×
21.06.2020
220.018.28fa

Результат интеллектуальной деятельности: Способ гидравлического разрыва нефтяного, газового или газоконденсатного пласта

Вид РИД

Изобретение

Аннотация: Изобретение относится к нефтегазодобывающей промышленности и может быть применено для увеличения продуктивности добывающих или приемистости нагнетательных скважин, а именно как способ гидравлического разрыва нефтяного, газового или газоконденсатного пласта (ГРП) с использованием легкого расклинивающего наполнителя-проппанта. ГРП осуществляют с использованием расклинивающего наполнителя-проппанта, представляющего собой материал из метатезис-радикально сшитой смеси олигоциклопентадиенов. Перфорацию проводят в зоне с максимальным нефте- и газонасыщением. ГРП проводят в четыре этапа, где на первом этапе проводят закачку технической воды с плотностью, равной плотности материала из метатезис-радикально сшитой смеси олигоциклопентадиенов. На втором этапе, когда расстояние от интервала перфорации до верхнего обводненного пропластка составляет менее 3 м, проводят закачку технической воды с плотностью большей, чем плотность материала из метатезис-радикально сшитой смеси олигоциклопентадиенов или закачку нефтяного дистиллята, в случае, когда расстояние от интервала перфорации до нижнего обводненного пропластка составляет менее 3 м, с добавлением проппанта в количестве 1/3 ч от его общей массы, с постепенным увеличением их массовой концентрации в смеси от 40 до 300 кг/м. На третьем этапе проводят закачку технической воды с плотностью, равной плотности материала из метатезис-радикально сшитой смеси олигоциклопентадиенов, с добавлением оставшихся 2/3 ч от общей массы проппанта, рассчитанной для закачки. Частицы проппанта добавляют в техническую воду с постепенным увеличением их массовой концентрации от 300 до 800 кг/м. На четвертом этапе проводят продавку смеси жидкости с проппантом технической водой с плотностью, равной плотности материала из метатезис-радикально сшитой смеси олигоциклопентадиенов, в объеме, равном объему скважины до верхних отверстий перфорации. Технический результат заключается в повышении нефте-, газо- или газоконденсатоотдачи после выполнения ГРП за счет избирательного перфорирования пласта в зоне с максимальным нефте- или газонасыщением и контролируемого развития трещины ГРП по высоте. 3 пр.

Изобретение относится к нефтегазодобывающей промышленности и может быть применено для увеличения продуктивности добывающих или приемистости нагнетательных скважин, а именно как способ гидравлического разрыва нефтяного, газового или газоконденсатного пласта (ГРП) с использованием легкого расклинивающего наполнителя-проппанта, истинная плотность которого близка плотности воды.

Известен способ гидравлического разрыва пласта в скважине, включающий перфорацию стенок скважины в интервале пласта каналами глубиной не менее протяженности зоны концентрации напряжений в породах от ствола скважины, спуск колонны труб с пакером, посадку пакера над кровлей перфорированного продуктивного пласта, закачку в подпакерную зону гелированной жидкости разрыва для проведения ГРП, создание в подпакерной зоне давления гидроразрыва пласта и продавку в образовавшуюся трещину пласта гелированной жидкости разрыва с крепителем трещин. Согласно изобретению перед проведением ГРП колонну труб заполняют технологической жидкостью, определяют общий объем гелированной жидкости разрыва по аналитическому выражению. Затем производят ГРП. При этом сначала закачивают гелированную жидкость разрыва без добавления крепителя для создания трещины. Затем закачивают оставшийся объем гелированной жидкости разрыва с крепителем трещин. В качестве крепителя трещин применяют легкий проппант фракции 20/40 меш, постепенно увеличивая концентрацию проппанта в жидкости разрыва от 200 кг/м3 до 1000 кг/м3. В качестве гелированной жидкости разрыва применяют линейный гель с одновременным добавлением боратного сшивателя и деструктора. Боратный сшиватель вводят в линейный гель с концентрацией от 2,0 до 4,0 л/м3, достаточной для полной сшивки гелированной жидкости разрыва у зоны перфорации скважины. Деструктор вводят с постепенным повышением концентрации на 0,15 кг/м3, начиная с концентрации 1,0 кг/м3. После завершения закачки гелированной жидкости разрыва с крепителем трещин в колонну труб производят их продавку в пласт технологической жидкостью. Производят выдержку в течение времени, необходимого для спада давления закачки на 70-80% от давления продавки в пласт гелированной жидкости разрыва с крепителем трещин, распакеровывают пакер, извлекают его и колонну труб на поверхность. RU 2485306 С1, опубл. 20.06.2013.

