×
04.07.2020
220.018.2f39

Результат интеллектуальной деятельности: Способ получения диоксида углерода для производства кальцинированной соды аммиачным методом

Вид РИД

Изобретение

Аннотация: Изобретение относится к неорганической химии и охране окружающей среды и может быть использовано в многотоннажном производстве кальцинированной соды аммиачным методом. Дымовые газы предприятий, включая ТЭЦ, содержащие 7-14 об.% диоксида углерода, могут быть смешаны с диоксидом углерода, полученным путем обработки кальцийсодержащего сырья соляной кислотой с содержанием не менее 95 об.%. Содержание СО после смешения не менее 45 об. %. Затем проводят концентрирование на установке с регенеративными блоками при температуре 45°C путем поглощения 34-42%-ными водными растворами абсорбентов, в качестве которых используют смеси диэтанолбензиламина и моноэтаноламина или этилендиамина и моноэтанолэтилендиамина. Диоксид углерода, полученный в регенеративных блоках, содержащий не менее 50 об.% СО, подвергают осушке при 145°С или смешивают с диоксидом углерода, содержащим 35-38 об. % СО, полученным при обжиге известняка. Получают диоксид углерода с содержанием СО не менее 40-44 об. %, соответствующий нормам для содового производства. Изобретение позволяет утилизировать дымовые газы предприятий, в том числе ТЭЦ. 1 з.п. ф-лы, 5 ил.

Изобретение относится к области получения диоксида углерода (СО2) применяемого в содовом производстве.

Традиционным способом получения диоксида углерода в настоящее время в России является метод Э. Сольве (патент 1861 г.) из аммиака, поваренной соли, углекислого газа. По указанному способу диоксид углерода и известь получают обжигом карбонатного сырья (известняка), добываемого из камней (Шиханов) карьеры Шахтау. Кстати говоря, запасы известняка карьера Шахтау хватит до 2020 г. в будущем проблема обеспечения содового производства сырьем - диоксидом углерода остается пока еще не решенной. Аммиачный способ, которым получают кальцинированную соду в г. Стерлитамаке (Республика Башкортостан) методом Эрнеста Сольве (бельгийский химик и предприниматель) существует уже 72-ой год. Также способ Сольве отличает большая доля отходов - на одну 1 кальцинированной соды образуется 10-12 м3 (более 10-12 тонн) так называемой дистиллярной жидкости (ДЖ), т.е. отходов получается в 10 раз больше произведенной кальцинированной соды. В США производят соду (Na2CO3) из природной соды (Na2CO3-NaHCO3-2H2O) и нахколита (NaHCO3) и даусонита MaAl(ОН)2СО3. Источники природной соды имеются также в других странах - в Бельгии, Турции, Бразилии, Китае, Канаде и ЮАР.

Известен способ выделения жидкого диоксида углерода из технологических и энергетических газов путем абсорбции CO2 водным раствором моноэтаноламина (МЭА) с последующим компремированием углекислоты [Т.Ф. Пименова. Производство и применение сухого льда, жидкого и газообразного диоксида углерода. М.: легкая и пищевая промышленность, 1982 г.].

Известный процесс выделения диоксида углерода из дымовых газов включает следующие стадии:

1) охлаждение дымовых газов в водяном скруббере;

2) извлечение диоксида углерода из дымовых газов путем его абсорбции водным раствором МЭА при температуре 40-50°С;

3) регенерацию циркулирующего раствора МЭА при 110-130°С и давлении 0,17-0,2 МПа с десорбцией CO2 из раствора абсорбента;

4) сжижение CO2 путем сжатия в механическом компрессоре с дальнейшим охлаждением. В промышленных установках сжижение CO2, полученного из дымовых газов, используют обычно сжатие газообразного диоксида углерода до давления 7,1 МПа (71 кг/см3) в 4-х ступенчатом поршневом компрессоре с дальнейшим охлаждением продукта до 15-20°С либо сжатие в 2-х ступенчатом компрессоре до давления 1,5 МПа с охлаждением до температуры минус 30°С.

Недостатком этих процессов являются высокие затраты электроэнергии на компремирование CO2 перед сжижением и значительные потери МЭА за счет уноса из регенератора.

Наиболее близкой по совокупности признаков является способ очистки газов от диоксида углерода путем абсорбции водным раствором аминов с последующей регенерацией абсорбента при давлении 0,5-9,5 МПа. В этом способе используют одноступенчатую схему абсорбции-десорбции CO2 водным раствором одного абсорбента - МЭА, который в высоких температурах (129-160°С) регенерации под давлением подвергается повышенной деградации [А.с. 512785 СССР/Лейтес И.Л., Мурзин В.И. и др. Опубл. 05.05.76. Бюл. №17].

