×
21.06.2020
220.018.2979

Результат интеллектуальной деятельности: Способ получения синтез-газа из биомассы растительного происхождения

Вид РИД

Изобретение

Аннотация: Изобретение относится к области получения синтез-газа путем переработки биомассы растительного происхождения и может быть использовано в нефтепереработке, нефтехимии, энергетике. Способ осуществляют путем измельчения исходной биомассы, смешивания ее с мелкодисперсным горючим сланцем с содержанием серы 4,1-16,0 мас.%, имеющим размер частиц 10-100 мкм, и водой, взятых в количестве, мас.%: сланец 3,0-5,0, вода 10,0-30,0, биомасса - остальное, до 100. Затем образованную смесь подвергают диспергированию с получением суспензии, последующей газификацией полученной суспензии при температуре 800-1000°С и направления образовавшегося газового потока на очистку с получением синтез-газа. Технический результат заключается в повышении эффективности способа переработки биомассы с целью получения синтез - газа, а именно в упрощении его технологии, предотвращении явления отложения соединений щелочных металлов на поверхностях оборудования и эффективного предотвращения щелочной коррозии оборудования. 2 табл., 4 пр.

Изобретение относится к области получения синтез-газа путем переработки биомассы растительного происхождения и может быть использовано в нефтепереработке, нефтехимии, энергетике.

Газификация является наиболее распространенным из термохимических процессов способом переработки биомассы. Целевым продуктом процессов переработки биомассы с использованием газификации является синтез - газ, представляющий собой газовую смесь, содержащую, в основном, монооксид углерода и газообразный водород. Синтез-газ используется, в частности, для производства метанола и водорода, в процессе Фишера-Тропша с целью получения синтетической нефти или сырья для органической химии и нефтехимии.

Известны способы получения синтез-газа газификацией биомассы, описанные, например, в патентах US 9187704, 2015, ЕР 20090702727, 2009, RU 2631811, 2017, RU 2443626, 2012, RU 2519441, 2014, RU 2526387, 2017. Одна из проблем существующей технологии газификации биомассы состоит в следующем. Используемая биомасса содержит значительные количества щелочей - соединений калия и натрия. Указанные щелочи испаряются при температуре выше 800°С в процессе газификации и частично проникают в поры футеровки газогенератора. Внедрение щелочей разрушает структуру футеровки. Это явление известно как щелочное разрушение (щелочная коррозия). Часть щелочей в газообразном состоянии, образующаяся в ходе газификации биомассы, поступает и в более холодную часть установки после газогенератора, где происходят процесс конденсации газа, а также процесс отложения на внутренних поверхностях аппаратуры, в частности, например, теплообменников и фильтров нагретого газа твердых солей щелочных металлов.

Известен способ получения синтез-газа путем газификации, в частности, биомассы растительного происхождения, в котором содержащиеся в синтез-газе парообразные щелочи удаляют из синтез-газа путем приведения в контакт с газопоглотительным керамическим материалом. При этом синтез-газ без предварительного охлаждения направляют в шлакоотделительное устройство, в котором капельки шлака отводят в виде жидкого шлака, причем горячий синтез-газ после очистки от шлака, щелочей и, при необходимости, от содержащих серу субстанций направляют в газовую турбину, приводимую в действие горячим газом. Газификацию проводят при температуре 800-1800°С и давлении 0,1-10 МПа. (RU 2490314, 2016). Недостаток способа заключается в сложной технологической схеме.

Известен способ газификации биомассы с получением синтез-газа, в котором предварительно проводят операцию смешения биомассы и катализатора («ускорителя») газификации, в качестве которого используют глину, имеющую каталитические функции и/или функцию теплоносителя в зоне реакции газификации в условиях повышенной температуры в присутствии газифицирующего агента для превращения органического сырья в газ, пригодный для производства жидкого топлива (US 9187704, 2015). Катализатор («ускоритель») газификации предпочтительно содержит, по меньшей мере, один элемент, выбранный из группы, состоящей из смектитовой глины, вермикулитовой глины, каолин-серпентиновой глины, хлоритовой глины и их смеси; более предпочтительно, по меньшей мере, один элемент, выбранный из группы, состоящей из смектитовой глины, вермикулитовой глины, каолинитовой глины, галлуазитовой глины и их смеси.

