×
18.07.2020
220.018.3427

Результат интеллектуальной деятельности: ВОЛНОВОДНАЯ ЗАМЕДЛЯЮЩАЯ СИСТЕМА ЛБВ О-ТИПА

Вид РИД

Изобретение

№ охранного документа
0002726906
Дата охранного документа
16.07.2020
Аннотация: Изобретение относится к области электронной техники, в частности к замедляющим системам для ламп бегущей волны (ЛБВ) и ламп обратной волны (ЛОВ) О-типа. Техническим результатом настоящего изобретения является уменьшение потерь СВЧ-мощности в волноводной ЗС ЛБВ О-типа, увеличение выходной мощности и КПД ЛБВ О-типа, а также уменьшение длины ЗС. Технический результат достигается тем, что волноводная замедляющая система содержит СВЧ-ввод, СВЧ-вывод и металлический волновод прямоугольного поперечного сечения, изогнутый так, что плоские участки его широких сторон многократно пересекают продольную ось образованной таким образом ЗС в плоскостях, перпендикулярных этой оси. В плоских участках широких сторон волновода имеются отверстия, образующие для прохождения электронных потоков пролетные каналы, оси которых параллельны продольной оси ЗС и расположены в плоскости, параллельной узким сторонам волновода и разделяющей широкие стороны волновода пополам. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области электронной техники, в частности, к замедляющим системам для ламп бегущей волны (ЛБВ) и ламп обратной волны (ЛОВ) О-типа.

Известна волноводная замедляющая система (ЗС) ЛБВ, содержащая металлический волновод прямоугольного поперечного сечения, изогнутый так, что его широкие стороны многократно пересекают продольную ось образованной таким образом ЗС в плоскостях, перпендикулярных этой оси. В широких сторонах волновода имеются цилиндрические отверстия, образующие пролетный канал для прохождения электронного потока; ось пролетного канала совпадает с осью ЗС, при этом длина волновода, соответствующая одному периоду ЗС, приближенно равна длине волны в волноводе на одной из частот рабочего диапазона частот [Г.А. Азов, М.В. Ефремова, В.А. Солнцев, С.А. Хриткин // Моделирование импульсной лампы бегущей волны трехмиллиметрового диапазона длин волн/ Радиотехника и электроника. 2016. Т. 61. №8. С.788-793], [Kwang Но Jang, Jin Joo Choi, Jong Hyun Kim // Experiments on Sub-Teraherz Folded Waveguide Traveling Wave Tubes / IEEE 15th Intl. Vac. Electron. Conf. IVEC 2017, 01. Monday, 04. Novel Slow Wave Structures, ID312].

Данная ЗС имеет ряд недостатков, ограничивающих возможность получения непрерывной выходной мощности более 10-50 Вт. Первый недостаток состоит в том, что такая ЗС может применяться только в ЛБВ с одним электронным потоком (в однолучевой ЛБВ). ЗС, содержащие изогнутый (петляющий) волновод, применяются преимущественно в ЛБВ миллиметрового диапазона длин волн. Учитывая то, что критическая длина волны в волноводе (λкр) равна 2а, где а - размер широкой стороны волновода, в миллиметровом диапазоне длин волн широкие стороны волноводов имеют размеры не более 5 мм. Пролетные каналы для электронных потоков целесообразно размещать в области максимальных и близких к максимальным значениям напряженностей электрического поля в волноводе, поэтому оси пролетных каналов для электронных потоков в таких волноводных ЗС должны проходить через средние линии широких сторон волновода, а их диаметры должны выбираться из интервала 0,2-0,5 мм. Это ограничивает возможность применения в ЛБВ электронных потоков с током более 20-100 мА из-за увеличения плотности тока в них до 100-1000 А/см2, что существенно сокращает возможность получения приемлемого токопрохождения в протяженных пролетных каналах малого диаметра и, соответственно, ограничивает возможность получения непрерывной выходной мощности более 10-50 Вт в однолучевой ЛБВ. Кроме этого, питающие напряжения у однолучевых ЛБВ существенно выше, чем у многолучевых ЛБВ. Второй недостаток состоит в том, что в таких ЗС длина волновода между участками взаимодействия электронного потока с электромагнитной волной в волноводе равна или мало отличается от длины волны в волноводе на одной из частот рабочего диапазона частот, что приводит к увеличению потерь СВЧ-мощности, уменьшению выходной мощности и КПД ЛБВ.