Известен способ гидравлического разрыва пласта в скважине, включающий перфорацию в интервале пласта, спуск колонны труб с пакером, посадку пакера, закачку в подпакерную зону гелированной жидкости разрыва, заполнение колонны технологической жидкостью, определение общего объема гелированной жидкости разрыва, создание в подпакерной зоне давления гидроразрыва пласта и продавку в образовавшуюся трещину пласта гелированной жидкости разрыва с проппантом, выдержку в течение времени, необходимого для спада давления на 70%, распакеровку и извлечение пакера с колонной труб из скважины. После определения общего объема гелированной жидкости разрыва закачивают в скважину по колонне труб гелированную жидкость разрыва - линейный гель - до образования трещин разрыва в пласте, оставшийся объем гелированной жидкости разрыва после образования трещин разрыва в пласте разделяют на две части: сшитый гель и линейный гель, циклически производят поочередную закачку сначала линейного, а затем сшитого геля с добавлением проппанта в 3-5 циклов. Причем линейный гель закачивают равными порциями с расходом 4-6 м3/мин и концентрацией проппанта 400 кг/м3, а сшитый гель закачивают со ступенчатым увеличением объема закачки от 3 до 7 м3 с расходом 1-2 м3/мин и концентрацией проппанта 1200 кг/м3. При этом в последние порции линейного и сшитого гелей с проппантом добавляют стекловолокно в количестве 1,5% от веса проппанта в каждой из последних порций линейного и сшитого гелей. RU 2522366 С1, опубл. 10.07.2013.

Известен способ распространения трещины в подземных формациях, включающий закачку суспензии микропроппанта в скважину, расположенную в подземном пласте, содержащем первичные трещины в ближней зоне и вторичные трещины в дальней зоне, при последовательно увеличивающемся и уменьшающемся расходе закачки суспензии микропроппанта в скважину при распространении в дальней зоне вторичных трещин в подземном пласте в течение двух или более циклов обработки, причем каждый цикл обработки включает в себя как увеличение, так и уменьшение расхода закачки суспензии микропроппанта в стволе скважины, а суспензия микропроппанта включает в себя жидкость для гидроразрыва и микропроппант, имеющий средний размер частиц 150 микрометров или менее. СА 3038512, опубл. 03.05.2018.

Недостатками указанных аналогов являются:

- высокая стоимость проведения операции ГРП, связанная с необходимостью применения дорогостоящих химических компонентов для приготовления жидкости разрыва;

- технологическая сложность осуществления ГРП, связанная с необходимостью чередовать стадии закачки сшитого и линейного гелей с одновременным изменением расхода закачки.

Наиболее близким по технической сущности является способ гидравлического разрыва нефтяного или газового пласта с использованием расклинивающего наполнителя, включающий нагнетание в нефтяной пласт жидкости с высокой скоростью и добавление в жидкость расклинивающего наполнителя, в качестве расклинивающего наполнителя применяют материал ПолиДиЦиклоПентаДиен (полиДЦПД), который является легким проппантом, что обеспечивает более низкое трение при закачивании наполнителя в скважину при сохранении хорошей проницаемости трещины. RU 2386025 С1, опубл. 10.04.2010. Недостатками заявленного способа являются:

- низкая нефтеотдача после выполнения ГРП вследствие того, что не учитывается текущее насыщение обрабатываемого пласта;

- высокий риск неконтролируемого развития трещины ГРП по высоте и получения обводнения скважины при наличии выше или нижележащего водонасыщенного пласта.

Технической задачей изобретения является создание простого и надежного способа гидравлического разрыва пласта, использующего легкий полимерный проппант повышенной прочности, полученный в результате метатезисной и радикальной полимеризации смеси олигоциклопентадиенов. Олигоциклопентадиены представляют собой смесь димеров, тримеров, тетрамеров циклопентадиена, полученную в результате термической олигомеризации дициклопентадиена при температуре от 150 до 220°С.

Технический результат, достигаемый от реализации заявленного технического решения, заключается в повышении нефте-, газо- или газоконденсатоотдачи после выполнения ГРП за счет избирательного перфорирования пласта в зоне с максимальным нефте- или газонасыщением и контролируемого развития трещины ГРП по высоте.