Известно, что при повышении температуры на каждые 10°С скорость деградации МЭА увеличивается 1,6-1,8 раза, что приводит к увеличению потерь абсорбента. При этом упругость паров МЭА при указанных температурах высокая, что значительно увеличивает физические потери МЭА за счет уноса из регенератора. Разумеется, резко возрастает расходный коэффициент абсорбента в процессе выделения диоксида углерода.

Задача, на решение которой направлено заявляемое изобретение, заключается в разработке способа получения диоксида углерода, применяемого в производстве кальцинированной соды из дымовых газов тепловых электростанций (ТЭЦ), доведение содержания CO2 до требуемых норм для содового производства. Технический результат при использовании изобретения выражается в разработке комбинированного способа получения диоксида углерода из дымовых газов ТЭЦ с последующим концентрированием путем абсорбции аминоспиртами, аминами и смешением с высококонцентрированным CO2 (более 90-95%) получаемого на установке [см. Пат. 2547105 РФ / Загидуллин Р.Н. и др. Опубл. 10.04.2015 Бюл. №10].

Вышеуказанный технический результат достигается способом получения диоксида углерода с содержанием не менее 38-42% об. (такое содержание CO2 требуется для содового производства) путем концентрирования дымовых газов ТЭЦ при температуре 45°С, где содержание CO2 составляет 7-14% об. сначала в регенеративных блоках с использованием смеси диэтанолбензиламина (ДЭБА) и моноэтаноламина (МЭА) или моноэтанолэтилендиамина (МЭЭДА) и этилендиамина (ЭДА) в качестве абсорбентов CO2.

Природный газ (метан) подают в форсунку газотурбинной установки 1 для сжигания с расчетным количеством воздуха с учетом полного его сгорания. При этом происходит образование тепловой энергии (около 8200 ккал/моль град), подаваемой в котел 2, где происходит разогрев труб. По этим трубам за счет теплообменника 3 осуществляется съем тепла потребителям. Отходящие газы (CO2, СО, окислы азота) - продукты сгорания топлива уносятся в трубу ТЭЦ и в настоящее время выводят в атмосферу. Предусмотрена подача дымовых газов, содержащих 7-14% об. диоксида углерода на установку (фиг. 2) для извлечения и концентрирования его с помощью абсорбентов в системе абсорбции и десорбции (регенерация CO2). Предусмотрено также смешение 7-14% об. дымовых газов диоксидом углерода, полученного реакцией кальцийсодержащего сырья с соляной кислотой (см. пат.2547105 РФ. Опубл. 10.04.2015 Бюл. №10; Пат. №2291109 Опубл. 10.01.2007. Бюл. №1).

Описание установки с регенеративными блоками для извлечения и конвертирования диоксида углерода из дымовых газов с использованием абсорбентов.

Дымовые газы, содержащие 7-14% об. диоксида углерода поступают в блок охлаждения и промывки газа 5 (фиг. 2) и аппарат (фиг. 3) и проходят каждую ступень 16 через рабочие гидродинамические зоны 20 в патрубке 21.

Дымовые газы в патрубке 21 насыщаются циркулирующим агентом, поступающим через впускные трубки 22 в рабочую гидродинамическую зону, где образуется газожидкостная смесь, которая интенсивно перемешивается в турбулентном режиме.

Газы охлаждаются и промываются с освобождением пылесажовых частиц и вредных газовых примесей из патрубка 21. Охлажденный и промытый газ проходит через сепаратор 23 с отделением газов от пыльножидкого агента.

Далее газы через вывод 16 направляются в блок абсорбции 6 (фиг. 2), а отработанный агент возвращается в сборник 25 (фиг. 4, на фиг. 4 показан двухступенчатый аппарат) и вновь со свежим агентом продолжает циркулировать по замкнутому циклу при помощи циркуляционного насоса 26 из сборника 25 через аппарат (фиг. 4).

В блоке 6 подобно блоку 5, газы в аппарате (фиг. 4) обрабатываются агентом, например, моноэтаноламином (МЭА), моноэтанолэтилендиамином (МЭДА), которые абсорбирует углекислый газ.

Аппараты фиг. 3 и фиг. 4 представлены для лучшего понимания процесса.

Освобожденные от диоксида углерода, отработанные газы воздуходувкой 11 (фиг. 2) либо выбрасываются в случае больших объемов (это свободные от вредных примесей газы и пылеобразных частиц) либо используются, например, на подогрев теплоносителей.