Также известна волноводная ЗС, используемая в ЛБВ и содержащая металлический волновод прямоугольного поперечного сечения, изогнутый так, что его широкие стороны многократно пересекают продольную ось образованной таким образом ЗС в плоскостях, перпендикулярных этой оси, при этом длина волновода, соответствующая одному периоду ЗС, приближенно равна длине волны в волноводе на одной из частот рабочего диапазона частот.ЗС содержит пролетный канал прямоугольного поперечного сечения для прохождения ленточного электронного потока. В ЗС больший размер пролетного канала ориентирован вдоль линий, перпендикулярных узким сторонам волновода [А.Д. Григорьев, А.С. Иванов, В.А. Ильин, В.В. Лучинин, В.Н. Титов // Проектирование лампы бегущей волны миллиметрового и субмиллиметрового диапазонов / Электронная техника. Сер. 1. СВЧ-техника. Вып. 4 (527). 2015. С. 28-34].

Недостатком данной ЗС является в первую очередь то, что такая ЗС может применяться только в однолучевой ЛБВ. Выходная непрерывная мощность этих ЛБВ существенно ниже, а питающие напряжения существенно выше, чем у многолучевых ЛБВ. Во-вторых, значительная часть пролетного канала ЗС находится в волноводной области, удаленной от максимальной напряженности электрического поля, что снижает эффективность взаимодействия электронного потока с электромагнитной волной в волноводе и КПД ЛБВ. В-третьих, в прямоугольных пролетных каналах ухудшается прохождение ленточных электронных потоков из-за их вращения в магнитном поле магнитной фокусирующей системы ЛБВ. В-четвертых, в таких ЗС длина волновода между участками взаимодействия электронного потока с электромагнитной волной в волноводе равна или мало отличается от длины волны в волноводе на одной из частот рабочего диапазона частот, что приводит к увеличению потерь СВЧ-мощности, уменьшению выходной мощности и КПД ЛБВ.

Наиболее близкой к предлагаемому изобретению является волноводная ЗС ЛБВ, содержащая ввод СВЧ электромагнитной волны, вывод СВЧ электромагнитной волны и металлический волновод прямоугольного поперечного сечения, изогнутый так, что его широкие стороны многократно пересекают продольную ось образованной таким образом ЗС в плоскостях, перпендикулярных этой оси. В широких сторонах волновода имеются цилиндрические отверстия, образующие для двухрядного прохождения электронных потоков два пролетных канала, оси которых параллельны продольной оси ЗС и расположены близко друг к другу и к оси волноводной ЗС в плоскости, разделяющей широкие стороны волновода пополам, причем длина волновода, соответствующая одному периоду ЗС, приближенно равна длине волны в волноводе на одной из частот рабочего диапазона частот [Е.А. Ракова, А.В. Галдецкий // Многолучевая "прозрачная" ЛБВ миллиметрового диапазона / Сборник статей Четвертой всероссийской конференции "Электроника и микроэлектроника СВЧ". Санкт-Петербург. 1-4 июня 2015. Том 1. С. 102-106].

Недостатком данной ЗС является то, что наличие двух пролетных каналов на одном периоде ЗС (при условии, что длина волновода, соответствующая одному периоду ЗС, приближенно равна длине волны в волноводе на одной из частот рабочего диапазона частот) приводит к тому, что длина пути распространения электромагнитной волны в волноводе между осями пролетных каналов в соседних участках волновода до изгиба и после изгиба волновода не совпадает с длиной этой волны в волноводе, поэтому возникают колебания фаз взаимодействия двух электронных потоков с электромагнитной волной в ЗС, что снижает выходную мощность и КПД ЛБВ, а также может приводить к появлению паразитных составляющих в спектре выходных сигналов ЛБВ. Также недостатком является то, что в таких ЗС длина волновода между участками взаимодействия электронного потока с электромагнитной волной в волноводе мало отличается от длины волны в волноводе на одной из частот рабочего диапазона частот, что приводит к увеличению потерь СВЧ-мощности, уменьшению выходной мощности и КПД ЛБВ.

Техническим результатом настоящего изобретения является уменьшение потерь СВЧ-мощности в волноводной ЗС ЛБВ О-типа, увеличение выходной мощности и КПД ЛБВ О-типа, а также уменьшение длины ЗС.

Технический результат достигается тем, что волноводная замедляющая система содержит СВЧ-ввод, СВЧ-вывод и металлический волновод прямоугольного поперечного сечения, изогнутый так, что плоские участки его широких сторон многократно пересекают продольную ось образованной таким образом ЗС в плоскостях, перпендикулярных этой оси. В плоских участках широких сторон волновода имеются отверстия, образующие для прохождения электронных потоков пролетные каналы, оси которых параллельны продольной оси ЗС и расположены в плоскости, параллельной узким сторонам волновода и разделяющей широкие стороны волновода пополам.