Технический результат достигается тем, что в способе гидравлического разрыва нефтяного, газового или газоконденсатного пласта с использованием легкого расклинивающего наполнителя, включающего нагнетание в нефтяной, газовый или газоконденсатный пласт жидкости и добавление в жидкость расклинивающего наполнителя-проппанта, согласно изобретению, используют расклинивающий наполнитель-проппант, представляющий собой материал из метатезис-радикально сшитой смеси олигоциклопентадиенов, предварительно в скважине проводят комплекс геофизических исследований по определению текущего насыщения, по результатам которых проводят избирательную перфорацию в зоне с максимальным нефте- или газонасыщением, далее проводят гидравлический разрыв пласта в четыре этапа, где на первом этапе проводят закачку технической воды с плотностью, равной плотности материала из метатезис-радикально сшитой смеси олигоциклопентадиенов, без добавления проппанта, на втором этапе, в случае, когда расстояние от интервала перфорации до верхнего обводненного пропластка составляет менее 3 м, проводят закачку технической воды с плотностью большей, чем плотность материала из метатезис-радикально сшитой смеси олигоциклопентадиенов с добавлением проппанта в количестве 1/3 ч от его общей массы, рассчитанной для закачки, причем частицы проппанта добавляют в техническую воду с постепенным увеличением их массовой концентрации в смеси от 40 до 300 кг/м3, а в случае, когда расстояние от интервала перфорации до нижнего обводненного пропластка составляет менее 3 м, проводят закачку нефтяного дистиллята с добавлением проппанта в количестве 1/3 ч от его общей массы, рассчитанной для закачки, причем частицы проппанта добавляют в нефтяной дистиллят с постепенным увеличением их массовой концентрации в смеси от 40 до 300 кг/м3, на третьем этапе проводят закачку технической воды с плотностью, равной плотности материала из метатезис-радикально сшитой смеси олигоциклопентадиенов, с добавлением оставшихся 2/3 ч от общей массы проппанта, рассчитанной для закачки, причем частицы проппанта добавляют в техническую воду с постепенным увеличением их массовой концентрации в смеси от 300 до 800 кг/м3, на четвертом этапе проводят продавку смеси жидкости с проппантом технической водой с плотностью, равной плотности материала из метатезис-радикально сшитой смеси олигоциклопентадиенов, в объеме, равном объему скважины до верхних отверстий перфорации.

Гидроразрыв пласта осуществляют, используя наполнитель-проппант, представляющий собой материал, полученный в результате метатезисной и радикальной полимеризации смеси олигоциклопентадиенов, в виде сферических гранул, полученный по способам, изложенным в патентных публикациях: RU 2523320, RU 2552750.

Способ гидравлического разрыва пласта с применением легкого проппанта осуществляют следующим образом.

Перед проведением ГРП в скважине проводят ГИС методом импульсного нейтрон-нейтронного каротажа (ИННК) для определения текущего насыщения пласта. Далее по результатам ГИС проводят избирательную перфорацию в зоне с максимальным нефте- или газонасыщением пласта с плотностью 20 перфорационных отверстий на 1 погонный метр и диаметром входных отверстий 12 мм. Перфорацию проводят любым известным способом, например, как описано в RU 2358100 С1, опубл. 10.06.2009.

Далее в скважину спускают колонну насосно-компрессорных труб (НКТ) с пакером, причем ниже пакера устанавливают хвостовик - одну или две НКТ. Пакер в скважине устанавливают таким образом, чтобы нижний конец хвостовика находился на уровне верхних отверстий перфорации. Далее проводят ГРП в четыре этапа. На первом этапе проводят закачку технической воды с плотностью, равной плотности материала из метатезис-радикально сшитой смеси олигоциклопентадиенов, без добавления проппанта. Причем техническую воду закачивают с расходом, достаточным для создания в пласте хотя бы одной трещины разрыва. Необходимый расход, а также объем закачки определяют с использованием специально разработанной программы для ЭВМ «Симулятор гидроразрыва пласта РН-ГРИД 2017» (свидетельство №2017663051, дата регистрации: 23.11.2017).

На втором этапе, в зависимости от наличия выше или ниже интервала перфорации обводненного пропластка, проводят закачку технической воды или нефтяного дистиллята с добавлением проппанта в количестве 1/3 ч от его общей массы, рассчитанной для закачки, причем частицы проппанта добавляют в техническую воду или нефтяной дистиллят с постепенным увеличением их массовой концентрации от 40 до 300 кг/м3. В случае, когда расстояние от интервала перфорации до обводненного пропластка, расположенного сверху, составляет менее 3 м, проводят закачку технической воды с плотностью, большей, чем плотность материала из метатезис-радикально сшитой смеси олигоциклопентадиенов, а в случае, когда расстояние от интервала перфорации до обводненного пропластка, расположенного снизу, составляет менее 3 м, проводят закачку нефтяного дистиллята.

Опытным путем было установлено, что в случае, когда расстояние от интервала перфорации до обводненного пропластка, расположенного сверху, составляет менее 3 м, закачка технической воды с плотностью, большей, чем плотность материала из метатезис-радикально сшитой смеси олигоциклопентадиенов, содержащей проппант с массовой концентрацией в смеси от 40 до 300 кг/м3 будет способствовать всплытию и скапливанию проппанта в верхней части трещины ГРП и как следствие отклонению развития трещины ГРП вниз. В случае, когда расстояние от интервала перфорации до обводненного пропластка, расположенного снизу, составляет менее 3 м, закачка нефтяного дистиллята, содержащего проппант с массовой концентрацией от 40 до 300 кг/м3 будет способствовать оседанию и скапливанию проппанта в нижней части трещины ГРП и как следствие отклонению развития трещины ГРП вверх.

