×
03.07.2020
220.018.2db0

СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ТРЕЩИНОСТОЙКОСТИ БЕТОНА В ИЗДЕЛИИ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области строительства. Сущность: в изделии выполняют зону концентрации напряжений, которую нагружают до разрушения и по полученным данным определяют параметры трещиностойкости бетона. Зону концентрации напряжения в изделии выполняют на поверхности бетона в виде прямоугольного трапецеидального призматического элемента длиной 5 диаметров наибольшей крупности заполнителя и высотой в один диаметр наибольшей крупности заполнителя, но не менее 20 мм, с углом наклона стороны трапеции в 45 градусов, меньшая сторона которого монолитно связана с бетоном. Верхнюю большую сторону нагружают по поверхности до отлома призматического элемента по меньшей стороне от тела бетона. Во время нагружения одновременно измеряют деформацию верхней стороны и соответствующее ей усилие, а параметры трещиностойкости бетона определяют по полученному графику «деформация-усилие». Технический результат: повышение точности и достоверности определения критического коэффициента интенсивности напряжения в изделии и расширение области использования способа. 5 ил.
Реферат Свернуть Развернуть

Изобретение относится к области строительства.

Известен способ определения прочности тяжелых и легких бетонов, заключающийся в скалывании ребра изделия путем прикладывания нагрузки к ребру изделия, фиксации величины нагрузки в момент скола ребра и последующее измерение фактической глубины скалывания (см. ГОСТ 22690-88 "Бетоны. Определение прочности механическими методами неразрушающего контроля" / Введен: 01.01.91; с. 8).

Недостатком данного способа является низкая точность и достоверность определения критического коэффициента интенсивности напряжений исследуемого материала в результате того, что во время испытаний в зоне скола возникают касательные напряжения вдоль линии действия силы, которые искажают точность и достоверность определения критического коэффициента интенсивности напряжений.

Известен способ определения критического коэффициента интенсивности напряжений, заключающийся в том, что в образце прямоугольного сечения выполняют зону концентраций напряжений, которую нагружают до разрушения, после чего по полученным данным определяют критический коэффициент интенсивности напряжений. При этом зону концентрации напряжений выполняют на противоположных гранях в плоскости, перпендикулярной продольной оси образца, а перед нагружением зоны образец закрепляют консольно (см. авт. св. СССР №1257448, G01N 3/00).

Недостатком известного способа является низкая точность и достоверность определения критического коэффициента интенсивности напряжений в исследуемом изделии в результате того, что при извлечении образца из изделия, особенно в промышленных условиях, по всему объему образца образуются микротрещины, которые снижают силы сцепления межатомных связей, что приводит к преждевременному разрушению образца, а следовательно, к искажению получаемых данных.

Наиболее близким аналогом к заявленному объекту является способ определения критического коэффициента интенсивности напряжений, заключающийся в том, что в изделии прямоугольного сечения выполняют зону концентрации напряжений, которую нагружают до разрушения и по полученным данным определяют критический коэффициент интенсивности напряжений, отличающийся тем, что зону концентрации напряжения в изделии выполняют в виде углового сегмента в месте пересечения его перпендикулярных граней, образованную зону нагружают по поверхности углового сегмента до его отлома, после чего замеряют разрушающую нагрузку и параметры отломленного углового сегмента, а критический коэффициент интенсивности напряжения в изделии определяют по формуле.

Недостатком известного способа является низкая точность и достоверность определения параметров трещиностойкости бетона вследствие определения характеристики бетона только по одному параметру и узкая область применения способа так как зону концентрации напряжений выполняют только на пересечении перпендикулярных граней.

Целью изобретения является повышение точности и достоверности определения критического коэффициента интенсивности напряжения в изделии и расширение области использования способа.

Поставленная цель решается тем, что в известном способе определения характеристик трещиностойкости бетона в изделии, зону концентрации напряжения в изделии выполняют на поверхности бетона в виде прямоугольного трапецеидального призматического элемента длиной 5 диаметров наибольшей крупности заполнителя и высотой в одни диаметра наибольшей крупности заполнителя, но не менее 20 мм, с углом наклона стороны трапеции в 45 градусов, меньшая сторона которого монолитно связана с бетоном, а верхнюю большую сторону нагружают по поверхности до отлома призматического элемента по меньшей стороне от тела бетона, причем во время нагружения одновременно измеряют деформацию верхней стороны и соответствующее ей усилие, а параметры трещиностойкости бетона определяют по полученному графику «деформация-усилие».

На фиг. 1 показаны:

1 - Прорези на поверхности бетонного элемента.

2 - Прямоугольный трапециедальный призматический элемент, полученный в теле бетона после выполнения пропилов.

