного излучения излучателей с...
Тип: Изобретение
Номер охранного документа: 0002793613
Дата охранного документа: 04.04.2023
20.04.2023
№223.018.4cd5

Способ порогового обнаружения оптических сигналов

ИИзобретение относится к технике выделения сигналов из шума с помощью лавинных фотодиодов. Технический результат изобретения заключается в обеспечении максимального отношения сигнал/шум. Способ порогового обнаружения оптических сигналов с помощью лавинного фотодиода, включающий пороговую...
Тип: Изобретение
Номер охранного документа: 0002755602
Дата охранного документа: 17.09.2021
+ добавить свой РИД