В катализаторе газификации, включающем глину в качестве незаменимого компонента, при необходимости, по меньшей мере, один элемент выбирают из группы, состоящей из других минералов, диатомовой земли, катализаторов на основе оксида кремния-оксида алюминия, катализаторов на основе неорганического материала на основе переходного металла, катализаторов на основе оксидов металлов и их смесей.

Недостатком предложенного способа является использование сложной композиции катализатора и присутствие в составе газа как летучих, так и нелетучих соединений калия и натрия, которые отлагаются на стенках в реакторной зоне газогенератора. Соединения калия и натрия откладываются в футеровке газогенератора, на стенках оборудования, что ухудшает их работу, затрудняет ведение процесса газификации и приводит к выходу оборудования из строя (щелочное разрушение). Кроме того, пониженная температура газификации не позволяет полностью конвертировать углерод биомассы в целевой продукт.

Из известных технических решений наиболее близким к предлагаемому по технической сущности и достигаемому результату является способ получения синтез-газа путем переработки биомассы растительного происхождения путем газификации в псевдоожиженном слое с получением синтез-газа (RU 2639911, 2017). Согласно данному способу, с целью устранения образования щелочей в газообразном состоянии в процессе производства синтез-газа при газификации биомассы в псевдоожиженном слое, синтез-газ приводят в контакт со связывающей щелочи газопоглощающей керамикой. В качестве газопоглощающей керамики рекомендуют использовать следующие вещества: каолин, боксит, бентонит, оксид алюминия, кизельгур, пемзу, диатомовую землю, аттапульгит, пирофиллит, андалузит, силлиманит, муллит, сульфат бария, фуллерову земля, оксид кремния, активированный оксид алюминия, карбид кремния или их смеси. При этом контакт биомассы с газопоглощающей керамикой осуществляют как в устройстве, установленном до газогенератора с псевдоожиженным слоем, так и внутри последнего. Керамику, оседающую на фильтре, установленном на потоке газа, выходящего из газогенератора, возвращают в указанный газогенератор.

Недостатки способа заключаются в сложности технологической схемы, связанной с необходимостью организации рециркуляции используемой газопоглощающей керамики, периодической замены газопоглощающей керамики вследствие накопления в последней соединений щелочных металлов. Кроме того, после полного заполнения пор щелочами газопоглощающая керамика теряет поглощающую способность и становится экологически опасным щелочным материалом, утилизация которого представляет собой сложный и дорогостоящий процесс.

Таким образом, данный способ недостаточно эффективен.

Техническая проблема, на решение которой направлено настоящее изобретение, заключается в повышении эффективности способа переработки биомассы с целью получения синтез - газа, а именно, в упрощении его технологии, предотвращении явления отложения соединений щелочных металлов на поверхностях оборудования и, как следствие, эффективного предотвращения щелочной коррозии оборудования.

Указанная проблема решается описываемым способом получения синтез-газа из биомассы растительного происхождения путем измельчения исходной биомассы, смешивания ее с мелкодисперсным горючим сланцем с содержанием серы 4,1-16,0% масс., имеющим размер частиц 10-100 мкм, и водой, взятых в количестве, % масс.: сланец 1,0-5,0, вода 10,0-30,0, биомасса - остальное, до 100, диспергирования образованной смеси с получением суспензии, последующей газификацией полученной суспензии при температуре 800-1000° и направления образовавшегося газового потока на очистку с получением синтез-газа.

Достигаемый технический результат заключается в обеспечении условий образования при нагреве суспензий до начала газификации нелетучих, при температуре газификации, солей щелочных металлов.

Сущность способа заключается в следующем.

