×
06.07.2020
220.018.2fe4

Результат интеллектуальной деятельности: Способ реактивации катализатора гидроочистки

Вид РИД

Изобретение

№ охранного документа
0002725629
Дата охранного документа
03.07.2020
Аннотация: Предложен способ реактивации катализатора гидроочистки, по которому отработанный катализатор после окислительной регенерации пропитывают раствором лимонной и ортофосфорной кислот в смеси воды и бутилдигликоля, имеющим концентрации бутилдигликоля 10-20 об.%, лимонной кислоты 0,42-1,09 моль/л, ортофосфорной кислоты 0,17-0,54 моль/л, далее подвергают термообработке при температуре 60-90С в течение 20-60 мин, затем сушат на воздухе при температуре 100-220С в течение 2-6 ч, в результате получают катализатор, имеющий объем пор 0,3-0,55 мл/г, удельную поверхность 120-180 м/г, средний диаметр пор 7-12 нм и содержащий, мас.%: Ni(CHO) – 8,8-15,6; H[Mo(СНO)O] – 3,2-8,0; H[PNiMoO] – 5,8-11,6; H[Ni(OH)MoO] – 3,7-7,1; H[PMoO] – 3,0-7,4; носитель – остальное; при этом носитель содержит мас.%: SO – 0,5-2,5; PO– 2,5-5,5; γ-AlO– остальное; что соответствует содержанию в сульфидированных катализаторах, мас.%: Мо – 10,0-16,0; Ni – 2,5-4,5; P – 1,2-2,4; S – 6,7-10,8; γ-AlO – остальное. Технический результат - создание эффективного способа реактивации катализатора гидроочистки. 2 з.п. ф-лы, 2 табл., 4 пр.

Изобретение относится к способам реактивации катализаторов гидроочистки, предназначенных для получения малосернистого дизельного топлива.

В настоящее время большая часть товарных российских дизельных топлив содержит не более 10 ppm серы в соответствии с нормами ЕВРО-5 и российского [ГОСТ Р 52368-2005. (ЕН 590:2004). Топливо дизельное ЕВРО. Технические условия]. Получение малосернистых топлив достигается глубокой гидроочисткой дизельных фракций со степенью обессеривания не менее 99%. В последние годы в сырье гидроочистки возрастает доля вторичных фракций, содержащих в высоких концентрациях трудно превращаемые соединения серы, азот органические соединения и конденсированные ароматические соединения. Для переработки такого сырья приходится увеличивать давление процесса гидроочистки и переходить на нанесённые никель-молибденовые катализаторы, NiMo/Al2O3, обладающие повышенной гидрирующей и деазотирующей способностью по сравнению с традиционными кобальт-молибденовыми системами.

В ходе эксплуатации катализаторы, в том числе и NiMo/Al2O3, неизбежно дезактивируются, преимущественно за счёт блокировки поверхности углеродистыми отложениями (коксом) и нуждаются в регенерации. При окислительном удалении кокса из современных высокоактивных Ni-Mo катализаторов гидроочистки последних поколений, удаётся восстановить их активность не более чем на 90%, чего недостаточно для повторного использования катализаторов в процессах получения дизельных топлив ЕВРО-5. В связи с этим, необходима разработка способов реактивации катализаторов глубокой гидроочистки, позволяющих восстановить активность до уровня не менее 99% от активности свежих катализаторов.

Как правило, окислительную регенерацию проводят в устройствах, исключающих локальные перегревы катализатора, как это описано в [M. Marafi, A. Stanislaus, E. Furimsky. Handbook of spent hydroprocessing catalysts - regeneration, rejuvenation and reclamation, Elsevir, BV, Amsterdam, 2010. P. 362.]. Возможно использование туннельных ленточных печей [C. Vuitel, NPRA Ann. Meeting, Oct. 8-10, 1997], вращающихся наклонных барабанных печей [J. Wilson, AIChE Meeting, Aug. 19-22, San Diego, CA, 1990], реакторов с кипящим слоем катализатора [D.J. Neuman, NPRA Ann. Meeting, March 19-21, San Francisco, CA, 1995, AM-95-41]. Однако во всех описанных случаях отмечено недостаточно полное восстановление активности, связанное с образованием на стадии регенерации малоактивных соединений молибдена или никеля, к которым относятся индивидуальные оксиды MoO3, NiO, молибдат никеля NiMoO4 или поверхностные шпинели NiAl2O4.

Для повышения активности регенерированных катализаторов, их после окислительной регенерации обрабатывают различными реактивирующими агентами, которые образуют с никелем и молибденом более активные комплексные соединения.

Известен способ повышения активности регенерированных катализаторов [US 7087546, B0J23/94, C10G45/04, 08.08.2006; EP 1418002, B01J23/85, C10G45/08, 12.05.2004], путём их пропитки растворами карбоновых кислот, гликолей, углеводов, содержащих от 1 до 3 карбоксильных групп и 2-10 атомов углерода. Катализатор пропитывают растворами данных соединений в различных мольных соотношениях и далее сушат при различных температурах. В качестве органической добавки могут использоваться также соединения содержащие аминогруппу (-NH2), гидроксогруппу (-OH), карбоксильную группу (-COOH).

Так в заявке [WO 2005070542, B0J23/94, B0J38/48, 04.08.2005] описан способ восстановления активности катализаторов, путём их обработки этилендиаминтетрауксусной, нитрилотриуксусной, гидроксиэтилендиамин-триуксусной кислотами. Катализатор после окислительной регенерации пропитывают растворами приведённых добавок, с мольным соотношением 0,01-0,5 моль добавки на моль активных металлов в катализаторе, сушкой катализаторов при 120°C в течение 2 ч и последующей прокалкой при 450oС.