При этом длины каждого из плоских участков широких сторон волновода, расположенных между его изгибами, равны одному и тому же целому числу n длин волн электромагнитной волны в волноводе на средней частоте рабочего диапазона частот (fCP), при (w/λB)≥n≥2, где:

n - целое число, количество длин волн электромагнитной волны в волноводе на fCP;

λB - длина электромагнитной волны на fCP в волноводе, м;

w - длина каждого плоского участка широкой стороны волновода, м.

Имеющиеся в плоских участках широких сторон волновода отверстия образуют для прохождения электронных потоков k=n⋅m пролетных каналов при

λB/(h+d)≥m≥2, где:

m - целое число, количество пролетных каналов на длине волновода, равной одной длине электромагнитной волны на fCP в волноводе;

h - размер между металлическими границами отверстий любых соседних пролетных каналов, м;

d - размер пролетного канала по прямой, проходящей через оси отверстий любых соседних пролетных каналов в плоскостях, перпендикулярных оси ЗС, м.

Для обеспечения синхронизма движения в ЗС электромагнитной волны на fCP и электронных потоков период ЗС должен удовлетворять условию

PЗС=2qTР⋅5,932⋅105⋅(UЗС)0,5, где:

РЗС - период ЗС, м;

ТР - период колебаний электромагнитной волны в волноводе на fСР, с.;

UЗС - напряжение ЗС относительно катода ЛБВ О-типа, В;

q - параметр, определяющий длину участков модуляции электронных потоков по плотности, выбираемый в интервале значений 0,5≤q≤3, причем для ЗС с постоянным периодом q имеет постоянное значение на всей длине ЗС, а для ЗС с переменным периодом q имеет переменное значение на всей длине ЗС или на любой ее части.

При этом изгибы волновода, соответствующие каждому периоду ЗС, имеют длину Sизг, равную q⋅λB, где q имеет одно и то же значение для изгиба волновода и соответствующего ему периода ЗС.

Пролетные каналы могут быть взаимно расположены на расстоянии, соответствующем условию, исключающему взаимное влияние в волноводе пространственных зарядов соседних электронных потоков в ЛБВ О-типа: h≥b, где:

h - размер между металлическими границами отверстий любых соседних пролетных каналов, м;

b - размер узкой стороны волновода, м.

Также пролетные каналы в поперечном сечении могут иметь форму прямоугольников, большая сторона которых перпендикулярна узким стенкам волновода.

Увеличение длины плоских участков широких сторон волновода на периоде ЗС позволяет значительно увеличить количество пролетных каналов в ЗС. Дополнительное увеличение количества пролетных каналов и уменьшение расстояний между участками взаимодействия электромагнитной волны с электронными потоками в ЗС достигается за счет увеличения количества каналов на длине волновода, равной длине электромагнитной волны в волноводе на fCP. Увеличение количества пролетных каналов и уменьшение расстояний между участками взаимодействия электромагнитной волны с электронными потоками в ЗС, обеспечение эффективной модуляции электронных потоков по плотности в совокупности с обеспечением синхронизма движения электромагнитной волны и электронных потоков в ЗС при соответствии предлагаемому решению условий по ее периоду и размещению пролетных каналов позволяет увеличить количество электронных потоков в ЛБВ О-типа и суммарный ток этих электронных потоков, соответственно также увеличить суммарную мощность электронных потоков, которая передается электромагнитной волне в волноводе, и уменьшить потери СВЧ-мощности между участками взаимодействия электронных потоков с электромагнитной волной в ЗС. Это приводит к уменьшению потерь СВЧ мощности в ЗС, уменьшению длины этой ЗС, увеличению выходной мощности и КПД ЛБВ О-типа. Изменение периода ЗС вдоль ее длины при изменении параметра q позволяет управлять условиями взаимодействия электронных потоков с электромагнитной волной в ЗС, что обеспечивает дополнительное увеличение выходной мощности и КПД ЛБВ О-типа. Кроме того, уменьшение длины ЗС позволяет создавать в пролетных каналах ЗС магнитные фокусирующие поля с большой индукцией с помощью магнитных систем с уменьшенными габаритами и массой.

