×
24.06.2020
220.018.2a2c

Результат интеллектуальной деятельности: Способ определения скорости испарения группы капель

Вид РИД

Изобретение

Аннотация: Изобретение относится к области разработки способов для лабораторных исследований физических процессов, в частности для исследования закономерностей испарения группы капель жидкости при нагреве внешним тепловым потоком. Способ определения скорости испарения группы капель включает измерение изменения размера капель при их прохождении через вертикально расположенный полый цилиндрический нагреватель, группу монодисперсных капель получают путем многократной импульсной подачи жидкости из мерной емкости в полый цилиндрический нагреватель через набор равномерно расположенных капилляров одинакового диаметра с возможностью сбора прошедших через нагреватель капель в приемную емкость, размер капель на входе в нагреватель измеряют с помощью видеосъемки, суммарные массы капель, поступивших в нагреватель и в приемную емкость за время проведения измерений, определяют взвешиванием жидкости в мерной и приемной емкостях, а скорость испарения группы капель определяют из соотношения: где W - скорость испарения группы капель, кг/(м⋅с); - плотность жидкости, кг/м; R - радиус капель на входе в нагреватель, м; g - ускорение свободного падения, м/с; L - длина цилиндрического нагревателя, м; m - суммарная масса жидкости, поступившая в приемную емкость за время проведения измерений, кг; m - суммарная масса жидкости, поступившая в нагреватель за время проведения измерений, кг. Техническим результатом изобретения является повышение точности определения скорости испарения группы капель. 4 ил.

Изобретение относится к области разработки способов и устройств для лабораторных исследований физических процессов, в частности для исследования закономерностей испарения группы капель жидкости при нагреве внешним тепловым потоком.

Изучение процессов испарения жидких капель имеет большое практическое значение при проектировании различных энергетических устройств, оптимизации технологий тушения пожаров, а также в ряде других практических приложениях [1, 2]. Для оценки адекватности существующих теоретических моделей (диффузионная модель, модель приведенной пленки, модель фазового перехода и др.), а также разрабатываемых уточненных моделей испарения необходимо экспериментальное исследование скорости испарения капель.

Основной объем информации по способам и устройствам для экспериментального исследования процессов испарения относится к одиночным каплям [3-5]. В большинстве практических приложений (в частности, при анализе эффективности тушения пожаров тонкораспыленной водой) реализуется процесс испарения группы капель. При этом наблюдается эффект влияния соседних капель на полноту испарения [6]. Для учета влияния этого эффекта необходимы экспериментальные данные по испарению группы капель с их различной концентрацией в высокотемпературной среде.

Известен способ определения скорости испарения и горения группы мелких капель [7]. Левитирующие капли жидкости фиксируются по оси камеры сгорания при помощи акустического поля и нагреваются от горячих стержней, расположенных в нижней части камеры. Температура в камере измерялась датчиками температуры, а изменение размеров капель фиксировалось высокоскоростной камерой через прозрачное окно в стенке камеры сгорания. Нагрев капель в данном устройстве осуществлялся за счет комбинированного теплообмена, включающего конвективный, кондуктивный и лучистый механизмы. Размеры капель в группе были существенно различны, а в режиме левитации капли деформируются и колеблются под действием акустического поля, что затрудняет определение их размеров в процессе испарения.

Наиболее близким по технической сущности к заявляемому изобретению является способ, в котором видеорегистрацией определяется изменение размеров капель в паро-капельном облаке при движении в среде горячего газа [8]. Паро-капельное облако, создаваемое распылением жидкости форсунками, было существенно полидисперсным. Поэтому выбиралась малая (менее 10) группа капель диаметром не менее 0.5 мм, изменение размеров которой определялось с помощью специализированных вычислительных программных комплексов. В качестве среды горячего газа использовались продукты сгорания жидких горючих в цилиндрической кварцевой трубе.

К недостаткам способа относится сложность технической реализации и невысокая точность определения скорости испарения в условиях фонового излучения пламени. Скорость движения капель в полидисперсном потоке будет существенно различной, что приводит к их возможной коагуляции. Это влияет на достоверность получаемых результатов.