Насыщенный диоксидом углерода абсорбент из блока 6 направляется в замкнутый цикл 7 циркулирования раствора абсорбента через испаритель 8, теплообменник - 9 (фиг. 2), сборник - 25 с циркуляционным насосом 26. (фиг. 4).

В испарителе 8 из абсорбента за счет подогрева паром десорбируется диоксид углерода при температуре 145°С, который направляется в блок 10 (фиг. 2).

В замкнутом цикле 7, в теплообменнике 9 часть тепла из испарителя 8 регенерируется для предварительного подогрева циркулируемого абсорбента, насыщенного диоксидом углерода.

В блоке 10 диоксид углерода подвергается осушке и очистке с KMnO4, циркулирующим из сборника 12 центробежным насосом 13 по замкнутому циклу. Диоксид углерода в блоке 10 циркулирует по замкнутому циклу в газопроводе через аппарат (фиг. 4) газодувкой 11 с одновременным регулированием вывода части объема готовой продукции, например, на компремирование.

В реактор 27 (фиг. 5) сверху подают известняк или кальцийсодержащее вторичное сырье 37 (кальцийсодержащие отходы, шламы и т.п.), содержащие 94% СаСО3.

В нижнюю часть реактора дозируют (дозированная подача соляной кислоты или хлористого водорода) соляную кислоту (ингибированная соляная кислота 38 и соляная кислота 39). Для получения более концентрированных растворов CaCl2 предусмотрена подача газообразного хлорводорода 40. Раствор CaCl2, содержащий Н2O, небольшое количество HCl и незначительное количество CO2 42 поступает в реактор 28 (реактор - нейтрализатор), заполненный СаСО3 или известняковой мукой 43. В реакторе 28 происходит нейтрализация остаточного HCl по реакции

СаСО3+2 HCl=CaCl2+CO2+H2O.

В результате данной реакции происходит образование дополнительного количества хлористого кальция и, соответственно, CO2. Нерастворимый осадок 41 выводится из нижней части реактора в сборник 29.

Для получения CaCl2 используют соляную кислоту согласно СТП 6-01-08-105-96 «кислота соляная из абгазов хлорорганических производств» 31,5% (высший сорт), 30,0% (первый сорт), 27,5% (второй сорт), концентрированную соляную кислоту с концентрацией 36-37%, а также абгазную и техническую кислоту с концентрацией ниже 27,5%.

После реактора 28 раствор хлористого кальция 46 подают в сборник 30, после сборника раствор хлористого кальция 45 подают на выпарку и сушку.

Для получения гранул твердого хлористого кальция - после выпарки и сушки - подают в гранулятор.

Углекислый газ, выделяющийся в процессе, из реакторов 27 и 28 по линии 44 подают в санитарную колонну 31, заполненную известняком или известняковой мукой 43 и раствором CaCl2 (26-28%-ной концентрации) в весовом соотношении СаСО3 : CaCl2, равном 2-4:1.

Образовавшийся раствор CaCl2 со следами соляной кислоты и углекислого газа 42 из нижней части колонны 31 подают в емкость 32. Часть раствора CaCl2 из емкости 32 насосом 33 подают в санитарную колонну 31 или в реактор 28.

Предусмотрена подпитка емкости 32 раствором CaCl2 46. Очищенный углекислый газ 47 пропускают через каплеуловитель 34. Углекислый газ может найти применение в производстве карбоната натрия 49 или мела 50. Предусмотрен сброс избытка CO2 в атмосферу 48.


Способ получения диоксида углерода для производства кальцинированной соды аммиачным методом
Способ получения диоксида углерода для производства кальцинированной соды аммиачным методом
Способ получения диоксида углерода для производства кальцинированной соды аммиачным методом
Источник поступления информации: Роспатент

Показаны записи 11-20 из 23.
13.02.2018
№218.016.1f38

Электропроводящая металлонаполненная полимерная композиция для 3d-печати (варианты)

Изобретение может применяться для производства 3D-печатных электропроводящих материалов, таких как механосенсоры, приборы емкостного обнаружения, автоматизированные динамичные механизмы. Электропроводящая полимерная композиция в качестве полимерной основы содержит полимер...
Тип: Изобретение
Номер охранного документа: 0002641134
Дата охранного документа: 16.01.2018
13.02.2018
№218.016.22e9

Электропроводящая металлонаполненная полимерная композиция для 3d-печати (варианты)