Общим недостатком для вышеперечисленных способов реактивации катализаторов является недостаточно высокая активность получаемых катализаторов, обусловленная их неоптимальным, сложным и неидентифицируемым химическим составом.

Наиболее близким по своей технической сущности и достигаемому эффекту к заявляемому способу реактивации является способ, предложенный в [RU 2484896, B01J 23/94, C10G 45/08, B01J 37/02. 20.06.2013].

Согласно прототипу, дезактивированный и прокаленный катализатор далее пропитывают раствором лимонной кислоты в воде, или, как минимум, одном органическом растворителе, или в смеси воды и органических растворителей при концентрации лимонной кислоты в растворе 1,0-5,0 моль/л, при этом перед пропиткой из избытка раствора прокалённый катализатор вакуумируют до остаточного давления не более 50 Торр, после чего контактируют с раствором лимонной кислоты при температуре 15-90°C в течение 5-60 мин, затем избыток раствора сливают с катализатора, а катализатор сушат при температуре 50-220°C в течение 1-24 ч. В результате получают катализатор, который содержит молибден и никель в форме цитратных комплексных соединений Ni(C6H6O7), H4[Mo46Н5O7)2O11], а сера содержится в форме сульфат-аниона SO42- в следующих концентрациях, мас. %: Ni(C6H6O7) - 7,3-16,6; H4[Mo46Н5O7)2O11] - 17,3-30,0; SO42- - 0,25-2,70; носитель - остальное, при этом цитраты никеля могут быть координированы к цитрату молибдена.

Основным недостатком способа-прототипа, так же, как и других известных способов регенерации дезактивированных катализаторов, является недостаточно высокая активность получаемых катализаторов в гидроочистке, которая обусловлена неоптимальным химическим составом. Для повышения активности катализаторов желателен перевод кислородсодержащих соединений, содержащихся в регенерированных катализаторах (MoO3, NiO, NiMoO4, NiAl2O4) в форму комплексных соединений, далее селективно превращающихся в поверхностные сульфиды. Такими комплексными соединениями являются цитратные комплексы металлов, гетерополианионы со структурой Андерсена, а также фосфорсодержащие гетерополикислоты. При этом желательно, чтобы реактивированный катализатор содержал смесь комплексных соединений, что препятствует образованию на стадии сушки крупных, возможно кристаллических частиц какого-либо одного комплексного соединения, сульфидирование которых в дальнейшем приводит к получению грубодисперсных малоактивных катализаторов. Соответственно, на стадии реактивации целесообразно использовать растворы, содержащие лимонную и фосфорную кислоты.

Изобретение решает задачу создания эффективного способа реактивации катализатора гидроочистки:

Задача решается способом реактивации, согласно которому отработанный катализатор после окислительной регенерации пропитывают раствором лимонной и ортофосфорной кислот в смеси воды и бутилдигликоля, далее подвергают термообработке и сушке при условиях, обеспечивающих получение катализатора, имеющего объем пор 0,3-0,55 мл/г, удельную поверхность 120-180 м2/г, средний диаметр пор 7-12 нм и содержащего, мас. %: Ni(C6H6O7) - 8,8-15,6; H4[Mo46Н5O7)2O11] - 3,2-8,0; H7[PNiMo11O40] - 5,8-11,6; H3[Ni(OH)6Mo6O18] - 3,7-7,1; H6[P2Mo5O23] - 3,0-7,4; носитель - остальное; при этом носитель содержит мас. %: SO42- - 0,5-2,5; PO43- - 2,5-5,5; γ-Al2O3 - остальное; что соответствует содержанию в сульфидированных катализаторах, мас. %: Мо - 10,0-16,0; Ni - 2,5-4,5; P - 1,2-2,4; S - 6,7-10,8; γ-Al2O3 - остальное.

Отработанный катализатор после окислительной регенерации имеет удельную поверхность 120-180 м2/г, объем пор 0,30-0,55 см3/г, средний диаметр пор 7-12 нм и содержит мас. %: NiO - 3,15-6,7; MoO3 - 15,0-24,0; носитель - остальное; при этом носитель содержит мас. %: связанные с алюминием поверхностные сульфаты SO42- - 0,5-2,5; связанные с алюминием поверхностные фосфаты PO43- - 2,5-5,5; γ-Al2O3 - остальное;

Для реактивации используют водный раствор с концентрацией 10-20 об. % бутилдигликоля, лимонной кислоты 0,42-1,09 моль/л, ортофосфорной кислоты 0,17-0,54 моль/л.

Катализатор после окислительной регенерации контактируют с реактивирующим раствором при температуре 60-90°C в течение 20-60 мин, затем сушат на воздухе при температуре 100-220°C в течение 2-6 ч.

Получаемый катализатор имеет удельную поверхность 120-180 м2/г, объем пор 0,30-0,55 см3/г, средний диаметр пор 7-12 нм и представляет собой частицы с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1,2-1,6 мм и длиной до 20 мм.

Технический эффект предлагаемого способа реактивации катализатора гидроочистки складывается из следующих составляющих:

1. Заявляемый способ обеспечивает получение катализатора, химический состав и текстура которого обеспечивают максимальную активность в целевых реакциях, протекающих при гидроочистке углеводородного сырья. Наличие в составе катализаторов цитратных и фосфатных комплексов никеля и молибдена, а также биметаллического гетерополисоединения H3[Ni(OH)6Mo6O18] в заявляемых концентрациях, селективно превращающихся в наиболее активный компонент катализаторов, обуславливает оптимальную поверхностную концентрацию активного компонента и оптимальную морфологию частиц.

2. Заявляемый способ обеспечивает наличие в составе носителя катализатора серы в форме поверхностных сульфатов и фосфора в форме поверхностных фосфатов, которые в заявляемых концентрациях минимизируют нежелательное взаимодействие активных металлов с поверхностью носителя, которое приводит к образованию малоактивных в катализе соединений.

