×
11.07.2020
220.018.3194

СПОСОБ СПУСКА ОТДЕЛЯЮЩЕЙСЯ ЧАСТИ СТУПЕНИ РАКЕТЫ-НОСИТЕЛЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Группа изобретений относится к ракетам-носителям (РН) с жидкостными ракетными двигателями (ЖРД). Способ спуска отделяющейся части (ОЧ) ступени РН основан на ориентации и стабилизации положения ОЧ двигательной установкой вперед, приложении управляющих моментов путём сброса продуктов газификации из баков через газореактивные сопла (ГРС), и вдувом газа в погранслой на боковую поверхность ОЧ. На внеатмосферном участке траектории спуска ОЧ и в разреженных слоях атмосферы управление угловым движением ОЧ осуществляют с помощью ГРС. В процессе спуска ОЧ непрерывно сравнивают управляющие моменты в каналах угловой стабилизации тангажа и рыскания ОЧ, рассчитанные за счёт изменения параметров погранслоя и газореактивной системы при одинаковых массовых секундных расходах с учётом фактических параметров движения. При превышении управляющих моментов за счёт изменения параметров погранслоя управление в каналах стабилизации тангажа и рыскания ОЧ, осуществляют системой вдува газа (СВГ) в погранслой ОЧ, для управления в канале крена используют ГРС. В устройстве для осуществления способа в каналах тангажа и рыскания установлены СВГ в погранслой, соединённые через регулируемые клапаны с магистралями подачи с шар-баллонами газа наддува. Технический результат – повышение эффективности спуска ОЧ. 2 н.п. ф-лы, 3 ил.
Реферат Свернуть Развернуть

Группа изобретений относятся к ракетно-космической технике, преимущественно к ракетам-носителям (РН) с жидкостными ракетными двигателями (ЖРД) и может быть использована при реализации манёвров спуска отделяющихся частей (ОЧ) верхних ступеней РН с орбит и ОЧ нижних ступеней с траекторий выведения.

Известна группа изобретений «Способ спуска ОЧ ступени РН и устройство для его реализации» по патенту РФ № 2581894 (МПК В64G 1/26, B64 15/14, от 10.02.2016), которая предусматривает стабилизацию ОЧ положением двигательной установкой вперед, ориентацию и управляемое движение ОЧ центра масс и вокруг центра масс ОЧ.

Наиболее близким техническим решением является группа изобретений «Способ спуска ОЧ ступени РН и устройство для его реализации» по патенту РФ № 2621771 МПК В64G 1/26, основанная на стабилизации и ориентации ОЧ за счет энергетики невыработанных остатков жидких компонентов ракетного топлива на основе подачи в топливные баки теплоносителя и получения парогазовой смеси (ПГС), представляющей собой смесь газа наддува (например,гелий) + испарившийся компонент топлива + газы теплоносителя, и подачи ПГС в сопла сброса газореактивной системы (ГРС) и их ввода в погранслой.

Координаты точки, направление ввода и массовый секундный расход ПГС через систему ввода в погранслой определяют из условия формирования максимального суммарного управляющего воздействия, реализуемого управляющими соплами ГРС и соплами системы ввода газа в погранслой ОЧ.

В устройстве для осуществления способа в ОЧ введены сопла ГРС и сопла ввода ПГС в погранслой для каждого бака, соединенные магистралями с регулируемыми клапанам.

К недостаткам этого технического решения относятся:

– использование ввода ПГС в погранслой на внеатмосферном участке траектории спуска ОЧ, когда это не эффективно, т.к. отсутствует набегающий поток воздуха.

– при наличии набегающего динамического потока, направленного на сопло, например, при больших углах атаки давление на срезе сопла ГРС увеличивается, создавая эффект «запирания» сопла за счёт противодавления и, соответственно, уменьшая тягу сопла; для сохранения тяги сопла на прежнем уровне необходимо увеличение, скорости ПГС, массового секундного расхода ПГС, т.е. эффективность ГРС снижается;

– нет разделения участков функционирования ГРС и ввода газа в погранслой;

– использование ввода газа в погранслой для канала вращения затруднительно и малоэффективно;

– наиболее эффективный газ для ввода в погранслой является гелий, а не ПГС, т.к. гелий — это самый лёгкий газ;

– газ гелий используется в системе наддува баков современных РН, и после выключения маршевого ЖРД в шар-баллонах остаётся гелия от начальной заправки до 30% и выше.