3 - Прямоугольный призматический блок, приклеенный к призматическому бетонному элементу 2.

4 - Силовой рычаг, жестко соединенный с прямоугольным блоком 3.

5 - Измерительные рычаги жестко соединенный со стальным блоком 3

6 - Винтовые домкраты или домкраты другого типа, оказывающие давление на силовой рычаг 4, упираясь в тело бетона. Усилие в силовом рычаге измеряют любым известным способом - установкой датчиков на рычаг, измерением даваления в силовом элементе, измерением усилия на бетон.

7 - Индикаторы, закрепленные на измерительных рычагах 5 для измерения перпмещений L.

L1, L2, L3, L4 - величины смещения измерительных рычагов 5 по отношению к поверхности бетона. Измерение смещений в нескольких точках позволяет определить положение линии трещины, неравномерность смещения устья трещины, дает дополнительную (избыточную информацию для повышения точности измерения. Схема измерений с помощью полученной устройством информации показана на фиг. 2.

Отличительный признак, характеризующий действие выполнения зоны концентрации напряжений на поверхности бетона в виде прямоугольного трапецеидального призматического элемента в известных технических решениях не обнаружен. При этом выполнение вышеуказанной зоны в исследуемом изделии позволяет осуществлять последующее нагружение этой зоны до ее отлома непосредственно на поверхности изделия, а не в месте пересечения его перпендикулярных граней. Это позволяет выбрать наиболее рациональную зону работы элемента (угловые зоны наиболее подвержены разрушению), сохранить целостность структуры материала изделия, а следовательно, повысить точность и достоверность полученных результатов.

Для определения призменной прочности, модуля упругости и коэффициента Пуассона известен прием нагружения торцевой поверхности прямоугольного изделия путем создания на его поверхности однозначных сжимающих или растягивающих напряжений (см. ГОСТ 24452-80 "Бетоны. Методы определения призменной прочности, модуля упругости и коэффициента Пуассона" / Введен: 01.01.1982, с. 7).

В заявляемом способе нагружают не изделие, а прямоугольную трапецеидальную призму, образованную на поверхности изделия. Указанный отличительный признак в заявляемом способе проявляет новое техническое свойство, заключающееся в создании зоны разнозначных нормальных напряжений в исследуемой зоне изделия, а именно сжатых и растягивающих напряжений в разрушающемся сечении материала изделия при отсутствии касательных напряжений, что обеспечивает рост трещины отрыва без сдвига ее берегов от начала растянутой зоны. Это позволяет повысить точность и достоверность определения критического коэффициента интенсивности напряжения в изделии за счет создания в последнем чистого напряженного состояния, характеризующегося растяжением при отсутствии сдвига.

На основании вышеизложенного можно сделать вывод, что для специалиста заявляемый способ определения критического коэффициента интенсивности напряжения в изделии при нормальном отрыве не следует явным образом из известного уровня техники, а, следовательно, соответствует условию патентоспособности «изобретательский уровень».

Для осуществления заявляемого способа определения критического коэффициента интенсивности напряжений в изделии предлагается использовать специальное устройство.

Сущность: в изделии прямоугольного сечения выполняют зону концентрации напряжений, которую нагружают до разрушения и по полученным данным определяют критический коэффициент интенсивности напряжений. Зону концентрации напряжения в изделии выполняют в виде углового сегмента в месте пересечения его перпендикулярных граней. Образованную зону нагружают по поверхности углового сегмента до его отлома, после чего замеряют разрушающую нагрузку и параметры отломленного углового сегмента, а критический коэффициент интенсивности напряжения в изделии определяют по формуле. Технический результат: повышение точности и достоверности.

Сущность изобретения поясняется чертежами, где:

- на фиг. 1 Приведена аксонометрия схемы устройства определения характеристик трещиностойкости бетона изделия;

- на фиг 2. - Прямоугольный трапецеидальный призматический элемент;

- на фиг. 3 - Схема измерений развития трещины.

Обработку полученных графиков можно проводить известными методами. Например в соответствии с ГОСТ 29167-91.

Во время отлома сегментов измеряется усилие отлома F и смещение трещины V. По результатам измерений строится диаграмма F- V. Вид диаграммы показан на фиг. 3. На фиг. 4 показана трансформированная диаграмма, полученная при местном сбросе нагрузки. Диаграммы используют в общем методе диагностики конструкции.

Для фиг. 4 и 5:

D - точка начала прямого участка

СА - параллельна ОТ, СН - перпендикулярна OV.

OTCDK - расчетная диаграмма

X' и X '' - получают параллельным переносом из X по линии разгрузки.

где ϕ=b/L0 - относительная высота образца;

- относительная длина начального надреза.

Используя полученные диаграммы, приведенные на рис. 3 и 4, рассчитывают энергозатраты на развитие и рост трещины.