3. Заявляемый способ обеспечивает наличие в составе катализатора соединений никеля, обладающих повышенной гидрирующей и деазотирующей способностью по сравнению с традиционными кобальт-молибденовыми системами, обеспечивает получение катализатора, позволяющего гидроочищать сырьё с высоким содержанием вторичных фракций.

4. Проведение гидроочистки дизельного топлива в присутствии реактивированного катализатора, полученного заявляемым способом, позволяет получать дизельное топливо, содержащее не более 10 ppm серы при невысоких стартовых температурах процесса, что позволяет продлить срок эксплуатации катализатора.

Описание предлагаемого технического решения.

Для реактивации используют катализаторы, дезактивированные при их эксплуатации в гидроочистке дизельного топлива, а затем регенерированные путём прокалки на воздухе в ленточных или барабанных печах. Как правило, катализаторы после окислительной регенерации имеют удельную поверхность 120-180 м2/г, объем пор 0,30-0,55 см3/г, средний диаметр пор 7-12 нм и представляют собой частицы с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1,2-1,6 мм и длиной до 20 мм. Катализаторы содержат никель и молибден в пересчёте на оксиды, мас. %: NiO - 3,15-6,7; MoO3 - 15,0-24,0; носитель - остальное; при этом носитель содержит мас. %: связанные с алюминием поверхностные сульфаты SO42- - 0,5-2,5; связанные с алюминием поверхностные фосфаты PO43- - 2,5-5,5; γ-Al2O3 - остальное;

Далее готовят раствор лимонной и ортофосфорной кислот таких концентраций, чтобы независимо от влагоёмкости регенерированного катализатора мольное отношение лимонная кислота/никель было в интервале 0,5-0,6, а мольное отношение ортофосфорная кислота/никель было равно 0,25. Для этого в заданном объёме смеси воды с 10-20 об. % бутилдигликоля при перемешивании и нагревании растворяют требуемое количество лимонной и ортофосфорной кислот. Получают раствор с концентрацией 10-20 об. % бутилдигликоля, лимонной кислоты 0,42-1,09 моль/л, ортофосфорной кислоты 0,17-0,54 моль/л.

Далее навеску прокалённого катализатора пропитывают полученным раствором. Пропитку проводят по влагоёмкости, далее производят перемешивание влажного катализатора в колбе ротационного испарителя без подачи воздуха при температуре 60-90°C в течение 20-60 мин при условиях, исключающих полное испарение воды из катализатора.

Далее катализатор сушат на воздухе при температуре 100-220°C в течение 2-6 ч.

Наличие в составе катализатора комплексов Ni, Mo, P, а также поверхностных сульфатов и фосфатов подтверждают совокупностью следующих методов исследования: массового элементного анализа Ni, Mo, P, С, H, S; ИК-спектроскопии; Рамановской, РФЭ-спектроскопии.

Во всех случаях массовое содержание элементов соответствует концентрации в готовом катализаторе, мас. %: Ni(C6H6O7) - 8,8-15,6; H4[Mo46Н5O7)2O11] - 3,2-8,0; H7[PNiMo11O40] - 5,8-11,6; H3[Ni(OH)6Mo6O18] - 3,7-7,1; H6[P2Mo5O23] - 3,0-7,4; носитель - остальное; при этом носитель содержит мас. %: SO42- - 0,5-2,5; PO43- - 2,5-5,5; γ-Al2O3 - остальное.

В ИК-спектрах изученных катализаторов присутствуют полосы, соответствующие Ni(C6H6O7), H4[Mo46Н5O7)2O11], H7[PNiMo11O40], H3[Ni(OH)6Mo6O18] и H6[P2Mo5O23] (таблица 1).

Таблица 1. Характеристические полосы комплексов в составе катализаторов.

Комплексное соединение Полосы поглощения, см-1
Ni(C6H6O7) 3450, 1620, 1580, 1431, 1385, 1290, 1265, 1165, 1060, 925, 890, 820
H4[Mo46Н5O7)2O11] 1720, 1660, 1620, 1595, 1560, 1430, 1410; 950, 920, 900, 890, 870, 850, 820, 800, 740, 730, 690, 650, 620
H3[Ni(OH)6Mo6O18] 945, 930, 900, 789, 633, 573, 496, 398, 322
H7[PNiMo11O40] 1115, 1000, 950, 897, 760, 441
H6[P2Mo5O23] 1106, 1020, 988, 969, 944, 897, 861, 682

Отнесения полос в ИК-спектрах сделаны в соответствии с [С.М. Цимблер, Л.Л. Шевченко, В.В.Григорьева Журнал прикладной спектроскопии, 11 (1969) 522-528; R.I. Bickley, H.G.M. Edwards, R.Gustar, S.J.Rose, Journal of Molecular Structure, 246 (1991) 217-228; M. Matzapetakis, M. Dakanali, C.P. Raptopoulou, et al. Journal of Biological Inorganic Chemistry 5 (2000) 469-474; N.W.Alcock, M.Dudek, R.Grybos et al. J.Chem.Soc. Dalton Trans. (1990) 707-711; C.I. Cabello et al. Journal of Molecular Catalysis A: Chemical 186 (2002) 89-100; Feng-Xian Liu, Catherine Marchal-Roch, Damien Dambournet, Aloïs Acker, Jérome Marrot, Francis Sécheresse. Eur. J. Inorg. Chem.(2008) 2191-2198].

На рамановских спектрах катализаторов присутствуют характеристические пики H7[PNiMo11O40] - 974, 943, 366, 232 см-1; H3[Ni(OH)6Mo6O18] 963, 946, 906, 568, 375, 353, 219 см-1; H4[Mo46Н5O7)2O11] - 945, 899, 861 389, 373, 346, 253 см-1; H6[P2Mo5O23] - 944, 900, 830, 370, 230 см-1.