Изобретение может применяться для производства 3D-печатных электропроводящих материалов, таких как механосенсоры, приборы емкостного обнаружения, автоматизированные динамичные механизмы. Электропроводящая полимерная композиция содержит в качестве полимерной основы синдиотактический...
Тип: Изобретение
Номер охранного документа: 0002641921
Дата охранного документа: 23.01.2018
17.02.2018
№218.016.2e4f

Способ получения нефтяных среднетемпературных связующего и пропиточного пеков

Изобретение относится к области нефтепереработки, в частности к способу получения нефтяных среднетемпературных связующих и пропиточных пеков, и может быть использовано в нефтехимической и нефтеперерабатывающей промышленности. Описан способ получения нефтяных среднетемпературных связующих и...
Тип: Изобретение
Номер охранного документа: 0002643954
Дата охранного документа: 06.02.2018
10.05.2018
№218.016.3800

Способ определения подлинности пчелиного мёда

Изобретение относится к способам анализа пищевых продуктов, а именно к способам оценки качества пчелиного меда. Изобретение может быть использовано в пищевой промышленности для распознавания подлинного и фальсифицированного продукта. Целью изобретения является повышение скорости анализа,...
Тип: Изобретение
Номер охранного документа: 0002646824
Дата охранного документа: 07.03.2018
10.05.2018
№218.016.3ffa

Способ регулирования условий процесса бурения скважин и устройство для его реализации

Изобретение относится к бурению скважин и может найти применение при регулировании условий бурения. Техническим результатом является представление бурового долота источником скорости, физическая сущность функционирования которого описывается коэффициентом передачи. Предложен способ...
Тип: Изобретение
Номер охранного документа: 0002648731
Дата охранного документа: 28.03.2018
10.05.2018
№218.016.40c4

Способ и устройство для распознавания режимов течения газожидкостного потока в горизонтальном трубопроводе

Изобретение относится к измерительной технике и может быть использовано для распознавания режимов течения газожидкостного потока в горизонтальных трубопроводах в нефтяной, химической, пищевой и других отраслях промышленности. Предложен способ для распознавания режимов течения газожидкостного...
Тип: Изобретение
Номер охранного документа: 0002648974
Дата охранного документа: 28.03.2018
10.05.2018
№218.016.4171

Способ получения суперабсорбента для водоочистки

Изобретение относится к способу получения суперабсорбентов, применяемых для водоочистки. Способ получения суперабсорбента для водоочистки включает получение тройного сополимера на основе стирола акриловой кислоты. Способ отличается тем, что в состав сополимера в качестве третьего мономера...
Тип: Изобретение
Номер охранного документа: 0002649144
Дата охранного документа: 30.03.2018
10.05.2018
№218.016.41c4

Способ определения потенциала ионизации и сродства к электрону органических молекул кислород- и азотсодержащих соединений

Изобретение относится к способам определения потенциалов ионизации и сродства к электрону органических молекул кислород- и азотсодержащих соединений. Целью изобретения является повышение точности методов определения ПИ и СЭ и его распространение на другие классы соединений, которые не относятся...
Тип: Изобретение
Номер охранного документа: 0002649243
Дата охранного документа: 30.03.2018
09.06.2018
№218.016.5c7e

Способ получения мелассного концентрата с целью длительного хранения

Изобретение относится к сахарной промышленности. Предложен способ получения мелассного концентрата, предусматривающий смешение мелассы с крахмалом и измельчение полученной массы. При этом в жидкую мелассу, содержащую 76-80% сухого вещества при температуре окружающей среды не выше 40°С, вводят...
Тип: Изобретение
Номер охранного документа: 0002655945
Дата охранного документа: 30.05.2018
25.06.2018
№218.016.65b8

Способ определения сродства к электрону молекул полициклических ароматических углеводородов

Изобретение относится к области физических измерений и касается способа определения сродства к электрону молекул полициклических ароматических углеводородов. Способ включает в себя регистрация и исследования спектров поглощения образцов в ультрафиолетовой и видимой области спектра. Сродство к...
Тип: Изобретение
Номер охранного документа: 0002658514
Дата охранного документа: 21.06.2018
Показаны записи 11-20 из 27.
20.11.2014
№216.013.07e1

Состав отбеливающий, моющий и дезинфицирующий

Изобретение относится к отбеливающим, моющим и дезинфицирующим составам. Описывается состав, содержащий, мас.%: гипохлорит натрия в расчете на активный хлор 10,0-12,0, гидроокись натрия 1,5-2,0, карбонат натрия 1,1-1,4, 2,6-дитретбутил-4-метилфенол или 2,6-дитрет-бутилфенол 0,05-0,3, вода...
Тип: Изобретение
Номер охранного документа: 0002533418
Дата охранного документа: 20.11.2014
20.12.2014
№216.013.1145