Энергозатраты на процессы развития и слияния микротрещин до формирования магистральной трещины статического разрушения Wm (МДж) определяют по площади ОТСА.

Энергозатраты на упругое деформирование до начала движения магистральной трещины статического разрушения We (МДж) определяют по АСН.

Энергозатраты на локальное статическое деформирование в зоне магистральной трещины Wt(МДж) определяют по HCDK.

Расчетные энергозатраты на упругое деформирование сплошного образца (, (МДж) определяют по

Полные упругие энергозатраты на статическое деформирование до деления на части Wce (МДж) определяют по ONC'X'O.

По полученным энергозатратам определяются:

1. Статический джей-интеграл, МДж/м2.

2. Статический критический коэффициент интенсивности напряжений, МПа⋅м 0,5.

3. Критический коэффициент интенсивности напряжений при максимальной нагрузке, МПа⋅м0,5

4. Критерий хрупкости, м

Получение вышеприведенных характеристик позволяет оценивать состояние конструкций на соответствие их теоретическим моделям.

Способ определения параметров трещиностойкости бетона в изделии, заключающийся в том, что в изделии выполняют зону концентрации напряжений, которую нагружают до разрушения и по полученным данным определяют параметры трещиностойкости бетона, отличающийся тем, что с целью повышения точности и достоверности определения критического коэффициента интенсивности напряжения в изделии и расширения области использования способа зону концентрации напряжения в изделии выполняют на поверхности бетона в виде прямоугольного трапецеидального призматического элемента длиной 5 диаметров наибольшей крупности заполнителя и высотой в один диаметр наибольшей крупности заполнителя, но не менее 20 мм, с углом наклона стороны трапеции в 45 градусов, меньшая сторона которого монолитно связана с бетоном, а верхнюю большую сторону нагружают по поверхности до отлома призматического элемента по меньшей стороне от тела бетона, причем во время нагружения одновременно измеряют деформацию верхней стороны и соответствующее ей усилие, а параметры трещиностойкости бетона определяют по полученному графику «деформация-усилие».
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ТРЕЩИНОСТОЙКОСТИ БЕТОНА В ИЗДЕЛИИ
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ТРЕЩИНОСТОЙКОСТИ БЕТОНА В ИЗДЕЛИИ
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ТРЕЩИНОСТОЙКОСТИ БЕТОНА В ИЗДЕЛИИ
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ТРЕЩИНОСТОЙКОСТИ БЕТОНА В ИЗДЕЛИИ
Источник поступления информации: Роспатент

Показаны записи 1-5 из 5.
25.08.2017
№217.015.d175

Сегментный способ определения прочности ограждающих конструкций

Изобретение относится к испытательной технике и может быть использовано в строительстве при расчете ограждающих конструкций зданий. Способ заключается в том, что в исследуемом месте ограждающей конструкции на всю глубину кирпичной кладки отбирают два керна, первый керн отбирают по центру...
Тип: Изобретение
Номер охранного документа: 0002622007
Дата охранного документа: 08.06.2017
26.08.2017
№217.015.e157

Способ и устройство для экспрессного контроля теплотехнических качеств материалов строительных конструкций

Изобретение относится к способам и устройствам определения физических свойств веществ путем электрических измерений. Способ экспрессного контроля теплотехнических качеств материалов строительных конструкций включает в себя операции по измерению емкости, преобразованию ее в пачки импульсов,...
Тип: Изобретение
Номер охранного документа: 0002625625
Дата охранного документа: 17.07.2017
03.07.2018
№218.016.69bf

Способ обследования поверхности объекта инфракрасным прибором

Изобретение относится к области инфракрасной (ИК) термографии и радиометрическим способам измерения температуры и может быть использовано при визуализации и определении температурных полей на поверхности объектов с помощью тепловизионной техники и при пирометрических измерениях температуры....
Тип: Изобретение
Номер охранного документа: 0002659457
Дата охранного документа: 02.07.2018
21.12.2019
№219.017.f074

Способ определения долговечности кирпичной кладки

Изобретение относится к области строительства и может быть использовано для определения долговечности кирпичной кладки из красного кирпича. Способ определения долговечности кирпичной кладки при положительных температурах заключается в том, что измеряют прочность кирпича на сжатие, измельчают...
Тип: Изобретение
Номер охранного документа: 0002709470
Дата охранного документа: 18.12.2019
12.04.2023
№223.018.499d

Строительная смесь для изготовления теплоизоляционных изделий

Изобретение относится к области строительных материалов, а именно к получению строительных смесей для изготовления теплоизоляционных изделий на основе гипсового вяжущего и растительного наполнителя – борщевика Сосновского. Строительная смесь для изготовления теплоизоляционных изделий содержит,...
Тип: Изобретение
Номер охранного документа: 0002766181
Дата охранного документа: 09.02.2022
Показаны записи 1-10 из 27.
27.08.2013
№216.012.6402