В спектрах РФЭС присутствуют пики, соответствующие Ni(C6H6O7) - Ni2p3/2 =856,7 эВ; H4[Mo46Н5O7)2O11] - Mo3d5/2=232,4 эВ; H3[Ni(OH)6Mo6O18] - Mo3d5/2=232,9 эВ и Ni2p3/2 =856,4 эВ; H6[P2Mo5O23] - Mo3d5/2=232,5 эВ и P2p=135,0 эВ; SO42- - S2p=169,3 эВ; PO43- - P2p=134,2 эВ.

Отнесения сделаны в соответствии с [В.И.Нефёдов, Рентгено-электронная спектроскопия химических соединений. М. Химия. 1984, 256 с., L. Kaluža, R. Palcheva, A. Spojakina, K. Jirátová, G. Tyuliev. Procedia Engineering. 42 (2012) 873-884].

Интенсивность пиков на спектрах РФЭС позволят определить концентрацию каждого компонента в катализаторе.

В результате проведения реактивации по вышеописанной методике, получают катализаторы, имеющие заявляемые текстурные характеристики и содержащие комплексные соединения Ni(C6H6O7), H4[Mo46Н5O7)2O11], H7[PNiMo11O40], H3[Ni(OH)6Mo6O18] и H6[P2Mo5O23], а также носитель γ-Al2O3, содержащий серу в форме сульфат-аниона SO42-, фосфор в форме фосфат-аниона PO43- в заявляемых интервалах концентраций.

Далее проводят гидроочистку дизельного топлива при объемной скорости подачи сырья в интервале 1-2,5ч-1, соотношении водород/сырье -300-600 нм3 Н23 сырья, температуре 340-390°C, давлении водорода - 3-9 МПа.

В качестве сырья используют смесь 87 об. % прямогонного дизельного топлива с 13 об. % лёгкого газойля каталитического крекинга. Сырьё имеет диапазон кипения 130-416°C; 90% объёма выкипает при 368°C, содержание серы: 0,376 мас. %; содержание азота 125 ppm, плотность 0,864 г/см3.

Для тестирования в гидроочистке катализаторы используют в виде экструдатов с сечением в форме трилистника, круга или четырёхлистника с диаметром описанной окружности 1,3-1,6 мм и средней длиной гранул 3-6 мм.

Предварительное сульфидирование катализаторов проводят непосредственно в реакторе гидроочистки прямогонной дизельной фракцией, содержащей дополнительно 1,5 масс. % сульфидирующего агента - диметилдисульфида (ДМДС), при объёмной скорости подачи сульфидирующей смеси 2 ч-1 и соотношении водород/сырье = 300. Сульфидирование включает несколько этапов:

- сушка катализатора в реакторе гидроочистки в токе водорода при 140°C в течение 2 ч;

- смачивание катализатора прямогонной дизельной фракцией в течение 2 ч;

- подача сульфидирующей смеси и увеличение температуры до 240°C со скоростью подъёма температуры 25°C/ч;

- сульфидирование при температуре 240°C в течение 8 ч (низкотемпературная стадия);

- увеличение температуры реактора до 340°C со скоростью подъёма температуры 25°C/ч;

- сульфидирование при температуре 340°C в течение 8 ч (высокотемпературная стадия).

После сульфидирования катализаторы содержат, мас. %: Мо - 10,0-16,0; Ni - 2,5-4,5; P - 1,2-2,4; S - 6,7-10,8; γ-Al2O3 - остальное.

Сущность изобретения иллюстрируется нижеследующими примерами.

Пример 1. Согласно известному решению.

Используют катализатор после окислительной регенерации, который содержит, мас. %: NiO - 4,15; MoO3 - 16,43; SO42- м3,52; С - 0,11; носитель - остальное; и имеет удельную поверхность 221 м2/г, средний диаметр пор 99 нм и объём пор 0,54 см3/г.

30 г катализатора после окислительной регенерации вакуумируют до 50 Торр, после чего контактируют при 50°C в течение 20 мин с 50 мл раствора лимонной кислоты в смеси этиленгликоля (50 об. %) и этилового спирта (50 об. %), имеющего концентрацию лимонной кислоты 2,0 моль/л, затем избыток раствора сливают. Катализатор сушат 1 ч при 70°C и затем 4 ч при 150°C.

Полученный катализатор содержит, мас. %: Ni(C6H6O7) - 11,54; H4[Mo46Н5O7)2O11] - 22,47; SO42- - 2,92; носитель - остальное, и имеет удельную поверхность 215 м2/г, средний диаметр пор 97 нм и объём пор 0,54 см3/г.

Для сравнения каталитических свойств проводят тестирование в гидроочистке реактивированного катализатора и свежего катализатора, отобранного из той же партии, перед проведением процесса гидроочистки и регенерации.

Свежий катализатор, использованный для сопоставления каталитических свойств, содержит никель и молибден в пересчёте на оксиды, мас. %: NiO - 4,2; MoO3 - 16,5; носитель - остальное; и имеет удельную поверхность 220 м2/г, средний диаметр пор 100 нм и объём пор 0,55 см3/г.

Процесс гидроочистки дизельного топлива проводят при объемной скорости подачи сырья - 2,5 ч-1, соотношении водород/сырье - 600, температуре 370°C, давлении водорода - 3,8 МПа. В качестве сырья используют смесь 87 об. % прямогонного дизельного топлива с 13 об. % лёгкого газойля каталитического крекинга. Сырьё имеет диапазон кипения 130-416°C; 90% объёма выкипает при 368°C, содержание серы: 0,376 мас. %; содержание азота 125 ppm, плотность 0,864 г/см3. Предварительное сульфидирование катализаторов проводят непосредственно в реакторе гидроочистки прямогонной дизельной фракцией, содержащей дополнительно 1,5 мас. % сульфидирующего агента - диметилдисульфида (ДМДС), при объёмной скорости подачи сульфидирующей смеси 2 ч-1 и соотношении водород/сырье = 300.