В качестве биомассы растительного происхождения в рамках данной заявки возможно использовать любые остатки сельскохозяйственного производства, например, стержни початков кукурузы, кукурузную солому и стебли, лузгу, жмых и шрот от переработки подсолнечника, отходы производства льна и другие отходы, образующиеся при переработке сельскохозяйственного сырья растительного происхождения или их смеси, а также отходы лесной промышленности и другие подобные отходы. Суммарное содержание соединений щелочных металлов - оксидов K2O и Na2O может достигать в биомассе 30-35% мас.

Используемые сланцы в рамках настоящей заявки представляют собой различные горючие сланцы с высоким содержанием серы - от 4,1 до 16,0% масс., предпочтительно, сланцы Поволжского сланцевого бассейна.

Исходную биомассу измельчают последовательно, например, в шнековой мельнице или в дробильной машине, или в барабанном измельчителе до размера частиц 1-3 мм и затем в диспергаторе-гомогенизаторе до размера частиц 100-200 мм. Полученную измельченную биомассу загружают в бункер и хранят в атмосфере азота.

Используемый горючий сланец измельчают с получением мелкодисперсного сланца с размером частиц 10-100 мкм.

Затем смешивают измельченную исходную биомассу с мелкодисперсным горючим сланцем (размер частиц 10-100 мкм) с содержанием серы 4,1-16,0% мас. и водой в заданных отношениях (содержание сланца 3,0-5,0% масс., воды 10,0-30,0% масс., биомассы - остальное, до 100% масс.) с получением смеси.

Полученную смесь подвергают диспергированию, например, в диспергаторе - гомогенизаторе и направляют на газификацию.

В описываемом способе процесс газификации может быть проведен традиционным способом при воздушном, воздушно-кислородном и кислородном дутье. Вследствие наличия в используемой в процессе газификации суспензии воды, использование дополнительно при газификации водяного пара нецелесообразно.

Газификацию суспензии проводят в газогенераторе непрерывного действия при 800-1000°С, содержании кислорода в дутье от 20 до 95% об. и коэффициенте недостатка кислорода, равном 0,3-0,5.

Образовавшиеся продукты газификации с температурой 800-1000°С, загрязненные твердыми органическими (сажа) и минеральными примесями (зола), поступают в систему охлаждения.

Охлажденные продукты газификации направляют в систему очистки от сажи, золы и сероводорода.

Очистку продуктов газификации от сажи первоначально осуществляют промывкой углеводородной фракцией, выкипающей выше 250°С, с выделением саже-углеводородной суспензии и ее последующим возвратом на газификацию в газогенератор.

Последующую очистку продуктов газификации от сажи и золы осуществляют водной промывкой с отделением водной суспензии сажи и зольных компонентов.

Окончательную очистку продуктов газификации от аммиака, роданидов и сероводорода осуществляют водным раствором щелочного сорбента, например, водным раствором этаноламинов с получением очищенного синтез-газа.

Золу, образующуюся при газификации, охлаждают и собирают в бункере.

Наличие органической серы в сланцах в процессе газификации позволяет преобразовать соединения калия и натрия, содержащиеся в исходной биомассе, в нелетучие, при температуре газификации, соли, в частности, сульфитные и сульфатные. Этот процесс начинается при температурах ниже температуры газификации суспензий смесей биомассы, сланца и воды. Так, конверсия горючих сланцев (например, Кашпировского месторождения Поволжья) при термической газификации начинается при температуре исходного сырья, равной 450°С и завершается практически полным превращением сланца в газ при 750°С. При этой температуре объем газа, образующегося в результате конверсии сланца, достигает максимума. В процессе термолиза происходит практически полное разложение керогена, в результате чего данный газ содержит в основном водород, окись углерода, двуокись углерода, метан, а также сероводород, образующийся из органической серы сланца.

При этом при достижении температуры 750-800°С, происходит возгонка щелочей - соединений натрия и калия, содержащихся в биомассе, с образованием легколетучих гидрооксидов натрия и калия. Летучие гидроксиды щелочей вступают в реакцию с сероводородом, в результате образуются нелетучие, при температуре газификации, твердые сульфаты и сульфиты натрия и калия.

