×
18.07.2020
220.018.3475

ПРОТИВОТУРБУЛЕНТНАЯ ПРИСАДКА ДЛЯ БУРОВЫХ РАСТВОРОВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к добавкам для снижения гидродинамического сопротивления жидкости в условиях развитой турбулентности потока, в частности, при прокачке буровых растворов в процессе бурения нефтяных и газовых скважин. Технический результат - высокая эффективность, обеспечение снижения гидродинамического сопротивления жидкости в турбулентном потоке не менее чем на 60% в сравнении с исходным модельным буровым раствором при повышенной температуре до 180°C, при кислотности среды до рН 1,65, при минерализации раствора до 7,0 мас.% по CaCl. Противотурбулентная присадка для снижения гидродинамического сопротивления бурового раствора на водной среде представляет собой трехкомпонентный акрилатный сополимер с молекулярной массой более 2,5⋅10 Да, состоящий из мономеров нитрила акриловой кислоты, натриевой соли 2-акриламидо-2-метилпропансульфоновой кислоты и акриламида при следующем соотношении компонентов, мас.%: нитрил акриловой кислоты 8-12; Na-2-акриламидо-2-метилпропансульфоновой кислоты 43-58; полиакриламид остальное. 1 табл., 5 пр.
Реферат Свернуть Развернуть

Изобретение относится к составам, обладающим способностью снижать гидродинамическое сопротивление бурового раствора (БР) на водной основе при бурении нефтяных и газовых скважин для снижения перекачивающей нагрузки на насосное оборудование. Снижение гидродинамического сопротивления и перекачивающей нагрузки достигается за счет гашения длинными молекулами водорастворимого полимера пристеночной турбулентности.

Одним из основных компонентов буровых растворов, обеспечивающих снижение гидродинамического сопротивления и приращение объемного расхода (эффект Томса) при бурении, является полиакриламид высокой молекулярной массы (>106 Да).

Известна жидкость для снижения гидродинамического трения (патент RU 2441050) содержащая от 0,001 активных массовых процентов (амп) до 0,5 амп поверхностно-активного вещества (ПАВ), снижающего гидравлическое сопротивление, и, по крайней мере, один активатор снижения гидравлического сопротивления, выбранный из группы: полимерные активаторы снижения гидравлического сопротивления, выбранные из группы, включающей низкомолекулярные водорастворимые полимеры и сополимеры, содержащие, по меньшей мере, один ароматический цикл, или их смесь с мономерным активатором снижения гидравлического сопротивления.

Недостатком данного изобретения является низкий эффект снижения гидродинамического сопротивления - 20% за счет присутствия водорастворимых полимеров малой длины, низкая термическая стабильность жидкости для бурения глубоких и сверхглубоких скважин, отсутствуют данные по стойкости к рН среды и устойчивости к минерализации раствора.

Наиболее близким по составу аналогом, взятым за прототип, является сополимер акриламида (патент RU 2194722 С2), который используется в качестве регулятора фильтрации буровых растворов и стабилизатором минеральных дисперсий, состоит из сополимера акриламида, 2-акриламидо-2-метилпропансульфокислоты, акрилонитрила и изобутилакриламида при массовом соотношении компонентов (43-75):(5-30):(5-25):(0-3) мас. %, сополимер обладает хорошей стабильностью при высоких температурах (до 180°C) и хорошей устойчивостью к минерализации среды по CaCl2 до 1,5 мас. %.

Недостатком изобретения является отсутствие эффекта снижения гидродинамического сопротивления за счет низкой молекулярной массы трехкомпонентного сополимера (до 2,4⋅106 Да), также сополимер не обладает стабильностью к рН рабочей среды ниже 3 и не обладает устойчивостью к солям щелочноземельных металлов, например, CaCl2 при концентрациях свыше 1,5 мас. %.

Термостабильность и устойчивость противотурбулентной присадки к воздействию высокой минерализации по солям щелочноземельных металлов (более 3,5 мас. %), а также к рН среды менее 3-4 необходима при бурении глубоких и сверхглубоких поисково-разведочных и эксплуатационных нефтегазовых скважин в сложных горно-геологических условиях, где буровой раствор должен сохранять свои рабочие характеристики на различных этапах бурения.