Результаты гидроочистки дизельного топлива на регенерированном и свежем катализаторах приведены в таблице 2.

Примеры 2-4 иллюстрируют предлагаемое техническое решение.

Пример 2.

Используют катализатор после окислительной регенерации, который содержит, мас. %: NiO - 3,15; MoO3 - 15,0; SO42- - 2,5; PO43- - 2,5; носитель γ-Al2O3 - остальное; и имеет удельную поверхность 180 м2/г, средний диаметр пор 7 нм, объём пор 0,55 см3/г, влагоёмкость 0,6 см3/г.

Далее готовят раствор лимонной и ортофосфорной кислот таких концентраций, чтобы независимо от влагоёмкости регенерированного катализатора мольное отношение лимонная кислота/никель было в интервале 0,5-0,6, а мольное отношение ортофосфорная кислота/никель было равно 0,25. Для этого в заданном объёме смеси воды с 10-20 об.% бутилдигликоля при перемешивании и нагревании растворяют требуемое количество лимонной и ортофосфорной кислот.

Готовят раствор 6 мл бутилдигликоля в 40 мл воды. Далее в полученном растворе растворяют навеску лимонной кислоты 4,84 г (0,025 моль) и 1,22 г 85% водного раствора ортофосфорной кислоты (0,01 моль). Объём раствора дистиллированной водой доводят до 60 мл. Раствор имеет концентрацию бутилдигликоля 10,0 об. %, лимонной кислоты 0,42 моль/л, ортофосфорной кислоты 0,17 моль/л. Навеску 100 г катализатора после окислительной регенерации в колбе, исключающей испарение воды, пропитывают 60 мл раствора лимонной и фосфорной кислот в смеси воды и бутилдигликоля, колбу закрепляют на роторном устройстве и помещают в баню, нагретую до 60°C, при постоянном вращении, обеспечивающем перемешивание катализатора, выдерживают 20 мин. Далее катализатор переносят в чашку Петри, которую помещают в сушильный шкаф, нагретый до 100°C, и сушат при этой температуре 2 ч. Перед определением текстурных характеристик катализатор прогревают на воздухе 2 ч при 500°C.

Полученный катализатор содержит, мас.%: Ni(C6H6O7) - 8,8; H4[Mo46Н5O7)2O11] -7,1; H7[PNiMo11O40] - 5,8; H3[Ni(OH)6Mo6O18] -3,7; H6[P2Mo5O23] - 3,0; носитель - остальное; при этом носитель содержит мас. %: SO42- - 2,5; PO43- - 2,5; γ-Al2O3 - остальное. Катализатор имеет удельную поверхность 180 м2/г, объем пор 0,55 см3/г, средний диаметр пор 7 нм и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,2 мм и длиной до 20 мм.

В ИК-спектрах катализатора содержатся все характеристические полосы, типичные для Ni(C6H6O7), H4[Mo46Н5O7)2O11], H7[PNiMo11O40], H3[Ni(OH)6Mo6O18] и H6[P2Mo5O23] приведённые в таблице 1. Рамановские спектры также содержат набор пиков от Ni(C6H6O7), H4[Mo46Н5O7)2O11], H7[PNiMo11O40], H3[Ni(OH)6Mo6O18] и H6[P2Mo5O23]. Значения энергий связи и интенсивности пиков, определённые из спектров РФЭС, соответствуют наличию в катализаторе Ni(C6H6O7), H4[Mo46Н5O7)2O11], H7[PNiMo11O40], H3[Ni(OH)6Mo6O18] и H6[P2Mo5O23, также носителя γ-Al2O3, содержащего серу в форме сульфат-аниона SO42-, фосфор в форме фосфат-аниона PO43- в заявляемых интервалах концентраций.

Гидроочистку дизельного топлива и предварительное сульфидирование проводят аналогично примеру 1. После сульфидирования катализатор содержит, мас. %: Мо - 10,0; Ni - 2,5; P - 1,2; S - 6,7; γ-Al2O3 - остальное.

Для сравнения каталитических свойств проводят тестирование в гидроочистке реактивированного катализатора и свежего катализатора, отобранного из той же партии, перед проведением процесса гидроочистки и регенерации.

Результаты гидроочистки дизельного топлива на регенерированном катализаторе приведены в таблице 2.

Пример 3.

Используют катализатор после окислительной регенерации, который содержит, мас. %: NiO - 6,7; MoO3 - 24,0; SO42- - 0,5; PO43- - 5,5; носитель γ-Al2O3 - остальное; и имеет удельную поверхность 120 м2/г, средний диаметр пор 12 нм и объём пор 0,30 см3/г, влагоёмкость 0,35 см3/г.

Готовят раствор 5,5 мл бутилдигликоля в 15 мл воды. Далее в полученном растворе растворяют навеску лимонной кислоты 7,32 г (0,038 моль) и 2,2 г 85% водного раствора ортофосфорной кислоты (0,019 моль). Объём раствора дистиллированной водой доводят до 35 мл. Раствор имеет концентрацию бутилдигликоля 15,7 об. %, лимонной кислоты 1,09 моль/л, ортофосфорной кислоты 0,54 моль/л.