Взрывчатый состав для обработки металлов взрывом

Изобретение относится к промышленным взрывчатым веществам, предназначенным для обработки металлов взрывом, преимущественно для сварки, а также для взрывных работ при добыче камнеблоков. Взрывчатый состав для обработки металлов взрывом содержит в качестве структурно-механичесой основы...
Тип: Изобретение
Номер охранного документа: 0002535844
Дата охранного документа: 20.12.2014
10.04.2015
№216.013.3d01

Способ совместного получения хлористого кальция и углекислого газа

Изобретение может быть использовано в химической промышленности. Способ совместного получения хлористого кальция и углекислого газа включает взаимодействие кальцийсодержащего сырья, включающего карбонат кальция, с 20-36% соляной кислотой, подаваемой дозировано. Образовавшийся раствор хлористого...
Тип: Изобретение
Номер охранного документа: 0002547105
Дата охранного документа: 10.04.2015
10.05.2015
№216.013.4a3e

Способ получения хлоридов бициклических аминов

Изобретение относится к получению бициклических аминов, которые широко применяют в органическом синтезе. Способ заключается в том, что проводят процесс N-алкилирования вторичных аминов цис-2,3-дихлорметил-гем-дихлорциклопропаном в присутствии межфазного катализатора триэтилбензиламмоний...
Тип: Изобретение
Номер охранного документа: 0002550513
Дата охранного документа: 10.05.2015
20.08.2016
№216.015.4ac0

Способ получения алкенилсукцинимидов 1,2-дизамещенных имидазолина

Изобретение относится к области нефтехимического синтеза, в частности к способу получения алкенилсукцинимидов 1,2-дизамещенных имидазолина путем взаимодействия малеинового ангидрида олефинами при повышенной температуре с последующим взаимодействием алкенилянтарного ангидрида с аминами в...
Тип: Изобретение
Номер охранного документа: 0002594563
Дата охранного документа: 20.08.2016
12.01.2017
№217.015.5bb9

Способ переработки дистиллерной жидкости содового производства аммиачным методом

Изобретение может быть использовано в химической промышленности. Подвергают переработке дистиллерную жидкость содового производства, полученную после обработки фильтровой жидкости гидроксидом кальция. Для этого указанную дистиллерную жидкость, содержащую твердые отходы - шлам, обрабатывают...
Тип: Изобретение
Номер охранного документа: 0002589483
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.76fe

Способ получения стеарата кальция

Изобретение относится к способу получения стеарата кальция, используемого в качестве стабилизатора в рецептурах пластикатов поливинилхлорида и процессах получения лакокрасочных материалов. Способ заключается во взаимодействии стеариновой кислоты и гидроксида кальция при нагревании и...
Тип: Изобретение
Номер охранного документа: 0002599572
Дата охранного документа: 10.10.2016
25.08.2017
№217.015.c7f7

Способ получения этилен- и пропиленполиаминов

Изобретение относится к улучшенному способу получения алифатических ди- и полиаминов, применяемых в производстве ингибиторов коррозии, сукцинимидных присадок, аминных отвердителей, ионообменных смол и др. Способ осуществляют путем взаимодействия дихлорэтана или 1,2- и 1,3-дихлорпропанов и...
Тип: Изобретение
Номер охранного документа: 0002619123
Дата охранного документа: 12.05.2017
10.05.2018
№218.016.3cd3

Способ переработки твердых отходов производства кальцинированной соды аммиачным методом

Изобретение относится к способу переработки твердых отходов производства соды и может найти применение в химической промышленности при решении экологических, технологических и экономических проблем. Способ переработки твердых отходов производства кальцинированной соды аммиачным методом...
Тип: Изобретение
Номер охранного документа: 0002647931
Дата охранного документа: 21.03.2018
25.10.2018
№218.016.9557

Способ получения алкенилсукцинцианэтилимидов 1,2-дизамещённых имидазолина

Изобретение относится к способу получения алкенилсукцинцианэтилимидов 1,2-дизамещенных имидазолина путем взаимодействия малеинового ангидрида с олефинами при повышенной температуре с последующим взаимодействием алкенилянтарного ангидрида с аминами в присутствии растворителя, отличающемуся тем,...
Тип: Изобретение
Номер охранного документа: 0002670452
Дата охранного документа: 23.10.2018
+ добавить свой РИД