Техническим результатом настоящего изобретения является повышение точности определения скорости испарения группы капель.

Технический результат достигается тем, что разработан способ определения скорости испарения группы капель, включающий измерение изменения размера капель при их прохождении через вертикально расположенный полый цилиндрический нагреватель. Группу монодисперсных капель получают путем многократной импульсной подачи жидкости из мерной емкости в полый цилиндрический нагреватель через набор равномерно расположенных капилляров одинакового диаметра с возможностью сбора прошедших через нагреватель капель в приемную емкость. Размер капель на входе в нагреватель измеряют с помощью видеосъемки. Суммарные массы капель, поступивших в нагреватель и в приемную емкость за время проведения измерений, определяют взвешиванием жидкости в мерной и приемной емкостях. Скорость испарения группы капель определяют из соотношения

где W - скорость испарения группы капель, кг/(м2⋅с);

- плотность жидкости, кг/м3;

R0 - радиус капель на входе в нагреватель, м;

g - ускорение свободного падения, м/с2;

L - длина цилиндрического нагревателя, м;

mк - суммарная масса жидкости, поступившая в приемную емкость за время проведения измерений, кг;

m0 - суммарная масса жидкости, поступившая в нагреватель за время проведения измерений, кг.

Достижение положительного эффекта изобретения обеспечивается следующими факторами.

1. Использование набора равномерно расположенных капилляров одинакового диаметра обеспечивает получение группы равномерно расположенных в пространстве монодисперсных капель.

2. Импульсная подача жидкости из мерной емкости обеспечивает образование идентичных групп капель за счет одновременного отрыва их от капилляров. Изменяя количество капилляров в наборе и расстояние между ними можно варьировать концентрацию капель при их движении через нагреватель.

3. Многократная импульсная подача жидкости обеспечивает прохождение через нагреватель большого количества капель, необходимого для точного измерения суммарной массы.

4. Видеосъемка капель на входе в нагреватель позволяет определять их начальный радиус R0.

5. Взвешивание жидкости в мерной и в приемной емкостях позволяет определить суммарную массу капель до и после прохождения нагревателя, и, следовательно, долю испарившейся жидкости.

6. Скорость испарения капель определяется уравнением [1]

где ΔR=R0-Rк - изменение радиуса капли за время ее прогрева Δt;

Rк - радиус капли на выходе из нагревателя.

Для расчета скорости испарения по уравнению (2) необходимо определить ΔR и Δt.

6.1. Определение ΔR

Предположим, что за время измерения в нагреватель поступило N капель, суммарная масса которых равна

где V0 - объем капли на входе в нагреватель.

В приемную емкость за это же время поступило N капель, суммарная масса которых равна

где Vк - объем капли на выходе из нагревателя.

Из (3) и (4) следует формула для расчета Rк

и, следовательно,

6.2. Определение Δt

Уравнение гравитационного осаждения капли имеет вид [9]:

где u - скорость движения капли;

t - время;

CD - коэффициент сопротивления;

Sm - площадь миделева сечения капли.

Для стационарного режима осаждения (du/dt=0) с учетом из уравнения (6) следует формула для скорости осаждения капли:

Для капли жидкости реализуется автомодельный режим осаждения, при котором CD=const=0.44 [10]. Подставляя в (7) CD=0.44, g=9.80665 м/с2, , получим выражение для скорости стационарного осаждения капли

где [u]=м/с, , [R0]=м.

На начальном участке траектории капля движется с ускорением и достигает скорости через определенный промежуток времени. Для расчета динамики изменения скорости капли u(t) представим уравнение (6) в безразмерном виде:

где - безразмерная скорость капли;

- безразмерное время .

Решение дифференциального уравнения (7) с нулевыми граничными условиями (τ=0, y=0) имеет вид:

График зависимости у(х), рассчитанный по уравнению (10), приведен на Фиг. 1. На начальном участке траектории (при τ≤0.5) аппроксимация зависимости y(τ) (с погрешностью не более 1%) имеет вид

Расстояние, пройденное каплей, определяется интегралом

где - безразмерное расстояние

Подставляя в (12) зависимость (11) для y(τ) и интегрируя, получим

Из (13) можно получить формулу для времени Δt в размерном виде:

где Δt - время, за которое капля проходит нагреватель высотой L.