Навеску 100 г катализатора после окислительной регенерации в колбе, исключающей испарение воды пропитывают 35 мл раствора лимонной и фосфорной кислот в смеси воды и бутилдигликоля, колбу закрепляют на роторном устройстве и помещают в баню, нагретую до 90°C, при постоянном вращении, обеспечивающем перемешивание катализатора, выдерживают 60 мин. Далее катализатор переносят в чашку Петри, которую помещают в сушильный шкаф, нагретый до 220°C, и сушат при этой температуре 6 ч. Перед определением текстурных характеристик катализатор прогревают на воздухе 2 ч при 500°C.

Полученный катализатор содержит, мас. %: Ni(C6H6O7) - 15,6; H4[Mo46Н5O7)2O11] - 3,2; H7[PNiMo11O40] - 11,6; H3[Ni(OH)6Mo6O18] - 7,1; H6[P2Mo5O23] - 7,4; носитель - остальное; при этом носитель содержит мас. %: SO42- - 0,5; PO43- - 5,5; γ-Al2O3 - остальное. Катализатор имеет удельную поверхность 120 м2/г, объем пор 0,3 см3/г, средний диаметр пор 12 нм и представляет собой частицы с сечением в виде четырёхлистника с диаметром описанной окружности 1,6 мм и длиной до 20 мм.

В ИК-спектрах катализатора содержатся все характеристические полосы, типичные для Ni(C6H6O7), H4[Mo46Н5O7)2O11], H7[PNiMo11O40], H3[Ni(OH)6Mo6O18] и H6[P2Mo5O23] приведённые в таблице 1. Рамановские спектры также содержат набор пиков от Ni(C6H6O7), H4[Mo46Н5O7)2O11], H7[PNiMo11O40], H3[Ni(OH)6Mo6O18] и H6[P2Mo5O23]. Значения энергий связи и интенсивности пиков, определённые из спектров РФЭС, соответствуют наличию в катализаторе Ni(C6H6O7), H4[Mo46Н5O7)2O11], H7[PNiMo11O40], H3[Ni(OH)6Mo6O18] и H6[P2Mo5O23, также носителя γ-Al2O3, содержащего серу в форме сульфат-аниона SO42-, фосфор в форме фосфат-аниона PO43- в заявляемых интервалах концентраций.

Гидроочистку дизельного топлива и предварительное сульфидирование проводят аналогично примеру 1. После сульфидирования катализатор содержит, мас. %: Мо - 16,0; Ni - 4,5; P - 2,4; S - 10,8; γ-Al2O3 - остальное.

Для сравнения каталитических свойств проводят тестирование в гидроочистке реактивированного катализатора и свежего катализатора, отобранного из той же партии, перед проведением процесса гидроочистки и регенерации.

Результаты гидроочистки дизельного топлива на регенерированном катализаторе приведены в таблице 2.

Пример 4.

Используют катализатор после окислительной регенерации, который содержит, мас. %: NiO - 4,5; MoO3 - 19,5; SO42- - 1,8; PO43- - 4,5; носитель γ-Al2O3 - остальное; и имеет удельную поверхность 150 м2/г, средний диаметр пор 9 нм, объём пор 0,45 см3/г, влагоёмкость 0,5 см3/г.

Готовят раствор 10 мл бутилдигликоля в 25 мл воды. Далее в полученном растворе растворяют навеску лимонной кислоты 6,83 г (0,036 моль) и 1,73 г 85% водного раствора ортофосфорной кислоты (0,015 моль). Объём раствора дистиллированной водой доводят до 50 мл. Раствор имеет концентрацию бутилдигликоля 20 об. %, лимонной кислоты 0,72 моль/л, ортофосфорной кислоты 0,3 моль/л. Навеску 100 г катализатора после окислительной регенерации в колбе, исключающей испарение воды пропитывают 50 мл раствора лимонной и фосфорной кислот в смеси воды и бутилдигликоля, колбу закрепляют на роторном устройстве и помещают в баню, нагретую до 75°C, при постоянном вращении, обеспечивающем перемешивание катализатора, выдерживают 40 мин. Далее катализатор переносят в чашку Петри, которую помещают в сушильный шкаф, нагретый до 120°C, и сушат при этой температуре 4 ч. Перед определением текстурных характеристик катализатор прогревают на воздухе 2 ч при 500°C.

Полученный катализатор содержит, мас. %: Ni(C6H6O7) - 12,5; H4[Mo46Н5O7)2O11] - 8,0; H7[PNiMo11O40] - 7,3; H3[Ni(OH)6Mo6O18] - 5,0; H6[P2Mo5O23] - 5,0; носитель - остальное; при этом носитель содержит мас. %: SO42- - 1,8; PO43- - 4,5; γ-Al2O3 - остальное. Катализатор имеет удельную поверхность 150 м2/г, объем пор 0,45 см3/г, средний диаметр пор 9 нм и представляет собой частицы с сечением в виде круга диаметром 1,4 мм и длиной до 20 мм.

В ИК-спектрах катализатора содержатся все характеристические полосы, типичные для Ni(C6H6O7), H4[Mo46Н5O7)2O11], H7[PNiMo11O40], H3[Ni(OH)6Mo6O18] и H6[P2Mo5O23] приведённые в таблице 1. Рамановские спектры также содержат набор пиков от Ni(C6H6O7), H4[Mo46Н5O7)2O11], H7[PNiMo11O40], H3[Ni(OH)6Mo6O18] и H6[P2Mo5O23]. Значения энергий связи и интенсивности пиков, определённые из спектров РФЭС, соответствуют наличию в катализаторе Ni(C6H6O7), H4[Mo46Н5O7)2O11], H7[PNiMo11O40], H3[Ni(OH)6Mo6O18] и H6[P2Mo5O23, также носителя γ-Al2O3, содержащего серу в форме сульфат-аниона SO42-, фосфор в форме фосфат-аниона PO43- в заявляемых интервалах концентраций.