Образующиеся сульфаты и сульфиты натрия и калия выводятся из зоны реакции с образующимся газом до начала основного процесса газификации (происходящего при температурах 800-1000°С) и, как следствие, соединения калия и натрия не откладываются на стенках оборудования. Сульфаты и сульфиты натрия и калия смешиваются с золой, образующейся в процессе газификации биомассы и состоящей в основном из SiO2 (70% масс. и более), СаО (до 6,0% масс.) и MgO (до 8,0% масс.). При этом серосодержащая добавка (сланец), способствующая связыванию щелочей и предотвращению явления щелочной коррозии, не нуждается в утилизации, так как она практически полностью превращается в газ, незначительно увеличивающий суммарный объем образующихся газов газификации.

Ниже приведены примеры, иллюстрирующие, но не ограничивающие изобретение.

В таблице 1 приведены данные химического анализа образцов биомассы, которые используют в нижеприведенных примерах.

Физико-химические свойства использованных в примерах горючих сланцев приведены в таблице 2.

Пример 1.

В качестве исходной биомассы используют стержни початков кукурузы. Указанные стержни измельчают последовательно в шнековой мельнице до размера частиц 1-3 мм и затем в диспергаторе - гомогенизаторе до размера частиц 100-200 мм.

В качестве сланца используют горючий сланец Кашпирского месторождения с содержанием серы 4,1% масс.

Используемый горючий сланец измельчают с получением мелкодисперсного сланца с размером частиц 10-100 мкм. Затем смешивают измельченную исходную биомассу с мелкодисперсным горючим сланцем и водой (с учетом исходной влажности сырья), взятых в количестве, % масс.: сланец 5,0, вода 10,0, биомасса 85,0. образованную смесь подвергают диспергированию в диспергаторе - гомогенизаторе с получением суспензии. В результате механоактивации средний размер частиц воды составляет 5-20 мкм. Данную суспензию подвергают газификации при воздушном дутье. Газификацию проводят при коэффициенте недостатка кислорода 0,3, при температуре 1000°С, без использования давления.

Газ, образующийся при газификации, охлаждают, подвергают очистке с отделением сажи и золы.

Далее газ подвергают очистке от сероводорода, аммиака и роданидов с помощью моноэтаноламина и получают целевой синтез-газ.

Осмотр внутренней поверхности газогенератора фиксирует наличие незначительного налета на стенках и отсутствие частиц сажи. Согласно данным химического анализа золы, получаемой в результате очистки газа по ГОСТ 10538-87 Топливо твердое. Методы определения химического состава золы (с Изменением №1) в последней содержится 8,8% масс. K2O и 4,5% масс. Na2O. Таким образом, более 80% отн. соединений калия и натрия, содержащихся в исходной биомассе, при газификации были удалены из зоны реакции с образующейся золой в виде сульфатов и сульфитов и не отложились на поверхности оборудования. Состав синтез-газа, % об.: Н2 - 23,4; СО - 10,3; CO2 - 8,6; N2 - 56,2;C1 - 1,5.

Пример 2

В качестве исходной биомассы используют лузгу подсолнечника. Указанные стержни измельчают последовательно в барабанном измельчителе до размера частиц 1-3 мм и затем в диспергаторе - гомогенизаторе до размера частиц 100-200 мм.

В качестве сланца используют горючий сланец Савельевского месторождения с содержанием серы 16,0% масс.

Физико-химические свойства горючего сланца Савельевского месторождения приведены в таблице 2.

Затем смешивают измельченную исходную биомассу с мелкодисперсным горючим сланцем и водой (с учетом исходной влажности сырья), взятых в количестве, % масс.: сланец 3,0, вода 15,0, биомасса 82,0. Образованную смесь подвергают диспергированию в диспергаторе - гомогенизаторе с получением суспензии.

При этом в результате процессов механоактивации, проходящих в диспергаторе - гомогенизаторе средний размер частиц воды в суспензии составляет 5-20 мкм.

Данную суспензию подвергают газификации при воздушном дутье. Газификацию проводят при коэффициенте недостатка кислорода 0,4 при температуре 800°С, без использования давления.

Газ, образующийся при газификации, охлаждают, подвергают очистке с отделением сажи и золы.