Подставляя ΔR из (5) и Δt из (14) в уравнение (2), получим соотношение (1) для определения скорости испарения группы капель:

Пример реализации

Сущность изобретения поясняется схемой установки, реализующей способ измерения скорости испарения группы капель (Фиг. 2). Полый цилиндрический нагреватель выполнен из керамической трубы 1, на внутренней поверхности которой установлены проволочные нихромовые спирали 2, соединенные с источником напряжения (на Фиг. 2 не показан). Длина керамической трубы 1 выбирается такой, чтобы капли не успели полностью испариться при прохождении зоны нагрева. Мерная емкость 3 с набором капилляров одинакового диаметра 4 располагается над верхним срезом керамической трубы 1. В мерную емкость 3 заливается исследуемая жидкость 5. Внутренняя полость 6 мерной емкости 3 соединена с воздушным микрокомпрессором 7 через электропневмоклапан 8, который управляется низкочастотным генератором напряжения 9. Видеокамера 10 установлена на входе керамической трубы 1. Приемная емкость 11 установлена на выходе керамической трубы 1. Температура газа в зоне нагрева керамической трубы 1 контролируется съемными термопарами 12, расположенными по оси керамической трубы 1 на расстоянии 25%, 50% и 75% ее длины. Сигналы от термопар 12 усиливаются усилителем 13 и записываются регистрирующим прибором 14.

Способ определения скорости испарения группы капель жидкости реализуется следующим образом. На спирали 2 подается напряжение, внутренняя полость керамической трубы 1 прогревается до заданной температуры, контролируемой термопарами 12. После выравнивания температуры по длине керамической трубы 1, термопары 12 удаляются из зоны нагрева. В мерную емкость заливается исследуемая жидкость 5 массой m0, предварительно взвешенная на аналитических весах. Затем включается видеокамера 10 и воздушный микрокомпрессор 7. При подаче импульсов напряжения от генератора 9 на электропневмоклапан 8 в полости 6 мерной емкости 3 возникают импульсы давления, которые приводят к одновременному отрыву капель от срезов капилляров 4. При этом образуется компактная группа монодисперсных капель (Фиг. 3). При многократной подаче импульсов давления в мерную емкость 3 в нагреватель последовательно поступают идентичные группы капель. Начальный размер капель R0 регистрируется видеокамерой 10. Суммарная масса жидкости mк, поступившая в приемную емкость 11 за время измерений, определяется взвешиванием на аналитических весах. По измеренным значениям R0, m0, mк, из соотношения (1) определяется скорость испарения группы капель W для заданных значений , L.

Фотография установки для реализации заявляемого способа приведена на Фиг. 4. В качестве мерной емкости 3 использовался цилиндр из фторопласта, в торце которого устанавливался набор из 9 медицинских игл диаметром 0.8 мм. Иглы формируют группы из 9 капель с начальным радиусом R0=0.77 мм. Полый цилиндрический нагреватель высотой Z=200 мм нагревался до заданной температуры 540°С.

Реализация способа проведена на примере испарения капель этилового спирта. В мерную емкость 3 заливалось 10 мл этилового спирта (m0=8.08 г). В приемную емкость 11 после испарения в нагревателе, поступило mк=7.07 г спирта. Подставляя измеренные значения параметров в соотношение (1), получим

Полученное значение W=0.129 кг/(м2⋅с) согласуется с литературными данными [8] по скорости испарения капель, полученными в близких условиях проведения эксперимента.

Приведенный пример доказывает, что при реализации предлагаемого способа определения скорости испарения группы капель достигается положительный эффект, заключающийся в повышении точности определения скорости испарения группы капель за счет

- формирования идентичных групп монодисперсных капель;

- взвешивания жидкости в мерной и приемной емкостях до и после проведения измерений;

- многократного прохождения через нагреватель идентичных групп капель;

- учета переменности скорости осаждения капель.