Предлагаемое изобретение поясняется чертежом. На Фиг. 1 представлены продольное и поперечное сечения волноводной ЗС в частном случае ее выполнения, содержащей 7 пролетных каналов, где:

1 - ЗС, выполненная согласно предлагаемому решению;

2 - СВЧ-ввод;

3 - СВЧ-вывод;

4 - металлический волновод прямоугольного поперечного сечения, выполненный согласно предлагаемому решению;

5 - пролетные каналы для прохождения электронных потоков;

b - размер узкой стороны волновода;

h - размер между металлическими границами отверстий любых соседних пролетных каналов;

d - размер пролетного канала по прямой, проходящей через оси отверстий любых соседних пролетных каналов в плоскостях, перпендикулярных оси ЗС;

w - длина плоского участка широкой стороны волновода;

РЗС - период ЗС;

SpЗС - длина волновода, соответствующая одному периоду ЗС;

Sизг - длина изгиба волновода.

Волноводная замедляющая система ЛБВ О-типа (1), выполненная согласно предлагаемому решению, содержит СВЧ-ввод (2) для соединения ЗС (1) с входной волноведущей системой и согласования их волновых сопротивлений; СВЧ-вывод (3) для соединения ЗС (1) с выходной волноведущей системой и согласования их волновых сопротивлений; металлический волновод (4) прямоугольного поперечного сечения, изогнутый так, что плоские участки его широких сторон многократно пересекают продольную ось образованной таким образом ЗС (1) в плоскостях, перпендикулярных этой оси, и имеющий в плоских участках широких сторон отверстия, образующие для прохождения электронных потоков пролетные каналы (5), оси которых параллельны продольной оси ЗС (1) и расположены в плоскости, параллельной узким сторонам волновода (4), разделяющей широкие стороны волновода (4) пополам.

На длине (SpЗС) волновода (4), соответствующей одному периоду ЗС (1), между его изгибами имеются плоские участки широких сторон волновода (4), длины которых равны одному и тому же целому числу п длин волн электромагнитной волны в волноводе на средней частоте рабочего диапазона частот (fСР) при (w/λB)≥n≥2, где n - целое число, количество длин волн электромагнитной волны в волноводе (4) на fCP; λB - длина электромагнитной волны на fCP в волноводе (4), м; w - длина плоского участка широкий стороны волновода (4), м. Имеющиеся в широких сторонах волновода (4) отверстия образуют для прохождения электронных потоков k=n⋅m пролетных каналов (5) при λB/(h+d)≥m≥2, где m - целое число, количество пролетных каналов (5) на длине волновода (4), равной одной длине электромагнитной волны на fCP в волноводе (4); h - размер между металлическими границами отверстий любых соседних пролетных каналов (5), м; d - размер пролетного канала (5) по прямой, проходящей через оси отверстий любых соседних пролетных каналов (5) в плоскостях, перпендикулярных оси ЗС (1), м. Для обеспечения синхронизма движения в ЗС (1) электромагнитной волны на fCP и электронных потоков период ЗС (1) удовлетворяет условию PЗС=2qTР⋅5,932⋅105⋅(UЗС)0,5, где РЗС - период ЗС (1), м; ТР - период колебаний электромагнитной волны в волноводе (4) на fСР, с; UЗС - напряжение ЗС (1) относительно катода ЛБВ О-типа, В. q - параметр, определяющий длину участков модуляции электронных потоков по плотности, выбирается в интервале значений 0,5≤q≤3, причем для ЗС (1) с постоянным периодом q имеет постоянное значение на всей длине ЗС (1), для ЗС (1) с переменным периодом, q имеет переменное значение на всей длине ЗС (1) или на любой ее части. При этом изгибы волновода (4), соответствующие каждому периоду ЗС (1), имеют длину Sизг, равную q⋅λB, где q имеет одно и то же значение для изгиба волновода (4) и соответствующего ему периода ЗС (1).

При этом возможно исполнение ЗС, в котором пролетные каналы (5) взаимно расположены на расстоянии h≥b, где h - размер между металлическими границами отверстий любых соседних пролетных каналов (5), м; b - размер узкой стороны волновода (4), м.

Кроме того, возможно исполнение ЗС с пролетными каналами (5), имеющими в поперечном сечении форму прямоугольников, большая сторона которых перпендикулярна узким стенкам волновода (4). Такое исполнение ЗС применяется в ЛБВ О-типа с ленточными электронными потоками и позволяет увеличить суммарный ток электронных потоков ЛБВ О-типа и соответственно увеличить его выходную мощность. При этом не происходит существенного ухудшения прохождения электронных потоков в прямоугольных пролетных каналах (5) ЗС (1) из-за меньшей длины предлагаемой ЗС (1) и малости угла поворота ленточных электронных потоков в магнитном поле магнитной фокусирующей системы ЛБВ О-типа.