Гидроочистку дизельного топлива и предварительное сульфидирование проводят аналогично примеру 1. После сульфидирования катализатор содержит, мас. %: Мо - 13,0; Ni - 3,5; P - 2,1; S - 9,9; γ-Al2O3 - остальное.

Для сравнения каталитических свойств проводят тестирование в гидроочистке реактивированного катализатора и свежего катализатора, отобранного из той же партии, перед проведением процесса гидроочистки и регенерации.

Результаты гидроочистки дизельного топлива на регенерированном катализаторе приведены в таблице 2.

Из результатов гидроочистки дизельного топлива, приведённых в таблице 2, следует, что катализаторы, реактивированные заявляемым способом при используемых условиях гидроочистки, обеспечивают степень обессеривания смесевого дизельного топлива не менее 99,46%, имеют активность в интервале 99,98-100,02 % от активности свежих катализаторов.

Таблица 2.

Результаты гидроочистки дизельного топлива на регенерированных и свежих катализаторах.

Катализатор Остаточное содержание серы в дизельном топливе, ppm Степень обессеривания, % Восстановление активности, %
Пример 1, регенерированный 36,0 99,04 99,80
Пример 1 свежий 30,0 99,20 ---
Пример 2, регенерированный 20,3 99,46 99,98
Пример 2, свежий 19,6 99,48 ---
Пример 3, регенерированный 14,8 99,61 100,0
Пример 3, свежий 14,5 99,61 ---
Пример 4, регенерированный 9,5 99,75 100,02
Пример 4, свежий 10,0 99,73 ---

Источник поступления информации: Роспатент

Показаны записи 11-20 из 22.
17.08.2018
№218.016.7cd5

Способ гидроочистки углеводородного сырья

Изобретение относится к способу гидроочистки углеводородного сырья, заключающемуся в превращении углеводородного сырья с высоким содержанием серы и азота в присутствии катализатора, который содержит, мас. %: [Co(HO)(CHO)][MoO(CHO)] 33,0-43,0; бор в форме поверхностных соединений, соединений,...
Тип: Изобретение
Номер охранного документа: 0002663902
Дата охранного документа: 13.08.2018
17.08.2018
№218.016.7cd9

Катализатор гидроочистки углеводородного сырья

Изобретение относится к катализатору гидроочистки углеводородного сырья, который содержит, мас. %: [Со(HO)(CHO)][MoO(CHO)] 33,0-43,0%; бор в форме поверхностных соединений, характеризующихся полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см в ИК-спектрах, - 0,4-1,6%, носитель - остальное;...
Тип: Изобретение
Номер охранного документа: 0002663904
Дата охранного документа: 13.08.2018
30.11.2018
№218.016.a226

Способ получения гидроочищенного дизельного топлива

Изобретение относится к способам гидроочистки дизельных топлив, основанных на использовании регенерированных катализаторов гидроочистки. Описан способ гидроочистки дизельного топлива при температуре 340-390°С, давлении 3-9 МПа, объемном расходе сырья 1,0-2,5 ч, объемном отношении водород/сырье...
Тип: Изобретение
Номер охранного документа: 0002673480
Дата охранного документа: 27.11.2018
07.12.2018
№218.016.a481

Способ регенерации дезактивированного катализатора гидроочистки

Изобретение относится к способу регенерации дезактивированных катализаторов гидроочистки дизельного топлива. Описан способ регенерации дезактивированного катализатора гидроочистки, по которому дезактивированный катализатор прокаливают при температуре не более 650°С. Далее прокаленный...
Тип: Изобретение
Номер охранного документа: 0002674157
Дата охранного документа: 05.12.2018
07.12.2018
№218.016.a487

Регенерированный катализатор гидроочистки

Изобретение относится к регенерированному катализатору гидроочистки дизельного топлива. Описан регенерированный катализатор гидроочистки, имеющий объем пор 0,3-0,8 мл/г, удельную поверхность 150-280 м/г, средний диаметр пор 6-15 нм, включающий в свой состав молибден, кобальт, фосфор, серу и...
Тип: Изобретение
Номер охранного документа: 0002674156
Дата охранного документа: 05.12.2018
30.05.2020
№220.018.2253

Носитель для катализатора гидроочистки

Изобретение относится к носителю для катализатора гидроочистки углеводородного сырья, включающему в свой состав, мас. %: диоксид кремния SiO, представляющий собой аморфную фазу и имеющий размер частиц 3-20 нм – 2,0-20,0, борат алюминия AlBO со структурой норбергита – 5,0-25,0, γ-AlO –...
Тип: Изобретение
Номер охранного документа: 0002722181
Дата охранного документа: 28.05.2020
27.06.2020
№220.018.2b88

Катализатор гидроочистки дизельного топлива

Изобретение относится к катализаторам гидроочистки для получения дизельного топлива с низким содержанием серы. Катализатор гидроочистки дизельного топлива включает в свой состав соединения кобальта, молибдена, фосфора и носитель. Катализатор содержит, мас. %: [Со(HO)(CHO)][MoO(CHO)] - 7,7-32,0;...
Тип: Изобретение
Номер охранного документа: 0002724773
Дата охранного документа: 25.06.2020
27.06.2020
№220.018.2c1f

Способ гидроочистки дизельного топлива

Изобретение относится к способам гидроочистки дизельных топлив, основанных на использовании регенерированных катализаторов гидроочистки. Описан способ гидроочистки дизельного топлива при температуре 340-390С, давлении 3-9 МПа, объёмном расходе сырья 1,0-2,5 ч, объёмном отношении водород/сырьё...
Тип: Изобретение
Номер охранного документа: 0002724613
Дата охранного документа: 25.06.2020
15.07.2020
№220.018.3286