Биоцидный портландцемент

Изобретение относится к составу биоцидного портландцемента и может быть использовано в строительных растворах и бетонах на его основе. Биоцидный портландцемент содержит портландцементный клинкер, двуводный гипс и минеральную добавку, в качестве которой содержит сернокислый натрий, известь...
Тип: Изобретение
Номер охранного документа: 0002491239
Дата охранного документа: 27.08.2013
27.08.2013
№216.012.6403

Биоцидный портландцемент

Изобретение относится к составу цемента и может быть использовано в строительных растворах и бетонах на его основе. Биоцидный портландцемент содержит портландцементный клинкер, двуводный гипс и минеральную добавку, в качестве которой содержит натрий фтористый и кварцевый песок фракции 160-320...
Тип: Изобретение
Номер охранного документа: 0002491240
Дата охранного документа: 27.08.2013
10.09.2013
№216.012.683e

Биогазовый барогальванический электротеплогенератор

Изобретение относится к энергетике. В биогазовом барогальваническом электротеплогенераторе, содержащем циркуляционный газовый контур, включающий электрогенерирующую и компрессорную барогальванические ячейки, каждая из которых выполнена в виде диэлектрического корпуса; твердого электролита,...
Тип: Изобретение
Номер охранного документа: 0002492333
Дата охранного документа: 10.09.2013
27.10.2013
№216.012.795a

Портландцемент

Изобретение относится к составам цементов и может быть использовано для получения новых видов цементов, применяемых в строительстве, а также строительных растворах и бетонах на их основе. В портландцементе, включающем портландцементный клинкер, двуводный гипс и добавку, используют...
Тип: Изобретение
Номер охранного документа: 0002496728
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.795b

Портландцемент

Изобретение относится к составу портландцемента и может быть использовано для получения новых видов цементов, используемых в строительстве, а также строительных растворах и бетонах на их основе. Портландцемент содержит алитовый портландцементный клинкер, двуводный гипс и минеральную добавку, в...
Тип: Изобретение
Номер охранного документа: 0002496729
Дата охранного документа: 27.10.2013
20.09.2015
№216.013.7e05

Способ возведения монолитных стен в несъёмной опалубке

Изобретение относится к области строительства, а именно к способам возведения стен здания с помощью несъемной опалубки, и может быть использовано при проектировании и возведении железобетонных монолитных стен малоэтажных зданий, коттеджей и других зданий. Технический результат: повышение...
Тип: Изобретение
Номер охранного документа: 0002563858
Дата охранного документа: 20.09.2015
10.02.2016
№216.014.c3ec

Сырьевая смесь для изготовления крупнопористого бетона

Изобретение относится к строительству и может быть использовано при производстве конструкций и изделий из крупнопористого бетона для гражданского, промышленного, гидротехнического и мелиоративного назначения, а также для изготовления каркаса в каркасных бетонных конструкциях. Сырьевая смесь для...
Тип: Изобретение
Номер охранного документа: 0002574746
Дата охранного документа: 10.02.2016
20.06.2016
№217.015.03c6

Роликогибочная линия для изготовления элементов с-образного профиля для сборной каркасной конструкции из рулонной стали

Изобретение относится к области обработки металлов давлением и может быть использовано при изготовлении профилей, в частности С-образных, в соответствии с программным обеспечением. Рабочие позиции роликогибочной линии закрыты подвижным экраном и разделены на зоны. При этом зона загрузки...
Тип: Изобретение
Номер охранного документа: 0002587701
Дата охранного документа: 20.06.2016
20.04.2016
№216.015.33f7

Способ строительства энергоэффективных, экологически-безопасных сооружений из сборных конструкций

Изобретение относится к области строительства, а именно к способу строительства энергоэффективных, экологически безопасных сооружений. Технической задачей предлагаемого изобретения является создание способа строительства экологичного сооружения, который позволил бы сократить номенклатуру...
Тип: Изобретение
Номер охранного документа: 0002582241
Дата охранного документа: 20.04.2016
12.01.2017
№217.015.5f71

Способ сокращения теплопотерь энергоэффективного здания

Изобретение относится к области каркасного домостроения. Способ сокращения теплопотерь энергоэффективного здания, содержащего несущую каркасную конструкцию, панели стен и фермы покрытия, включает выполнение на ферме покрытия дополнительного нижнего пояса, препятствующего образованию «мостика...
Тип: Изобретение
Номер охранного документа: 0002590962
Дата охранного документа: 10.07.2016
+ добавить свой РИД