Далее газ подвергают очистке от сероводорода, аммиака и роданидов с помощью моноэтаноламина.

Осмотр внутренней поверхности газогенератора фиксирует наличие незначительного налета на стенках и отсутствие частиц сажи. Согласно данным химического анализа золы, получаемой в результате очистки газа по ГОСТ 10538-87 Топливо твердое. Методы определения химического состава золы (с Изменением №1) в последней содержится 17,8% масс. K2O и 0,6% масс. Na2O. Таким образом, около 90% отн. соединений калия и натрия, содержащихся в биомассе, при газификации со сланцем были удалены из зоны реакции в виде сульфатов и сульфитов с образующейся золой и не отложились на поверхности оборудования.

Состав полученного синтез-газа, % об.: Н2 - 22,4; СО - 9,8; CO2 - 7,6; N2 - 58,9; С1 - 1,3.

Пример 3 (сопоставительный).

В качестве исходной биомассы используют стержни початков кукурузы. Указанные стержни измельчают последовательно в барабанном измельчителе до размера частиц 1-3 мм и затем в диспергаторе - гомогенизаторе до размера частиц 100-200 мм.

В качестве сланца используют горючий сланец Ленинградского месторождения с содержанием серы 0,91% масс.

Физико-химические свойства горючего сланца Ленинградского месторождения, г. Сланцы приведены в таблице 2.

Используемый горючий сланец измельчают с получением мелкодисперсного сланца с размером частиц 10-100 мкм.

Затем смешивают измельченную исходную биомассу с мелкодисперсным горючим сланцем и водой (с учетом исходной влажности сырья), взятых в количестве, % масс.: сланец 5,0, вода 30,0, биомасса 65,0. Образованную смесь подвергают диспергированию в диспергаторе - гомогенизаторе с получением суспензии. В результате процессов механоактивации, проходящих в диспергаторе-гомогенизаторе, средний размер частиц воды в последней составляет 5-20 мкм.

Полученную суспензию подвергают газификации при воздушном дутье. Газификацию проводят при коэффициенте недостатка воздуха 0,5 в пересчете на кислород, при температуре 800°С, без использования давления. Газ, образующийся при газификации, охлаждают, подвергают очистке с отделением сажи и золы.

Далее газ подвергают очистке от сероводорода, аммиака и роданидов с помощью моноэтаноламина и получают целевой синтез-газ.

Осмотр внутренней поверхности газогенератора фиксирует наличие незначительного налета на стенках и отсутствие частиц сажи. Согласно данным химического анализа золы, получаемой в результате очистки газа по ГОСТ 10538-87 Топливо твердое. Методы определения химического состава золы (с Изменением №1) в последней содержится 7,8% масс. K2O и 4,6% масс. Na2O. Следовательно, не более 70% соединений калия и натрия, содержащихся в биомассе, при газификации со сланцем в виде сульфатов и сульфитов были удалены из зоны реакции с образующейся золой и не отложились на поверхности оборудования. Остальная часть отложилась на стенках оборудования.

Состав полученного синтез-газа, % об.: Н2 - 20,7; СО - 9,8; CO2 - 8,0; N2 - 60,4; С1 - 1,1.

Пример 4 (сопоставительный).

Способ проводят аналогично примеру 1. При этом способ проводят без использования сланца.

В качестве биомассы растительного происхождения используют стержни початков кукурузы или лузгу подсолнечника.

Измельченные стержни початков кукурузы смешивают с водой, в количестве 90% масс. биомассы и 10 масс. воды (с учетом исходной влажности сырья). Указанную смесь подвергают диспергированию в диспергаторе-гомогенизаторе.

Полученную суспензию подвергают газификации при воздушном дутье. Газификацию проводят при температуре 800°С, коэффициенте недостатка кислорода 0,3, без использования давления.

Газ, образующийся при газификации, охлаждают, подвергают очистке с отделением сажи и золы.

Далее газ подвергают очистке от сероводорода, аммиака и роданидов с помощью моноэтаноламина. Состав синтез-газа, % об.: Н2 - 18,4; СО - 10,5; CO2 - 7,9; N2 - 62,3; С1 - 0,9.