Целью предлагаемого технического решения является повышение эффективности способа спуска ОЧ, которое достигается тем, что в известном способе спуска ОЧ ступени РН, основанном на ориентации и стабилизации ОЧ положением двигательной установкой по вектору скорости полёта ОЧ, величины управляющих перед пуском РН определяют эффективности управляющих моментов, реализуемых на основе реактивной силы ГРС и изменения параметров погранслоя за счёт ввода газа, вводят следующие действия:

а) на внеатмосферном участке траектории спуска ОЧ и разреженных слоях атмосферы управление угловым движением ОЧ осуществляют с помощью ГРС,

б) в процессе спуска ОЧ непрерывно сравнивают управляющие моменты в каналах угловой стабилизации тангажа и рыскания ОЧ, рассчитанные за счёт изменения параметров погранслоя и газореактивной системы при одинаковых массовых секундных расходах с учётом фактических параметров движения,

в) при превышении управляющих моментов за счёт изменения параметров погранслоя управление в каналах стабилизации тангажа и рыскания ОЧ осуществляют системой вдува газа (СВГ) в погранслой ОЧ, например, гелия, а для управления в канале крена используют ГРС.

В качестве прототипа устройства, реализующего предлагаемый способ, предлагается устройство прототипа «Способ спуска ОЧ ступени РН и устройство для его реализации» по патенту РФ № 2621771 МПК В64G 1/26.

Отделяющаяся часть ракеты-носителя, содержащая систему управления и навигации, систему газификации, управляющие органы газореактивной системы в каналах тангажа, рыскания и вращения, систему ввода газа в погранслой, согласно заявляемому техническому решению в каналах тангажа и рыскания установлены системы ввода газа в погранслой, соединённые через регулируемые клапаны с магистралями подачи с шар-баллонами газа наддува, конфигурация и размер системы вдува газа, например, в виде прямоугольной щели, массовый секундный расход, а также координаты установки системы определяют из условия формирования необходимых управляющих моментов в каналах тангажа и рыскания.

Реализация способа и устройства

На фиг. 1–3 приведены дополнительные материалы, поясняющие сущность предлагаемых решений на примере плоской прямоугольной пластины.

На фиг. 1 – схема ОЧ с ГРС и СВП, на которой 1 – маршевый ЖРД; 2 – бак окислителя (О); 3 – бак горючего (Г); 4 – ёмкость перекиси водорода (ПВ) с мембранной системой подачи; 5, 6 – шар-баллоны (ШБ) с гелием; 7, 8 – управляемые клапаны сброса ПГС из баков О, Г в газореактивные сопла 17,18 и в систему вдува газа в пограничный слой по магистралям 9 и 10; 11 – управляемый клапан на магистрали 12 для сброса гелия из ШБ 6 в сопла ГРС 17, 18 и СВГ 13, 14; 15, 16 – управляемые клапана СВГ; 19– сопла ГРС по крену.

На фиг. 2 – схема размещения ГРС и СВГ на примере плоской пластины, на которой Sмид – площадь миделевого сечения, Xцд – расстояние до центра давления, XL – длина пластины, XГРС – расстояние от сопла ГРС до центра давления, α – угол атаки, V – скорость набегающего потока.

На фиг. 3 – график изменения управляющих моментов от газореактивной системы (эффект запирания ГРС) и системы ввода газа в погранслой для плоской пластины при нулевом угле атаки на различных высотах.

Исходные данные для примера:

– размеры пластины: 100 x 100 x 3 мм, материал АМг – 6;

– параметры обтекания: скорость обтекания 200 – 50 м/с шагом 50 м/с, в диапазоне высот 15 – 5 км с шагом 5 км;

– газ обтекания гелий (температура 80К) и ПГС с параметрами (указать состав);

– начальная температура пластины 320 К;

– массовый расход газа 40 г/с;

– массовая скорость ввода газа в погранслой соответствует управляющему моменту 0,01 кг*м (при разных скоростях, углах атаки, взять высоту 10 км)

– углы атаки 0 градусов;

– центр тяжести пластины совпадает с центом давления.

– исходная тяга сопла ГРС при сбросе парогазовой смеси (указать состав), установленного на конце пластины 0,01 кг*м

– параметры парогазовой смеси ПГС: температура 300 К, массовая доля кислорода 90%, массовая доля паров воды 6.7%, массовая доля гелия 3.3%.

Реализация способа на основе анализа каждого введённого действия, в формулу изобретения:

а) на внеатмосферном участке траектории спуска ОЧ и разреженных слоях атмосферы управление угловым движением ОЧ осуществляют с помощью ГРС.