Способ приготовления носителя для катализатора гидроочистки

Изобретение относится к способу приготовления носителя для катализаторов гидроочистки, содержащего, мас.%: диоксид кремния SiO - 2,0-20,0, борат алюминия AlBO со структурой норбергита - 5,0-25,0, γ-AlO - остальное. При этом входящий в состав носителя диоксид кремния SiO представляет собой...
Тип: Изобретение
Номер охранного документа: 0002726374
Дата охранного документа: 13.07.2020
24.07.2020
№220.018.3724

Способ приготовления катализатора гидроочистки дизельного топлива

Настоящее изобретение относится к способу приготовления катализатора гидроочистки дизельного топлива, характеризующемуся тем, что катализатор готовят пропиткой носителя, который содержит, мас.%: диоксид кремния SiO, представляющий собой аморфную фазу и имеющий размер частиц 3-20 нм – 2,0-20,0,...
Тип: Изобретение
Номер охранного документа: 0002727144
Дата охранного документа: 21.07.2020
Показаны записи 11-20 из 110.
27.12.2014
№216.013.1429

Катализатор, способ его приготовления и процесс гидроизомеризации дизельного топлива

Изобретение относится к катализаторам для гидроизомеризации дизельного топлива, способам приготовления катализаторов и процессам получения дизельного топлива с низкой температурой застывания. Описан катализатор гидроизомеризации, включающий в свой состав цеолит типа ZSM-23, бор, палладий и...
Тип: Изобретение
Номер охранного документа: 0002536585
Дата охранного документа: 27.12.2014
20.08.2015
№216.013.6faf

Носитель, способ его приготовления (варианты), способ приготовления катализатора риформинга (варианты) и способ риформинга бензиновых фракций

Изобретение относится к способу приготовления носителя Sn(Zr)-γ-AlO для катализатора риформинга бензиновых фракций, при этом носитель готовят осаждением раствора азотнокислого алюминия водным раствором аммиака, с последующими стадиями фильтрации суспензии и промывки осадка, его пептизации...
Тип: Изобретение
Номер охранного документа: 0002560161
Дата охранного документа: 20.08.2015
10.12.2015
№216.013.991e

Способ получения карбонильных соединений с-с

Изобретение относится к способу получения карбонильных соединений, а именно кетонов и альдегидов С-С, которыенаходят разнообразное применение как ценные полупродукты тонкого и основного органического синтеза, а также широко используются в качестве растворителей. Способ проводят в газовой фазе...
Тип: Изобретение
Номер охранного документа: 0002570818
Дата охранного документа: 10.12.2015
20.02.2016
№216.014.ce9c

Катализатор гидроочистки бензина каталитического крекинга

Изобретение относится к области катализа, а именно к катализаторам гидроочистки бензина каталитического крекинга с получением компонента товарного бензина с низким содержанием серы при минимальном снижении октанового числа, и может быть использовано в нефтеперерабатывающей промышленности....
Тип: Изобретение
Номер охранного документа: 0002575637
Дата охранного документа: 20.02.2016
20.02.2016
№216.014.cf9f

Способ гидроочистки бензина каталитического крекинга

Изобретение относится к области нефтепереработки, а именно к способам гидроочистки бензина каталитического крекинга с получением продукта компонента товарного бензина с низким содержанием серы при минимальном снижении октанового числа, и может быть использовано в нефтеперерабатывающей...
Тип: Изобретение
Номер охранного документа: 0002575639
Дата охранного документа: 20.02.2016
20.02.2016
№216.014.e961

Способ приготовления катализатора гидроочистки бензина каталитического крекинга

Изобретение относится к способу получения катализатора селективной гидроочистки бензина каталитического крекинга, включающему в свой состав кобальт и молибден в форме оксидов; кремний в форме аморфного алюмосиликата, алюминий в форме оксида алюминия и аморфного алюмосиликата, при этом...
Тип: Изобретение
Номер охранного документа: 0002575638
Дата охранного документа: 20.02.2016
20.08.2016
№216.015.4ab2

Способ повышения октанового числа

Изобретение описывает способ повышения октанового числа бензина, характеризующийся тем, что бензиновую фракцию, содержащую олефины, приводят в контакт с закисью азота при температуре 150-500 ºС и давлении 1-150 атм. Также раскрывается способ повышения октанового числа бензина, характеризующийся...
Тип: Изобретение
Номер охранного документа: 0002594484
Дата охранного документа: 20.08.2016
20.08.2016
№216.015.4c38

Способ получения α-метилзамещенных карбонильных соединений

Изобретение относится к способу получения α-метилзамещенных карбонильных соединений общей формулы R-CO-CR(CH)-R, где: R и R - водород Н или линейный или разветвленный алкил радикал, содержащий от 1 до 12 углеродных атомов, R - Н или СН радикал, которые являются исходным сырьем для получения...
Тип: Изобретение
Номер охранного документа: 0002594483
Дата охранного документа: 20.08.2016
13.01.2017
№217.015.6872

Способ получения о-алкенилфенолов и катализатор для его осуществления

Изобретение относится к способу получения о-алкенилфенолов, являющихся перспективными исходными соединениями для синтеза лекарственных препаратов и душистых веществ в косметической и пищевой промышленности. Способ заключается во взаимодействии фенола или замещенного фенола с алифатическим...
Тип: Изобретение
Номер охранного документа: 0002591954
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.7ac5

Способ оценки степени деформаций диафиза трубчатой кости и определения величины и уровня коррекции деформации для ее хирургического исправления

Изобретение относится к медицине, ортопедии и касается определения параметров при хирургической коррекции формы трубчатой кости. Для оценки степени деформаций диафиза трубчатой кости с определением величины и уровня коррекции деформации для ее хирургического исправления проводят...
Тип: Изобретение
Номер охранного документа: 0002600070
Дата охранного документа: 20.10.2016
+ добавить свой РИД