Литература

1. Терехов В.И., Пахомов М.А. Тепломассоперенос и гидродинамика в газокапельных потоках. - Новосибирск: Изд-во НГТУ, 2008. - 284 с.

2. Волков Р.С., Высокоморная О.В., Кузнецов Г.В., Стрижак П.А. Экспериментальное исследование изменения массы капель воды при их движении через высокотемпературные продукты сгорания // Инж.-физ. журн. 2013. Т. 86, №6. С. 1327-1332.

3. Терехов В.И., Шишкин Н.Е. Экспериментальное исследование испарения капель наножидкости в потоке сухого воздуха // Современная наука. 2011, №2 (7). С. 197-200.

4. Терехов В.И., Шишкин Н.Е., Ли Х.-К. Влияние поверхностно-активного вещества на испарение водяных капель // Современная наука. 2011, №2 (7). С. 215-219.

5. АС СССР №1318880, МПК G01N 25/02, Способ определения скорости испарения капель жидкости в потоке газа / Гольдин Г.С., Железнов С.В. - заявл. 03.07.1985; опубл. 23.06.1987 Бюл. №23.

6. Стрижак П.А., Волков Р.С., Забелин М.В., Курисько А.С. Особенности испарения одиночных и полидисперсного потока капель воды в высокотемпературной газовой среде // Фундаментальные исследования. 2014, №9. С. 307-311.

7. Patent China CN 107202812 А, МПК G01N 25/02, Acoustic levitation multi-droplet evaporation and combustion experiment device and method/Wang Wei, Wang Jigang, Wang Xun, Ren Guilong, Kim Zhungliang, He Qiang, Tang Literature. - заявл. 08.09.2016; опубл. 26.09.2017/

8. Высокоморная O.B., Кузнецов Г.В., Стрижак П.А. Испарение и трансформация капель и больших массивов жидкости при движении через высокотемпературные газы. - Новосибирск: СО РАН, 2016. - 302 с.

9. Архипов В.А., Усанина А.С. Движение частиц дисперсной фазы в несущей среде: учеб. пособие. - Томск: Издательский Дом Томского государственного университета, 2014. - 252 с.

10. Нигматулин Р.И. Движение многофазных сред. Ч. I. - М.: Наука, 1987. - 464 с.


Способ определения скорости испарения группы капель
Способ определения скорости испарения группы капель
Способ определения скорости испарения группы капель
Способ определения скорости испарения группы капель
Способ определения скорости испарения группы капель
Способ определения скорости испарения группы капель
Способ определения скорости испарения группы капель
Способ определения скорости испарения группы капель
Способ определения скорости испарения группы капель
Источник поступления информации: Роспатент

Показаны записи 1-10 из 29.
10.12.2015
№216.013.95c4

Гибридный ракетный двигатель

Изобретение относится к области ракетной техники, в частности к конструкциям гибридных ракетных двигателей космического назначения. Гибридный ракетный двигатель содержит камеру сгорания с размещенным в ней зарядом твердого топлива с внутренним сквозным каналом и сопловой блок. Во входном...
Тип: Изобретение
Номер охранного документа: 0002569960
Дата охранного документа: 10.12.2015
25.08.2017
№217.015.d02c

Способ получения упрочненного нанокомпозиционного материала на основе магния

Изобретение относится к получению упрочненного нанокомпозиционного материала, который может быть использован в авиастроении и в автомобильной промышленности. Готовят лигатуру в виде компактированных стержней из равномерно перемешанной смеси порошка магния и нанопорошка нитрида алюминия с...
Тип: Изобретение
Номер охранного документа: 0002621198
Дата охранного документа: 01.06.2017
29.12.2017
№217.015.f017

Средство, обладающее гастропротекторной активностью

Изобретение относится к фармацевтической промышленности, а именно к средству, обладающему гастропротекторным действием. Гастропротекторное средство, содержащее комплекс 4-х флавоноидов, выделенный из надземной части растения Lychnis chalcedonica L. Комплекс флавоноидов получен 5-кратной...
Тип: Изобретение
Номер охранного документа: 0002629090
Дата охранного документа: 24.08.2017
29.12.2017
№217.015.fd04