При осмотре внутренней поверхности газогенератора фиксируют наличие отложения золы на стенках с включениями отдельных частиц сажи. Согласно данным химического анализа золы, получаемой в результате очистки газа, в последней содержится 2,4% масс. K2O и 1,3% масс. Na2O.

При использовании в качестве биомассы лузги подсолнечника измельченную лузгу подсолнечника смешивают с водой в количестве 85% масс. биомассы и 15 масс. воды (с учетом исходной влажности сырья).

Указанную смесь подвергают диспергированию в диспергаторе-гомогенизаторе.

Полученную суспензию подвергают газификации при воздушном дутье. Газификацию проводят при коэффициенте недостатка кислорода 0,4 при температуре 800°С, без использования давления.

Газ, образующийся при газификации, охлаждают, подвергают очистке с отделением сажи и золы.

Далее газ подвергают очистке от сероводорода, аммиака и роданидов с помощью моноэтаноламина. Состав полученного синтез-газа, % об.: Н2 - 17,4; СО - 9,3; CO2 - 10,8;N2 - 61,5; С1 - 1,0.

Осмотр внутренней поверхности газогенератора показал наличие отложений на стенках с включениями отдельных частиц сажи. Химический анализ золы по ГОСТ 10538-87 Топливо твердое. Методы определения химического состава золы (с Изменением №1) показал, что в ней содержится 4,1% масс. K2O и 0% масс.Na2O.

Сопоставление данных по содержанию соединений калия и натрия в исходной биомассе (таблица 1) и в золе, полученной в результате газификации вышеуказанных биомасс в смеси с водой без использования сланца, показывает, что в последней содержится около 20% соединений калия и натрия от их исходного содержания в биомассе, следовательно, не менее 80% отн щелочей, содержавшихся в исходной биомассе, отложилось на стенках внутренних поверхностях оборудования.

Таким образом, описываемый способ, проводимый по более простой технологической схеме, исключающей необходимость рециркуляции, замены и утилизации добавки, способствующей устранению щелочей в газообразном состоянии, позволяет за счет возможности преобразования соединений щелочных металлов - калия и натрия, содержащихся в подвергаемом газификации сырье, в нелетучие, при температуре газификации, соли щелочных металлов, позволяет, практически, полностью (до ~90% отн.) предотвратить явления отложений соединений щелочных металлов на поверхностях оборудования и, как следствие, эффективно предотвратить щелочную коррозию оборудования.

Способ получения синтез-газа из биомассы растительного происхождения путем измельчения исходной биомассы, смешивания ее с мелкодисперсным горючим сланцем с содержанием серы 4,1-16,0 мас.%, имеющим размер частиц 10-100 мкм, и водой, взятых в количестве, мас.%: сланец 3,0-5,0, вода 10,0-30,0, биомасса - остальное, до 100, диспергирование образованной смеси с получением суспензии, последующей газификацией полученной суспензии при температуре 800-1000°С и направления образовавшегося газового потока на очистку с получением синтез-газа.
Источник поступления информации: Роспатент

Показаны записи 41-50 из 471.
13.01.2017
№217.015.816f

Сигнализирующее токосъемное устройство

Изобретение относится к токосъемным вращающимся устройствам, в которых используется жидкая токопроводящая среда. Сигнализирующее токосъемное устройство содержит корпус, вращающийся на подшипниках вал, на котором жестко закреплена нижняя изоляционная втулка, на которой жестко закреплены...
Тип: Изобретение
Номер охранного документа: 0002601958
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8196

Аксиальный управляемый бесконтактный двигатель-генератор

Изобретение относится к электротехнике, к электрическим машинам постоянного тока и предназначено для преобразования механической энергии вращения в электрическую энергию постоянного тока высокого качества, а также для преобразования электрической энергии постоянного тока в механическую энергию...
Тип: Изобретение
Номер охранного документа: 0002601952
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.81ba