Наибольшее дестабилизирующее воздействие на водные растворы полимеров оказывают соли кальция, в частности хлорид кальция, который вместе с хлоридами натрия и магния наиболее часто содержится в пластовых водах. В условиях высоких температур акриламидные звенья полимера гидролизуются, что приводит к появлению в составе макромолекул карбоксильных звеньев (-СООН). Катионы щелочноземельных и поливалентных металлов, попадая в буровой раствор из пластовых вод, могут взаимодействовать с образующимися карбоксильными звеньями акрилатных полимеров с формированием нерастворимых солей, что негативно сказывается на противотурбулентных свойствах данных полимерных добавок.

Задачей, на решение которой направлено изобретение, являются новые акрилатные терполимеры большой молекулярной массы (≥2.5⋅106 Да), которые обеспечивают эффект снижения гидродинамического сопротивления водных турбулентных растворов не менее чем на 60% при воздействии высоких температур до 180°C, при высокой кислотности среды до рН 1,65 и при высокой минерализации среды по щелочноземельным металлам (по CaCl2 до 7,0 мас. %).

Заявленный технический результат достигается за счет синтеза трехкомпонентного сополимера (терполимера) акриламида (АА) с натриевой солью 2-акриламидо-2-метилпропансульфоновой кислоты (АМПСNa) и нитрилом акриловой кислоты (НАК) при массовом соотношении компонентов (30-48):(43-58):(8-12) мас. %, со среднемассовой молекулярной массой не менее 2,5⋅106 Да.

Синтез сополимера акриламида (АА), нитрила акриловой кислоты (НАК) и натриевой соли 2-акриламидо-2-метилпропансульфоновой кислоты (АМПСNa) проводили радикальной сополимеризацией компонентов в водных растворах. Реакционный раствор готовили последовательным добавлением рассчитанных количеств АА и 2-акриламидо-2-метилпропансульфоновой кислоты (АМПСК) в дистиллированную воду при перемешивании. Далее с помощью 2 М раствора NaOH доводили рН раствора реакционной смеси до 9, затем при перемешивании вводили рассчитанное количество НАК. Суммарная концентрация мономеров в растворе составляла 5,0 моль/л. Соотношения мономеров (мас. %) варьировали в диапазоне [АА] : [АМПСК] : [НАК] = 33-100:0-58:0-12. Раствор обескислораживали барботированием азота или аргона не менее 15 мин. Затем добавляли инициатор радикальной полимеризации - персульфат калия или азобисизобутиронитрил и поглотитель кислорода - сульфит натрия до достижения концентрации каждого из них в реакционном растворе 1-3 ммоль/л. Поддержание рН=9 обеспечивало эффективность инициирования и поддержание постоянства скорости инициирования в условиях изменения ионной силы раствора при варьировании концентрации ионогенного мономера АМПСК. Реакцию полимеризации проводили в герметичном реакторе при перемешивании в течении 6 ч при температуре 60°C. В результате реакции нейтрализации АМПСК в сополимере содержался в виде звеньев своей натриевой соли АМПСNa.

Способность сополимера снижать гидродинамическое сопротивление течения потока жидкости оценивалась на лабораторном турбулентном реометре капиллярного типа. Значение числа Рейнольдса для проводимых опытов составляло порядка 30000, напряжение сдвига на стенке капилляра порядка 1 кПа. В качестве модельного бурового раствора использовался 5 мас. % раствор бентонита в воде.

Гидродинамическую эффективность сополимеров оценивали по относительной величине снижения гидродинамического сопротивления DR (%). На капиллярном реометре замеряли время истечения модельного бурового раствора и того же раствора с добавлением терполимера различной концентрации при одинаковых заданных перепадах давления между концами трубки ΔPs=ΔPp=Const. Значение DR рассчитывали по формуле:

где ts и tp - время истечения фиксированного объема чистого растворителя и раствора терполимера, соответственно, через капилляр в турбулентном режиме течения. Для каждого состава оценивалось оптимальное содержание терполимера в растворе на основании построения зависимости величины DR от концентрации сополимера и выделения максимального значения DRmax.

Молекулярная масса терполимера рассчитывалась на основании характеристической вязкости по уравнению Марка-Куна-Хаувинка и измеренной методом динамического светорассеяния.