Волноводная замедляющая система (1) ЛБВ О-типа (ЗС) работает следующим образом. В ЛБВ О-типа на СВЧ-ввод (2) подается электромагнитная волна на частоте рабочего диапазона частот. Из СВЧ-ввода (2) электромагнитная волна поступает в металлический волновод (4) прямоугольного поперечного сечения, изогнутый так, что плоские участки его широких сторон многократно пересекают продольную ось образованной таким образом ЗС (1) в плоскостях, перпендикулярных этой оси, и движется по волноводу (4) к СВЧ-выводу (3). Волновод (4) имеет в плоских участках широких сторон отверстия, образующие для прохождения электронных потоков пролетные каналы (5), оси которых параллельны продольной оси ЗС (1) и расположены в плоскости, параллельной узким сторонам волновода (4) и разделяющей широкие стороны волновода (4) пополам. При прохождении через пролетные каналы (5) электронных потоков происходит многократное взаимодействие проходящей по волноводу (4) электромагнитной волны на частоте рабочего диапазона частот с электронными потоками, проходящими по пролетным каналам (5). Многократность взаимодействий и их количество обеспечивается тем, что на длине (SpЗС) волновода (4), соответствующей одному периоду ЗС (1), между его изгибами имеются плоские участки широких сторон волновода (4), длины которых равны одному и тому же целому числу п длин волн электромагнитной волны в волноводе на средней частоте рабочего диапазона частот (fСР) при (w/λB)≥n≥2, где n - целое число, количество длин волн электромагнитной волны в волноводе (4) на fСР; λB - длина электромагнитной волны на fСР в волноводе (4), м; w - длина плоского участка широкой стороны волновода (4), м, а имеющиеся в широких сторонах волновода (4) отверстия образуют для прохождения электронных потоков k=n⋅m пролетных каналов (5) при λB/(h+d)≥m≥2, где m - целое число, количество пролетных каналов (5) на длине волновода (4), равной одной длине электромагнитной волны на fCP в волноводе (4); h - размер между металлическими границами отверстий любых соседних пролетных каналов (5), м; d - размер пролетного канала (5) по прямой, проходящей через оси отверстий любых соседних пролетных каналов (5) в плоскостях, перпендикулярных оси ЗС (1), м. При этом происходит модуляция электронных потоков по скорости электронов, образование и увеличение плотности электронных сгустков в каждом электронном потоке, причем образовавшиеся сгустки электронов в электронных потоках при движении в пролетных каналах (5) попадают в одну и ту же на всей длине ЗС (1), имеющую различные значения для разных пролетных каналов (5), фазу электромагнитной волны, проходящей в волноводе (4). При значении напряжения на ЗС относительно катода ЛБВ (UЗС), превышающем значение, соответствующее режиму полного синхронизма движения электронных потоков с электромагнитной волной, но близком к режиму синхронизма, происходит торможение электронных сгустков электронных потоков в тормозящих фазах электромагнитной волны в волноводе (4) и, за счет этого, происходит усиление мощности электромагнитной волны. Мощность электромагнитной волны увеличивается при взаимодействии с каждым электронным потоком при последовательном прохождении участков волновода (4) с пролетными каналами (5). При этом, за счет обеспечения синхронизма движения в ЗС (1) электромагнитной волны fСР и электронных потоков, каждый электронный поток на всех участках взаимодействия с электромагнитной волной в волноводе (4) сохраняет свои фазовые условия взаимодействия в пределах, соответствующих усилению мощности электромагнитной волны до уровня насыщения. Синхронизм движения в ЗС (1) электромагнитной волны на fСР и электронных потоков обеспечивается в результате того, что период ЗС (1) удовлетворяет условию PЗС=2qTР⋅5,932⋅105⋅(UЗС)0,5, где РЗС - период ЗС (1), м; ТР - период колебаний электромагнитной волны в волноводе (4) на fСР, с; UЗС - напряжение ЗС (1) относительно катода ЛБВ О-типа, В; q - параметр, определяющий длину участков модуляции электронных потоков по плотности, выбирается в интервале значений 0,5≤q≤3, причем для ЗС (1) с постоянным периодом, q имеет постоянное значение на всей длине ЗС (1), для ЗС (1) с переменным периодом q имеет переменное значение на всей длине ЗС (1) или на любой ее части; при этом изгибы волновода (4), соответствующие каждому периоду ЗС (1), имеют длину Sизг, равную q⋅λB, где q имеет одно и то же значение для изгиба волновода (4) и соответствующего ему периода ЗС (1). Увеличение количества пролетных каналов (5) и уменьшение расстояний между участками взаимодействия электромагнитной волны с электронными потоками в ЗС (1), обеспечение эффективной модуляции электронных потоков по плотности, в совокупности с обеспечением синхронизма движения электромагнитной волны на fСР и электронных потоков в ЗС (1), при соответствии предлагаемому решению условий по ее периоду и размещению пролетных каналов (5), позволяет увеличить количество электронных потоков в ЛБВ О-типа и суммарный ток этих электронных потоков; увеличить суммарную мощность электронных потоков, которая передается электромагнитной волне в волноводе (4); уменьшить потери СВЧ-мощности между участками взаимодействия в ЗС (1). Это приводит к уменьшению потерь СВЧ-мощности в ЗС (1), уменьшению длины этой ЗС (1), увеличению выходной мощности и КПД ЛБВ О-типа. Изменение периода ЗС (1) вдоль ее длины при изменении параметра q позволяет управлять условиями взаимодействия электронных потоков с электромагнитной волной в ЗС (1), что обеспечивает дополнительное увеличение выходной мощности и КПД ЛБВ О-типа.