- реактивный управляющий момент, например, в канале тангажа, реализуемый камерой ГРС, определяется по формуле [кн. 1 А.П. Васильев, В.М. Кудрявцев и др. Основы теории и расчёта жидкостных ракетных двигателей / Учеб. для авиац. спец. вузов. - 4-е изд., перераб. и доп. - М.: Высш. шк., 1993 - 383 с.]:

(1)

где,

,, , ,, - массовый секундных расход продуктов сгорания через сопло ГРС, скорость истечения продуктов из сопел, давление в камере сгорания, внешнее атмосферное давление, динамическое давление атмосферы и площадь среза сопла ГРС соответственно,

, - координаты точек приложения тяги камеры ГРС.

Расчет скорости истечения газа из сопла осуществляется по формуле [кн. 2 Г. П. Синярев, М. В. Добровольский, Жидкостные ракетные двигатели, 1955 – 489 с, стр. 99, формула (3.70)]:

(2)

где,

, , , , - ускорение свободного падения, коэффициент адиабаты газа, давление в камере, плотность газа, давление на срезе сопла соответственно.

В кн. 2 перепад давлений в формуле (3) изменяется в пределах 0,02ч0,075.

б) в процессе спуска ОЧ непрерывно сравнивают управляющие моменты в каналах угловой стабилизации тангажа и рыскания ОЧ, рассчитанные за счёт изменения параметров погранслоя ОЧ и газореактивной системы при одинаковых массовых секундных расходах с учётом фактических параметров движения ОЧ:

Управляющий момент ГРС рассчитывается по формулам (1), (2).

Управляющий момент СВГ рассчитывался с использованием пакетного решателя ANSYS Fluent. В качестве математических моделей были выбраны математические модели энергии, вязкости и многофазности. Также был выбран метод сопряжения давления и скорости по схеме Simple [www.ansys.com/academic] и для примера пластины с постоянным шагом в одномерной постановке определялся по формуле:

(3)

где,

- давление, рассчитываемое в ANSYS; - параметры, входящие в уравнения Навье-Стокса, такие как плотность, скорость набегающего потока, температура и т. д.;

l - длина пластины;

- постоянный шаг по длине пластины.

в) при превышении управляющих моментов за счёт изменения параметров погранслоя управление в каналах стабилизации тангажа и рыскания ОЧ осуществляют системой вдува газа (СВГ) в погранслой ОЧ, например, гелия, а для управления в канале крена используют ГРС:

Сравниваются управляющие моменты ПГС и СВГ по формулам (1) и (3). Из-за сложности реализации управляющего момента в канале крена предлагается использовать управление с помощью ГРС.

Как следует из результатов, приведенных на фиг. 3, где в качестве примера рассматривалась пластина (фиг. 2) вместо ОЧ (фиг. 1), с увеличением высоты плотность атмосферы падает и скоростной напор уменьшается до нуля, что улучшает работу ГРС. Со снижением высоты управляющий момент ГРС уменьшается из-за повышения плотности атмосферы и скоростного напора, а при высотах ниже 10 км ГРС происходит эффект запирания. На таких высотах целесообразней использовать управляющий момент от СВГ.

По результатам, приведенным на фиг. 3, видно, что для СВГ целесообразней использовать газ гелий, в отличии от ПГС, что обусловлено отличием теплофизических и физико-химических свойств ПГС и гелия.

Таким образом, предлагаемая группа изобретений позволяет эффективно использовать жидкие остатки топлива в баках, предварительно переведя их в парогазовую смесь, и остатки газа наддува, находящиеся в шар-баллонах, для управляемого спуска ОЧ.

Данное техническое решение создано в рамках выполнения научно-исследовательских работ по Заданию Минобрнауки от 31.05.2017 № 9.1023.2017/ПЧ.


СПОСОБ СПУСКА ОТДЕЛЯЮЩЕЙСЯ ЧАСТИ СТУПЕНИ РАКЕТЫ-НОСИТЕЛЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ СПУСКА ОТДЕЛЯЮЩЕЙСЯ ЧАСТИ СТУПЕНИ РАКЕТЫ-НОСИТЕЛЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ СПУСКА ОТДЕЛЯЮЩЕЙСЯ ЧАСТИ СТУПЕНИ РАКЕТЫ-НОСИТЕЛЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 41-41 из 41.
17.06.2023
№223.018.7fa9

Сдвоенный датчик составляющих вектора напряженности электрического поля

Изобретение относится к области измерительной техники и может быть использовано для измерения составляющих вектора напряженности электрического поля. Сущность: датчик для измерения напряженности электрического поля содержит проводящую сферу, на поверхности которой диаметрально противоположно...
Тип: Изобретение
Номер охранного документа: 0002768200
Дата охранного документа: 23.03.2022
Показаны записи 41-49 из 49.
22.06.2019
№219.017.8e9c