Способность терполимера снижать гидродинамическое сопротивление бурового раствора на водной основе в условиях развитой турбулентности потока подтверждается следующими примерами:

Пример 1. Терполимер с оптимальным составом и высокой молекулярной массой (соотношение AA-НАК-АМПCNa составляет 48-8-44 мас. % со среднемассовой молекулярной массой 2,7⋅106 Да).

Максимальный эффект снижения гидродинамического сопротивления DRmax при оптимальной концентрации сополимера Сопт 0,04 мас. % в стандартных условиях (минерализация 0%, Т=25°C и рН среды 6,86) составил 74,3%. Максимальный эффект снижения гидродинамического сопротивления DRmax при оптимальной концентрации Сопт 0,07 мас. % и понижении рН среды до 1,65 составил 71,4%. Максимальный эффект снижения гидродинамического сопротивления DRmax при оптимальной концентрации Сопт 0,09 мас. % и повышении температуры до 180°C составил 76,3%. Максимальный эффект снижения гидродинамического сопротивления DRmax при оптимальной концентрации Сопт 0,05 мас. % и изменении минерализации раствора по CaCl2 до 7,0 мас. % (ионная сила раствора I=1,89 моль⋅л-1) составил 72,0%.

Пример 2. Терполимер с избытком термостойкого и солекислотостойкого мономеров и высокой молекулярной массой (соотношение АА-НАК-АМПСNa 38-11-51 мас. % со средней молекулярной массой 2,5⋅106 Да).

Максимальный эффект снижения гидродинамического сопротивления DRmax при оптимальной концентрации Сопт 0,045 мас. % в стандартных условиях (минерализация 0%, Т=25°C и рН среды 6,86) составил 74,8%. Максимальный эффект снижения гидродинамического сопротивления DRmax при оптимальной концентрации Сопт 0,067 мас. % и понижении рН среды до 1,65 составил 70,9%. Максимальный эффект снижения гидродинамического сопротивления DRmax при оптимальной концентрации Сопт 0,09 мас. % и повышении температуры до 180°C составил 74,2%. Максимальный эффект снижения гидродинамического сопротивления DRmax при оптимальной концентрации Сопт 0,048 мас. % и изменении минерализации раствора по CaCl2 до 7,0 мас. % (ионная сила раствора I=1,89 моль⋅л-1) составил 73,4%.

Пример 3. Терполимер с недостатком термостойкого мономера и высокой молекулярной массой (соотношение АА-НАК-АМПСNa 55-3-42 мас. % со средней молекулярной массой 2,9⋅106 Да).

Максимальный эффект снижения гидродинамического сопротивления DRmax при оптимальной концентрации Сопт 0,039 масс % в стандартных условиях (минерализация 0%, Т=25°C и рН среды 6,86) составил 73,8%. Максимальный эффект снижения гидродинамического сопротивления DRmax при оптимальной концентрации Сопт 0,07 масс % и понижении рН среды до 1,65 составил 71,9%. Максимальный эффект снижения гидродинамического сопротивления DRmax при оптимальной концентрации Сопт 0,28 масс % и повышении температуры до 180°C составил 28,1%. Максимальный эффект снижения гидродинамического сопротивления DRmax при оптимальной концентрации Сопт 0,051 масс % и изменении минерализации раствора по CaCl2 до 7,0 мас. % (ионная сила раствора I=1,89 моль⋅л-1) составил 70,6%.

Пример 4. Терполимер с недостатком солекислотостойкого мономера и высокой молекулярной массой (соотношение AA-НАК-АМПCNa 65-10-25 мас. % со средней молекулярной массой 2,6⋅106 Да).

Максимальный эффект снижения гидродинамического сопротивления DRmax при оптимальной концентрации Сопт 0,041 масс % в стандартных условиях (минерализация 0%, Т=25°C и рН среды 6,86) составил 70,3%. Максимальный эффект снижения гидродинамического сопротивления DRmax при оптимальной концентрации Сопт 0,19 масс % и понижении рН среды до 1,65 составил 34,6%. Максимальный эффект снижения гидродинамического сопротивления DRmax при оптимальной концентрации Сопт 0,24 масс % и повышении температуры до 180°C составил 61,2%. Максимальный эффект снижения гидродинамического сопротивления DRmax при оптимальной концентрации Сопт 0,17 масс % и изменении минерализации раствора по CaCl2 до 7,0 мас. % (ионная сила раствора I=1,89 моль⋅л-1) составил 30,2%.