Кроме того, уменьшение длины ЗС (1) позволяет создавать в пролетных каналах (5) ЛБВ О-типа магнитные фокусирующие поля с большой индукцией с помощью магнитных систем с уменьшенными габаритами и массой.

В варианте исполнения ЗС (1), в котором пролетные каналы (5) взаимно расположены на расстоянии h≥b, где h - размер между металлическими границами отверстий любых соседних пролетных каналов (5), м; b - размер узкой стороны волновода (4), м; исключается взаимное влияние в волноводе (4) пространственньгх зарядов соседних электронных потоков в ЛБВ О-типа и обеспечивается улучшение токопрохождения в пролетных каналах (5) ЗС (1), уменьшается потребляемая мощность ЗС (1) и увеличивается КПД ЛБВ О-типа.

Кроме того, в исполнении ЗС с пролетными каналами (5), имеющими в поперечном сечении форму прямоугольников, большая сторона которых перпендикулярна узким стенкам волновода (4), в этих пролетных каналах (5) проходят ленточные электронные потоки, что позволяет дополнительно увеличить суммарный ток электронных потоков ЛБВ О-типа и соответственно увеличить его выходную мощность. При этом не происходит существенного ухудшения прохождения электронных потоков в прямоугольных пролетных каналах (5) ЗС (1) из-за меньшей длины предлагаемой ЗС (1) и, соответственно, малости угла поворота ленточных электронных потоков в магнитном поле магнитной фокусирующей системы ЛБВ О-типа.

Источники информации:

1. Г.А. Азов, М.В. Ефремова, В.А. Солнцев, С.А. Хриткин // Моделирование импульсной лампы бегущей волны трехмиллиметрового диапазона длин волн/ Радиотехника и электроника. 2016. Т. 61. №8. С.788-793.

2. Kwang Но Jang, Jin Joo Choi, Jong Hyun Kim // Experiments on Sub-Teraherz Folded Waveguide Traveling Wave Tubes / IEEE 15th Intl. Vac. Electron. Conf. IVEC 2017, 01. Monday, 04. Novel Slow Wave Structures, ID312.

3. А.Д. Григорьев, A.C. Иванов, В.А. Ильин, B.B. Лучинин, В.Н. Титов // Проектирование лампы бегущей волны миллиметрового и субмиллиметрового диапазонов / Электронная техника. Сер. 1. СВЧ-техника. Вып. 4 (527). 2015. С. 28-34.

4. Е.А. Ракова, А.В. Галдецкий // Многолучевая "прозрачная" ЛБВ миллиметрового диапазона / Сборник статей Четвертой всероссийской конференции "Электроника и микроэлектроника СВЧ". Санкт-Петербург. 1 - 4 июня 2015. Том 1. С. 102-106.