Стенд для исследования деформации капель аэродинамическими силами

Изобретение относится к исследованию деформации капель аэродинамическими силами и может быть использовано в лабораторных установках для исследования физических и химических процессов. Стенд для исследования деформации капель аэродинамическими силами включает вертикально расположенную капельницу...
Тип: Изобретение
Номер охранного документа: 0002638376
Дата охранного документа: 13.12.2017
19.01.2018
№218.015.ffc3

Средство, обладающее противовоспалительным и анальгетическим действием

Изобретение относится к средству, обладающему противовоспалительным и анальгезирующим действием. Средство представляет собой комплекс флавоноидов, выделенный из надземной части растения Lychnis chalcedonica L. 5-кратной экстракцией 70% этанолом в соотношении сырье:экстрагент 1:22,5, с...
Тип: Изобретение
Номер охранного документа: 0002629607
Дата охранного документа: 30.08.2017
19.01.2018
№218.016.099d

Способ получения дисперсно-упрочненного нанокомпозитного материала на основе алюминия

Изобретение относится к получению дисперсно-упрочненного нанокомпозитного материала на основе алюминия. Способ включает введение лигатуры в расплав матрицы на основе алюминия при одновременном воздействии на расплав ультразвукового поля. Лигатуру готовят в виде компактированных стержней из...
Тип: Изобретение
Номер охранного документа: 0002631996
Дата охранного документа: 29.09.2017
19.01.2018
№218.016.09ae

Способ получения упрочненных алюминиевых сплавов

Изобретение относится к области металлургии, в частности к получению легких сплавов на основе алюминия с повышенной прочностью. Способ заключается во введении в расплав алюминия лигатуры, содержащей модифицирующую добавку, при одновременном воздействии на расплав ультразвукового поля, причем...
Тип: Изобретение
Номер охранного документа: 0002631995
Дата охранного документа: 29.09.2017
10.05.2018
№218.016.3b60

Способ повышения дальности полета активно-реактивного снаряда

Изобретение относится к области ракетной техники, в частности к ракетным двигателям активно-реактивных снарядов, запускаемых из ствола артиллерийского орудия, и заключается в способе повышения дальности полета активно-реактивного снаряда. На траектории полета снаряда зажигают заряд твердого...
Тип: Изобретение
Номер охранного документа: 0002647256
Дата охранного документа: 15.03.2018
10.05.2018
№218.016.49d4

Устройство для распыления порошков

Изобретение относится к технике распыления порошков в воздушной и газовой. Устройство для распыления порошков включает цилиндрический корпус, содержащий порошок, газогенератор с зарядом твердого топлива, систему аэрации порошка и сопло для истечения газопорошковой смеси. Газогенератор,...
Тип: Изобретение
Номер охранного документа: 0002651433
Дата охранного документа: 19.04.2018
29.05.2018
№218.016.54ee

Способ взрывного компактирования порошковых материалов

Изобретение относится к порошковой металлургии, в частности к способам взрывного прессования осесимметричных изделий из порошков. Порошковый материал помещают в осесимметричный контейнер с заглушками на его концах, на боковую поверхность контейнера наматывают детонирующий шнур. Контейнер...
Тип: Изобретение
Номер охранного документа: 0002654225
Дата охранного документа: 17.05.2018
Показаны записи 1-10 из 71.
10.02.2013
№216.012.2369

Способ получения смесевого твердого топлива с металлическим горючим

Изобретение относится к области разработки смесевых металлизированных твердых топлив. Изобретение заключается в добавлении к смеси окислителя, органического горючего-связующего и технологических добавок в качестве металлического горючего бидисперсной смеси порошка алюминия микронных размеров и...
Тип: Изобретение
Номер охранного документа: 0002474567
Дата охранного документа: 10.02.2013
27.07.2013
№216.012.5a33

Способ организации рабочего процесса в космической двигательной установке на газообразном топливе