Пример 5. Терполимер с оптимальным составом и низкой молекулярной массой (соотношение AA-НАК-АМПCNa 48-8-44 мас. % со средней молекулярной массой 0,8⋅106 Да).

Максимальный эффект снижения гидродинамического сопротивления DRmax при оптимальной концентрации Сопт 0,30 масс % в стандартных условиях (минерализация 0%, Т=25°C и рН среды 6,86) составил 58,6%. Максимальный эффект снижения гидродинамического сопротивления DRmax при оптимальной концентрации Сопт 0,34 масс % и понижении рН среды до 1,65 составил 54,1%. Максимальный эффект снижения гидродинамического сопротивления DRmax при оптимальной концентрации Сопт 0,39 масс % и повышении температуры до 180°C составил 62,2%. Максимальный эффект снижения гидродинамического сопротивления DRmax при оптимальной концентрации Сопт 0,30 масс % и изменении минерализации раствора по CaCl2 до 7,0 мас. % (ионная сила раствора I=1,89 моль⋅л-1) составил 57,9%.

Как видно из таблицы, полученные составы в крайних диапазонах заявленных пределов соотношения компонентов (Пример 1 и 2) обеспечивают эффективность DR в пределах от 70,9 до 76,3%. При содержании нитрила акриловой кислоты за пределами заявленной рецептуры (Пример 4) снижается эффективность DR при высокой температуре до 28%. При содержании АМПСNa за пределами заявленной рецептуры снижается эффективность DR при понижении рН до 34,6% и при повышенной минерализации по соли щелочноземельных металлов до 30,2% (Пример 4). При снижении молекулярной массы терполимера ниже предела заявленной рецептуры снижается эффективность DR при различных условиях среды ниже 60% (Пример 5).

Предлагаемое решение имеет следующие преимущества:

Противотурбулентная полимерная присадка в заявленных пределах соотношения компонентов и концентрациях 0,04-0,09 мас. % обеспечивает снижение гидродинамического сопротивления при прокачке бурового раствора на водной основе от 70,9 до 76,3% как в стандартных условиях, так и в условиях повышенных температур (до 180°C), при кислотности среды до рН 1,65 и минерализации раствора до 7,0 мас. % по CaCl2.

Источник поступления информации: Роспатент

Показаны записи 1-2 из 2.
22.03.2019
№219.016.ec60

Цитотоксическая и противовирусная активность 3-ацилоксиметил-3-оксо-1-циано-2,3-секо-2-нор-тритерпеноидов

Изобретение относится к А-секотритерпеноиду 18αН-олеананового типа. Технический результат: получено новое соединение, ингибирующее репродукцию ВИЧ-1 и вирусов герпеса простого I и II типа и обладающее одновременно вирулицидными свойствами. 1 з.п. ф-лы, 3 табл., 5 пр.
Тип: Изобретение
Номер охранного документа: 0002682669
Дата охранного документа: 20.03.2019
17.06.2020
№220.018.2710

Реологическая добавка для огнетушащих порошковых составов

Изобретение относится к составу реологической добавки. Реологическая добавка для огнетушащих порошковых составов включает сферические частицы диоксида кремния размером 200 нм совместно с частицами диоксида кремния размером 7 нм при соотношении компонентов 80/20 мас. %, гидрофобизированные...
Тип: Изобретение
Номер охранного документа: 0002723518
Дата охранного документа: 11.06.2020
Показаны записи 1-10 из 13.
20.06.2013
№216.012.4c99

Способ извлечения никеля (ii) из водных кислых растворов, содержащих другие металлы

Изобретение относится к извлечению никеля экстракцией из водных кислых растворов в присутствии железа или цветных металлов. В качестве экстрагента используют гидразиды на основе синтетических α-разветвленных третичных карбоновых кислот общей формулы CHRRCC(O)NHNH, где R и R - алкильные...
Тип: Изобретение
Номер охранного документа: 0002485191
Дата охранного документа: 20.06.2013
10.10.2013
№216.012.7433

Способ спектрофотометрического определения концентрации диоксида хлора и хлорит-иона в питьевой воде