Самотормозящийся винтовой домкрат с аксиальным электродвигателем

Изобретение относится к винтовым домкратам и служит для поднятия и опускания грузов с автоматической остановкой и фиксацией положения после отключения питающего напряжения. Самотормозящийся винтовой домкрат содержит электродвигатель, корпус которого соединен с полой цилиндрической стойкой,...
Тип: Изобретение
Номер охранного документа: 0002601996
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.81ff

Вафельное изделие функционального назначения

Изобретение относится к пищевой промышленности, в частности к производству мучных кондитерских изделий. Предложено вафельное изделие функционального назначения, включающее мучную смесь, желтки, бикарбонат натрия, фосфатиды, соль и воду, причем в качестве мучной смеси содержит пшеничную муку и...
Тип: Изобретение
Номер охранного документа: 0002601803
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.82bf

Состав для производства галет функционального назначения

Изобретение относится к пищевой промышленности, в частности к производству мучных кондитерских изделий. Состав теста для производства галет функционального назначения включает муку пшеничную, смесь палатинозы и цитрозы, взятых в соотношении 2:1, облепиховый шрот, рисовый крахмал Remyline в...
Тип: Изобретение
Номер охранного документа: 0002601805
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.82f7

Функциональный пищевой продукт

Изобретение относится к пищевой промышленности, в частности к производству мучных кондитерских изделий. Функциональный пищевой продукт в виде галет включает муку пшеничную, пищевое волокно BeneoSynergyl, состоящее из порошка инулина и олигофруктозы, смесь шрота корицы и рисовых отрубей RemyLive...
Тип: Изобретение
Номер охранного документа: 0002601804
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8330

Способ приготовления хлебобулочного изделия

Изобретение относится к пищевой промышленности, в частности к производству хлебобулочных изделий повышенной пищевой и биологической ценности, предназначенных для функционального питания. Предложен способ приготовления хлебобулочного изделия, включающий получение теста путем смешивания соли...
Тип: Изобретение
Номер охранного документа: 0002601798
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8373

Вареное колбасное изделие для детей старшего школьного возраста

Изобретение относится к пищевой промышленности, а именно к технологии получения вареных колбасных изделий на мясорастительной основе для детей старшего школьного возраста. Вареное колбасное изделие включает говядину жилованную высшего сорта, свинину жилованную высшего сорта, соль поваренную,...
Тип: Изобретение
Номер охранного документа: 0002601809
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.83e6

Способ производства галет повышенной пищевой ценности

Изобретение относится к пищевой промышленности, в частности к производству мучных кондитерских изделий. Способ производства галет повышенной пищевой ценности, предусматривающий смешивание сыпучих компонентов, включающих муку пшеничную, сладкий агент, соду пищевую, соль и молочную кислоту,...
Тип: Изобретение
Номер охранного документа: 0002601806
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.846d

Контроллер управления обучением нейронной сети с генетическим алгоритмом

Изобретение относится к интеллектуальным контроллерам, использующим генетический алгоритм для поиска структуры нейронной сети и весовых коэффициентов ее синаптических связей. Техническим результатом является повышение скоростных характеристик поиска структуры нейронной сети и упрощение конечной...
Тип: Изобретение
Номер охранного документа: 0002602973
Дата охранного документа: 20.11.2016
Показаны записи 41-50 из 108.
09.06.2018
№218.016.5d2f

Штамм базидиомицета laetiporus sulphureus вкпм f-1286 - продуцент липидов

Изобретение относится к биотехнологии. Штамм базидиомицета Laetiporus sulphureus МТ-11.01, обладающий способностью продуцировать липиды в условиях погруженного культивирования, депонирован во Всероссийской коллекции промышленных микроорганизмов ГосНИИгенетика под номером ВКПМ F-1286. Штамм...
Тип: Изобретение
Номер охранного документа: 0002656143
Дата охранного документа: 31.05.2018
20.06.2018
№218.016.6415

Способ получения радиационно-сшитого полимерного материала

Изобретение относится к области радиационной модификации полимеров и может быть использовано при производстве нагревостойких нефтепогружных кабелей, труб, термоусаживающихся пленок и трубок, при изготовлении упаковочных материалов, при изготовлении синтетических и полусинтетических текстильных...
Тип: Изобретение
Номер охранного документа: 0002657909
Дата охранного документа: 18.06.2018
28.08.2018
№218.016.7fff