ВОЛНОВОДНАЯ ЗАМЕДЛЯЮЩАЯ СИСТЕМА ЛБВ О-ТИПА
ВОЛНОВОДНАЯ ЗАМЕДЛЯЮЩАЯ СИСТЕМА ЛБВ О-ТИПА
Источник поступления информации: Роспатент

Показаны записи 1-10 из 36.
10.03.2016
№216.014.c038

Способ изготовления многоострийного автоэмиссионного катода из углеродного материала на криволинейной поверхности

Изобретение относится к электронной технике, в частности к изготовлению углеродных многоострийных автоэмиссионных катодов, используемых в электровакуумных приборах с микросекундным временем готовности. Технический результат - увеличение плотности тока в сечении пучка и ламинарности электронного...
Тип: Изобретение
Номер охранного документа: 0002576395
Дата охранного документа: 10.03.2016
27.03.2016
№216.014.c80f

Способ изготовления высокочастотного пакета замедляющей системы

Изобретение относится к технологии производства электровакуумных приборов, а именно к изготовлению высокочастотного пакета замедляющих систем спирального типа для ламп бегущей волны. В способе изготовления высокочастотного пакета замедляющей системы соединение между спиралью с металлическим...
Тип: Изобретение
Номер охранного документа: 0002578212
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c914

Способ определения величины продольного смещения термокатода, вызванного его нагревом, в приборе свч (варианты)

Изобретение относится к электронной технике и может быть использовано при изготовлении электронных пушек с термокатодами для приборов СВЧ. Cпособ определения величины продольного смещения термокатода (Δк), вызванного его нагревом, в приборе СВЧ, включает измерения тока пушки I при нулевом и...
Тип: Изобретение
Номер охранного документа: 0002578213
Дата охранного документа: 27.03.2016
10.06.2016
№216.015.4473

Катодно-сеточный узел с углеродным автоэмиссионным катодом

Изобретение относится к электронной технике, в частности к конструкции катодно-сеточных узлов (КСУ) с автоэмиссионными катодами из углеродного материала для вакуумных электронных приборов с микросекундным временем готовности. Технический результат - уменьшение разброса углов наклона...
Тип: Изобретение
Номер охранного документа: 0002586119
Дата охранного документа: 10.06.2016
12.01.2017
№217.015.5c2e

Способ изготовления катодно-сеточного узла с углеродным автоэмиссионным катодом

Изобретение относится к электронной технике, а именно к способу изготовления катодно-сеточных узлов (КСУ) с холодными катодами из углеродного материала для вакуумных электронных приборов. Технический результат - повышение равномерности автоэлектронной эмиссии в ячейках КСУ по всей поверхности...
Тип: Изобретение
Номер охранного документа: 0002589722
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.6241

Способ повышения плотностей тока автоэмиссии и деградационной стойкости автоэмисионных катодов

Изобретение относится к области электронной техники и может быть использовано при изготовлении изделий светоиндикаторной техники и эмиссионной электроники на основе автоэлектронной эмиссии углеродных структур. Синтез материала эмиттера автоэмиссионного катода осуществляют в плазме...
Тип: Изобретение
Номер охранного документа: 0002588611
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.73eb

Фазостабильная лампа бегущей волны

Изобретение относится к области электронных приборов СВЧ, в частности к лампам бегущей волны (ЛБВ), содержащим во входной части секцию несинхронного режима работы, а следом за ней - усилительный участок, обеспечивающие малую чувствительность фазы выходного сигнала к изменению напряжения пучка....
Тип: Изобретение
Номер охранного документа: 0002597878
Дата охранного документа: 20.09.2016
20.01.2018
№218.016.120c

Каскадный распределённый усилитель свч

Изобретение относится к области электронных приборов СВЧ, в частности к вакуумным усилителям с распределенным взаимодействием. Техническим результатом является снижение входной емкости распределенного усилителя и, как следствие, увеличение верхней границы рабочего диапазона частот, а так же...
Тип: Изобретение
Номер охранного документа: 0002634186
Дата охранного документа: 24.10.2017
20.01.2018
№218.016.127e

Каскадный усилитель свч

Изобретение относится к области электронных приборов СВЧ и по физическим принципам функционирования близко к вакуумным усилителям с распределенным взаимодействием. Технический результат заключается в снижении массогабаритных показателей устройства и увеличении верхней границы рабочего диапазона...
Тип: Изобретение
Номер охранного документа: 0002634185
Дата охранного документа: 24.10.2017
04.04.2018
№218.016.2ee6

Полупрозрачная лампа бегущей волны

Изобретение относится к области электронных приборов СВЧ, в частности к лампам бегущей волны. Лампа бегущей волны с вводом и выводом энергии, содержащими передающие линии волноводного типа, с пространством взаимодействия в виде замедляющей системы, содержащей спираль, опорные диэлектрические...
Тип: Изобретение
Номер охранного документа: 0002644419
Дата охранного документа: 12.02.2018
Показаны записи 1-10 из 14.
27.06.2013
№216.012.5228