Изобретение относится к аналитической химии, в частности к способам определения концентрации примесей в питьевой воде. Способ включает обработку проб воды раствором йодида калия, поочередное измерение оптической плотности проб диоксида хлора при pH 7 и хлорит-иона и диоксида хлора при pH 2,5,...
Тип: Изобретение
Номер охранного документа: 0002495404
Дата охранного документа: 10.10.2013
27.12.2013
№216.012.91fe

Способ моделирования очага деминерализации эмали зуба

Изобретение относится к медицине, в частности к экспериментальной стоматологии, и касается моделирования деминерализации эмали зуба. Для этого на удаленный зуб фиксируют брекет. Ограничивают очаг, который расположен на вестибулярной поверхности зуба вокруг брекета, восковым покрытием. Погружают...
Тип: Изобретение
Номер охранного документа: 0002503067
Дата охранного документа: 27.12.2013
20.07.2014
№216.012.ddf7

Реактор для получения раствора диоксида хлора

Изобретение относится к производству хлорсодержащих окислителей, применяемых в качестве реагентов при обеззараживании и очистке питьевой воды, сточных, оборотных вод. Реактор для получения раствора диоксида хлора с тремя проточными камерами, расположенными последовательно по вертикали,...
Тип: Изобретение
Номер охранного документа: 0002522609
Дата охранного документа: 20.07.2014
20.09.2015
№216.013.7b9f

Способ получения n-(3,3-диметил-3,4-дигидроизохинолил-1)-6-аминокапроновой кислоты

Изобретение относится к области органической химии, а именно к способу получения N-(3,3-диметил-3,4-дигидроизохинолил-1)-6-аминокапроновой кислоты, заключающийся во взаимодействии 1-метилтио-3,3-диметил-3,4-дигидроизохинолина с ε-аминокапроновой кислотой при нагревании в автоклаве без...
Тип: Изобретение
Номер охранного документа: 0002563244
Дата охранного документа: 20.09.2015
20.05.2016
№216.015.41b3

Электроизоляционный эпоксидный лак

Изобретение относится к эпоксидным электроизоляционным составам, в частности составам на основе эпоксидных или полиэфирных смол в органическом растворителе, и может быть использовано в производстве изделий радиотехники и электроники, к которым предъявляются высокие требования по электрической...
Тип: Изобретение
Номер охранного документа: 0002584734
Дата охранного документа: 20.05.2016
10.05.2018
№218.016.3f01

6-(3,3- диметил-3,4-дигидроизохинолин-1-ил) аминогексановая кислота и фармацевтическая композиция на ёе основе, обладающие анальгетической активностью

Группа изобретений относится к медицине, фармацевтической химии, фармакологии и технологии лекарственных форм. Предложены применение 6-(3,3-диметил-3,4-дигидроизохинолин-1-ил) аминогексановой кислоты формулы I в качестве соединения, оказывающего анальгетическое действие и предназначенного для...
Тип: Изобретение
Номер охранного документа: 0002648445
Дата охранного документа: 26.03.2018
28.07.2018
№218.016.760b

Турбулентный реометр

Турбулентный реометр относится к области лабораторного оборудования, используемого для оценки эффективности применения противотурбулентных присадок за счет определения гидродинамических параметров течения жидкости в турбулентном потоке. Турбулентный реометр включает расходную емкость и...
Тип: Изобретение
Номер охранного документа: 0002662502
Дата охранного документа: 26.07.2018
09.09.2018
№218.016.856a

Эпоксидное связующее

Изобретение относится к области получения эпоксидных связующих и может использоваться при приготовлении препрегов на основе на их основе с использованием стекло-, угле-, органонаполнителей методом пропитки для изготовления высокопрочных термостойких полимерных композиционных материалов для...
Тип: Изобретение
Номер охранного документа: 0002666438
Дата охранного документа: 07.09.2018
05.02.2020
№220.017.fddf

Устройство для определения текучести огнетушащих порошковых составов

Изобретение относится к области измерительного оборудования, используемого для оценки текучести порошковых составов при высоких скоростях их течения. Устройство для определения текучести огнетушащих порошковых составов включает баллон с азотом - источник движущей среды, ресивер, напорную...
Тип: Изобретение
Номер охранного документа: 0002712958
Дата охранного документа: 03.02.2020
+ добавить свой РИД