Способ минимизации зон отчуждения для отделяемых частей ракет-носителей

Изобретение относится к конструкции и эксплуатации ракет-носителей (РН) и их отделяемых частей (ОЧ): отработавших ступеней, переходных отсеков, створок головных обтекателей и т.п. Способ включает этап предполетной подготовки РН, на котором рассчитывают параметры движения ОЧ, определяя участки...
Тип: Изобретение
Номер охранного документа: 0002692207
Дата охранного документа: 21.06.2019
29.06.2019
№219.017.9f36

Способ спуска отделяющейся части ступени ракеты космического назначения и устройство для его осуществления

Изобретения относятся к ракетно-космической технике, в частности к ракетам-носителям на жидком топливе, а именно к отделяющейся части ракеты космического назначения на жидких компонентах топлива и к способу спуска ее в заданный район. Способ спуска отделяющейся части ракеты космического...
Тип: Изобретение
Номер охранного документа: 0002414391
Дата охранного документа: 20.03.2011
02.10.2019
№219.017.cded

Способ минимизации зон отчуждения для отделяемых частей ракет-носителей и устройство для его реализации

Группа изобретений относится к ракетно-космической технике и может быть использована для сокращения районов падения отделяющихся частей ступеней ракет-носителей. Технический результат – снижение районов падения отделяемых частей путем их сжигания на атмосферном участке траектории спуска....
Тип: Изобретение
Номер охранного документа: 0002700150
Дата охранного документа: 12.09.2019
08.11.2019
№219.017.df4d

Головной обтекатель ракеты-носителя

Изобретение относится к головному обтекателю (ГО) ракеты-носителя (РН), сжигаемому после отделения от РН на атмосферном участке траектории спуска ГО. ГО представляет собой трехслойную конструкцию из полимерных композиционных материалов в виде двухстворчатой оболочки переменной кривизны,...
Тип: Изобретение
Номер охранного документа: 0002705258
Дата охранного документа: 06.11.2019
19.12.2019
№219.017.ef44

Способ газификации невырабатываемых остатков жидкого кислорода и керосина в баках ступени ракеты-носителя и устройство для его реализации

Изобретение относится к ракетно-космической технике. Способ газификации невырабатываемых остатков жидкого кислорода и керосина предусматривает подачу источника тепловой энергии из отдельной ёмкости (8) в баки (2, 3) с остатками компонентов топлива в жидкой (4, 5) и газообразной фазах, газа...
Тип: Изобретение
Номер охранного документа: 0002709291
Дата охранного документа: 17.12.2019
23.05.2023
№223.018.6f46

Способ спуска ускорителя ступени ракеты-носителя при аварийном выключении жрд и устройство для его реализации

Группа изобретений относится к ракетно-космической технике. Способ спуска ускорителя ступени (УС) ракеты-носителя (РН) при аварийном выключении жидкостного ракетного двигателя (АВД) в заданный район падения основан на стабилизации УС. Управление движением выполняется за счёт сброса продуктов...
Тип: Изобретение
Номер охранного документа: 0002746473
Дата охранного документа: 14.04.2021
27.05.2023
№223.018.70f0

Способ разработки полимерного композиционного материала с учётом его последующей утилизации и устройство для его реализации

Настоящее изобретение относится к области разработки полимерных композиционных материалов (ПКМ) с заданными характеристиками и возможностью последующей утилизации сжиганием. Способ разработки ПКМ с учётом его последующей утилизации основан на смешении высокопрочных углеродных волокон с...
Тип: Изобретение
Номер охранного документа: 0002776312
Дата охранного документа: 18.07.2022
27.05.2023
№223.018.721c

Способ моделирования процесса очистки поверхности и устройство для его реализации

Группа изобретений относится к области моделирования процессов очистки различных поверхностей изделий от загрязнений, возникающих в процессе производства и эксплуатации, с целью выбора оптимальных режимов и воздействующих факторов. Способ моделирования процесса очистки поверхности включает...
Тип: Изобретение
Номер охранного документа: 0002743936
Дата охранного документа: 01.03.2021
17.06.2023
№223.018.7e1a

Способ моделирования процесса тепло- и массообмена при испарении жидкости из прозрачной емкости и устройство для его реализации

Изобретения относятся к технологическим процессам, связанным с осушкой различных изделий. Предлагается способ моделирования процесса тепло- и массообмена при испарении модельной жидкости (МЖ) из экспериментального образца (ЭО), основанный на энергетическом воздействии с заданными параметрами на...
Тип: Изобретение
Номер охранного документа: 0002777650
Дата охранного документа: 08.08.2022
+ добавить свой РИД