Способ получения биодизельного топлива

Изобретение относится к получению топлив из возобновляемого сырья. Способ получения биодизельного топлива заключается в том, что масло смешивают с низшим спиртом с получением смеси, затем проводят процесс переэтерификации с использованием воды и каталитически активной мембраны, состоящей...
Тип: Изобретение
Номер охранного документа: 0002665041
Дата охранного документа: 27.08.2018
28.08.2018
№218.016.8006

Многоцелевая низкотемпературная пластичная смазка

Изобретение относится к созданию многоцелевой низкотемпературной пластичной смазки для узлов трения, работающих в диапазоне температур от минус 60 до плюс 150°С, и может быть использовано в нефтеперерабатывающей и нефтехимической отраслях промышленности. Сущность: многоцелевая...
Тип: Изобретение
Номер охранного документа: 0002665042
Дата охранного документа: 27.08.2018
28.08.2018
№218.016.8025

Термостабильный катализатор изомеризации ароматических углеводородов с-8

Изобретение относится к нефтеперерабатывающей и нефтехимической отрасли промышленности. Заявлен термостабильный катализатор изомеризации ароматических углеводородов С-8, состоящий из носителя, содержащего, мас.%: упорядоченный мезопористый оксид кремния - 10,0-75,0, алюмосиликатные нанотрубки...
Тип: Изобретение
Номер охранного документа: 0002665040
Дата охранного документа: 27.08.2018
26.09.2018
№218.016.8c17

Способ получения синтез-газа

Изобретение относится к способу получения синтез-газа путем термохимической переработки комбинированного сырья, состоящего из растительного сырья и тяжелого углеводородного сырья. Способ осуществляется путем нагрева тяжелого углеводородного сырья до температуры 60-90°С, а растительное сырье...
Тип: Изобретение
Номер охранного документа: 0002668043
Дата охранного документа: 25.09.2018
03.10.2018
№218.016.8d93

Катализатор для гидротермального сжижения биомассы растительного происхождения

Изобретение относится к катализаторам для гидротермального сжижения биомассы растительного происхождения и может быть использовано при получении альтернативных жидких моторных топлив. Катализатор нахадится во фторированной и/или сульфатированной форме и содержит, мас.%: оксид стронция или оксид...
Тип: Изобретение
Номер охранного документа: 0002668423
Дата охранного документа: 01.10.2018
19.10.2018
№218.016.9408

Способ разработки низкопроницаемых нефтяных залежей

Изобретение относится к области разработки нефтяных месторождений, в частности к добыче нефти из низкопроницаемых коллекторов. Технический результат - повышение нефтеотдачи пласта за счет снижения фильтрационного сопротивления движению флюидов. По способу осуществляют бурение системы наклонно...
Тип: Изобретение
Номер охранного документа: 0002669949
Дата охранного документа: 17.10.2018
23.10.2018
№218.016.94e8

Способ изготовления ионообменной двухслойной мембраны

Использование: изобретение относится к мембранной технике, в частности к способам получения ионообменных асимметричных мембран. Раствор перфторсульфополимера в литиевой форме в растворителе - диметилформамиде с массовой долей в растворе 7,2%, объемом 15-25 мл - заливают в стеклянную форму с...
Тип: Изобретение
Номер охранного документа: 0002670300
Дата охранного документа: 22.10.2018
11.01.2019
№219.016.ae59

Катализатор для изомеризации ароматических углеводородов с-8

Изобретение относится к нефтеперерабатывающей и нефтехимической отрасли промышленности. Заявлен катализатор для изомеризации ароматических углеводородов С-8, который состоит из носителя, содержащего, % масс.: упорядоченный алюмосиликат типа Аl-МСМ-41 10,0-75,0; алюмосиликатные нанотрубки...
Тип: Изобретение
Номер охранного документа: 0002676704
Дата охранного документа: 10.01.2019
+ добавить свой РИД