Способ изготовления многоострийных автоэмиссионных катодов

Изобретение относится к технологии изготовления электронных приборов, в частности к технологии изготовления углеродных многоострийных автоэмиссионных катодов, используемых в вакуумных электронных приборах с эффективными холодными источниками электронов. Технический результат - увеличение...
Тип: Изобретение
Номер охранного документа: 0002486625
Дата охранного документа: 27.06.2013
10.03.2016
№216.014.c038

Способ изготовления многоострийного автоэмиссионного катода из углеродного материала на криволинейной поверхности

Изобретение относится к электронной технике, в частности к изготовлению углеродных многоострийных автоэмиссионных катодов, используемых в электровакуумных приборах с микросекундным временем готовности. Технический результат - увеличение плотности тока в сечении пучка и ламинарности электронного...
Тип: Изобретение
Номер охранного документа: 0002576395
Дата охранного документа: 10.03.2016
12.01.2017
№217.015.6241

Способ повышения плотностей тока автоэмиссии и деградационной стойкости автоэмисионных катодов

Изобретение относится к области электронной техники и может быть использовано при изготовлении изделий светоиндикаторной техники и эмиссионной электроники на основе автоэлектронной эмиссии углеродных структур. Синтез материала эмиттера автоэмиссионного катода осуществляют в плазме...
Тип: Изобретение
Номер охранного документа: 0002588611
Дата охранного документа: 10.07.2016
04.04.2018
№218.016.2f0a

Катодно-сеточный узел с автоэмиссионным катодом из углеродного материала

Изобретение относится к электронной технике, в частности к конструкции катодно-сеточных узлов с автоэмиссионным катодом из углеродного материала для вакуумных электронных приборов (в том числе к СВЧ приборам) с микросекундным временем готовности. Технический результат - повышение равномерности...
Тип: Изобретение
Номер охранного документа: 0002644416
Дата охранного документа: 12.02.2018
04.04.2018
№218.016.316a

Свч-мультиплексор

Изобретение относится к радиотехнике. СВЧ-мультиплексор содержит устройство общего вывода СВЧ-сигнала, суммирующий резонатор, параллельно расположенные полосно-пропускающие фильтры. Суммирующий резонатор представляет собой закороченный на концах отрезок передающей линии, а каждый из...
Тип: Изобретение
Номер охранного документа: 0002645033
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.3202

Широкополосный многолучевой клистрон с многозвенной фильтровой системой

Изобретение относится к многолучевым клистронам, используемым в качестве усилителей мощности электромагнитных волн сантиметрового и миллиметрового диапазонов длин волн. Технический результат - расширение полосы усиления без увеличения габаритов и массы входной и выходной резонаторных систем...
Тип: Изобретение
Номер охранного документа: 0002645298
Дата охранного документа: 20.02.2018
29.05.2018
№218.016.5358

Способ повышения плотности и стабильности тока матрицы многоострийного автоэмиссионного катода

Изобретение относится к области электронной техники и может быть использовано при изготовлении изделий светоиндикаторной техники и эмиссионной электроники на основе автоэлектронной эмиссии матрицы многоострийных эмиттеров на пластинах монокристаллического кремния. Изготовление матрицы...
Тип: Изобретение
Номер охранного документа: 0002653843
Дата охранного документа: 15.05.2018
09.06.2018
№218.016.6046

Способ изготовления катодно-сеточного узла с автоэмиссионным катодом

Изобретение относится к электронной технике, в частности к способу изготовления катодно-сеточных узлов (КСУ) с автоэмиссионными катодами для вакуумных электронных приборов СВЧ-диапазона с микросекундным временем готовности. Технический результат - выравнивание токов во всех ячейках и повышение...
Тип: Изобретение
Номер охранного документа: 0002656879
Дата охранного документа: 07.06.2018
25.06.2018
№218.016.6720

Способ изготовления автоэмиссионного катода из углеродного материала

Изобретение относится к электронной технике, в частности к изготовлению автоэмиссионных катодов методом лазерного фрезерования из углеродных материалов для вакуумных электронных устройств, в том числе для СВЧ приборов с микросекундным временем готовности. Технический результат – повышение...
Тип: Изобретение
Номер охранного документа: 0002658304
Дата охранного документа: 20.06.2018
09.05.2019
№219.017.4c88

Лампа бегущей волны

Изобретение относится к области СВЧ-электроники, а более конкретно к лампам бегущей волны (ЛБВ) спирального типа, и может быть использовано при разработке и производстве ЛБВ. Технический результат - повышение эффективности теплоотвода от линии замедления спирального типа, снижение ее...
Тип: Изобретение
Номер охранного документа: 0002319250
Дата охранного документа: 10.03.2008
+ добавить свой РИД