Изобретение относится к области ракетной техники, а именно к организации процесса подготовки и сжигания газообразного топлива в камере сгорания. Предварительно газифицированные компоненты топлива, газообразный гелий из системы вытеснения и порошок алюминия подаются в форкамеру для смешения....
Тип: Изобретение
Номер охранного документа: 0002488712
Дата охранного документа: 27.07.2013
27.09.2013
№216.012.7047

Способ определения единичного импульса твердого топлива

Изобретение относится к измерению характеристик твердых топлив для ракетных двигателей. Способ включает измерение реактивной силы продуктов газификации при сжигании образца твердого топлива, бронированного по боковой поверхности, причем измеряют реактивную силу и время полного сгорания образца...
Тип: Изобретение
Номер охранного документа: 0002494394
Дата охранного документа: 27.09.2013
10.10.2013
№216.012.7432

Способ определения дисперсного состава капель в факеле распыла форсунки

Изобретение относится к методам исследования жидкокапельных аэрозолей и предназначено для определения дисперсных характеристик распыла форсунок в широком диапазоне размеров частиц, в том числе нанометровом. Способ основан на распылении раствора неиспаряемой примеси в исследуемой жидкости с...
Тип: Изобретение
Номер охранного документа: 0002495403
Дата охранного документа: 10.10.2013
27.10.2013
№216.012.7a96

Источник направленного инфракрасного излучения

Изобретение относится к области теплоэнергетики и может быть использовано при разработке инфракрасных нагревателей направленного действия с высокими технико-экономическими свойствами для промышленных и бытовых нужд. Источник направленного инфракрасного излучения включает излучатель,...
Тип: Изобретение
Номер охранного документа: 0002497044
Дата охранного документа: 27.10.2013
27.06.2014
№216.012.d826

Способ определения максимального размера и концентрации субмикронных аэрозольных частиц

Изобретение относится к области измерения характеристик аэрозольных частиц оптическими методами. Способ заключается в измерении ослабления оптического излучения в видимой и ближней инфракрасной областях спектра. Максимальный размер и концентрацию аэрозольных частиц определяют по формулам
Тип: Изобретение
Номер охранного документа: 0002521112
Дата охранного документа: 27.06.2014
20.07.2014
№216.012.debb

Способ определения смачиваемости мелкодисперсных порошков

Изобретение относится к области исследования характеристик порошковых материалов, в частности их смачиваемости. Целью изобретения является разработка более точного способа определения смачиваемости порошков. Сущность изобретения заключается в том, что в кювете с прозрачными плоско-параллельными...
Тип: Изобретение
Номер охранного документа: 0002522805
Дата охранного документа: 20.07.2014
20.01.2015
№216.013.1f87

Устройство для распыления расплавленных металлов

Изобретение относится к области порошковой металлургии. Устройство для распыления расплавленных металлов содержит корпус с крышкой и кольцевой полостью, соединенной с газопроводом для подачи нагретого сжатого газа, ниппель с центральным каналом для подачи расплава металла и дополнительный...
Тип: Изобретение
Номер охранного документа: 0002539512
Дата охранного документа: 20.01.2015
20.02.2015
№216.013.295b

Способ получения упрочненных сплавов на основе алюминия

Изобретение относится к области металлургии, в частности к получению легких сплавов с повышенной прочностью на основе алюминия, и может быть использовано в ракетно-космической, авиационной, автомобильной промышленностях. Способ включает получение лигатуры из смеси порошков алюминия и диборида...
Тип: Изобретение
Номер охранного документа: 0002542044
Дата охранного документа: 20.02.2015
27.06.2015
№216.013.58bc

Форсунка для распыления расплавленных металлов

Изобретение относится к порошковой металлургии, а именно к получению порошка распылением расплава металла. Форсунка содержит корпус с кольцевой щелью для подачи газа, ниппель с центральным каналом для подачи расплава и защитный стальной чехол, ниппель изготовлен из пьезоэлектрического...
Тип: Изобретение
Номер охранного документа: 0002554257
Дата охранного документа: 27.06.2015
+ добавить свой РИД