На третьем этапе проводят закачку технической воды с плотностью, равной плотности материала из метатезис-радикально сшитой смеси олигоциклопентадиенов, с добавлением оставшихся 2/3 ч от общей массы проппанта, рассчитанной для закачки, причем частицы проппанта присутствуют в технической воде с массовой концентрацией в смеси от 300 до 800 кг/м3.

На четвертом этапе проводят продавку смеси жидкости с проппантом технической водой без добавления проппанта с плотностью, равной плотности материала из метатезис-радикально сшитой смеси олигоциклопентадиенов в объеме, равном объему скважины до верхних отверстий перфорации.

Известно, что на развитие трещины ГРП по высоте в первую очередь оказывает влияние вязкость закачиваемой жидкости. Чем больше вязкость, тем большую высоту будет иметь трещина. В то же время, скорость осаждения частиц проппанта в жидкости, пропорциональна разности плотностей между жидкостью и проппантом и обратно пропорциональна вязкости жидкости. Поэтому вязкость жидкости повышают из условия обеспечения эффективного переноса проппанта вдоль трещины ГРП.

Однако в условиях близко расположенных обводненных пропластков контроль вязкости жидкости важен для регулирования развития трещины по высоте. В случае проведения ГРП с обычным расклинивающим наполнителем, например алюмосиликатным проппантом по ГОСТ 51761-2013, снижать вязкость жидкости можно лишь до определенного предела. В случае проведения ГРП по предлагаемому способу в качестве жидкости можно применять обычную техническую воду или нефтяной дистиллят, так как плотность материала из метатезис-радикально сшитой смеси олигоциклопентадиенов, составляет 0,95-1,06 г/см3. Частицы проппанта будут обладать нейтральной плавучестью в жидкости с плотностью 1,0-1,06 г/см3, всплывать в жидкости с плотностью 1,1-1,14 г/см3 (пластовая минерализованная вода) или тонуть в нефтяном дистилляте с плотностью 0,86 г/см3.

Необходимая ширина трещины гидроразрыва достигается путем поддержания расхода закачки, рассчитываемого по программе для ЭВМ «РН-ГРИД». Управление развитием трещины вверх или вниз достигается за счет применения жидкости с различной плотностью. Для отклонения трещины вниз в качестве жидкости применяется техническая вода с плотностью, большей, чем плотность материала из метатезис-радикально сшитой смеси олигоциклопентадиенов с добавлением проппанта в количестве 1/3 ч от его общей массы, рассчитанной для закачки, причем частицы проппанта добавляют в техническую воду с постепенным увеличением их массовой концентрацией от 40 до 300 кг/м3. Для отклонения трещины вверх в качестве жидкости применяется нефтяной дистиллят с добавлением проппанта в количестве 1/3 ч от его общей массы, рассчитанной для закачки, причем частицы проппанта добавляют в нефтяной дистиллят с постепенным увеличением их массовой концентрацией от 40 до 300 кг/м3.

Примеры конкретного выполнения.

Пример 1.

Скважина глубиной 2800 м вскрыла нефтяные продуктивные пласты в интервале 2736,8,4-2749,6 м по вертикали. По результатам импульсного нейтрон-нейтронного каротажа в интервале 2724,8-2734,8 м определили обводненный пропласток, в интервале 2737,2-2743,6 м определили зону с максимальным нефтенасыщением. Выполнили перфорацию в зоне с максимальным нефтенасыщением с плотностью 20 перфорационных отверстий на 1 погонный метр и диаметром входных отверстий 12 мм.

Исходя из геологических условий, при помощи программы для ЭВМ «Симулятор гидроразрыва пласта РН-ГРИД 2017» рассчитали необходимый расход закачки и общую массу закачиваемого проппанта. Необходимый расход закачки составил 5 м3/мин, масса проппанта 10000 кг. Истинная плотность проппанта, изготовленного из материала из метатезис-радикально сшитой смеси олигоциклопентадиенов, составила 1,06 г/см3.

В скважину спустили пакер с якорем на колонне НКТ с условным диаметром 89 мм. Ниже пакера установили хвостовик - две трубы НКТ. Пакер в скважине посадили таким образом, чтобы нижний конец хвостовика находился на уровне верхних отверстий перфорации. Произвели ГРП в следующей последовательности.

В скважину по колонне НКТ с высоким расходом закачали техническую воду с плотностью 1,06 г/см3 без добавления проппанта.

Далее, не прерывая закачки, для отклонения трещины вниз, закачали техническую воду с плотностью 1,14 г/см3 с добавлением проппанта в количестве 3300 кг, причем частицы проппанта добавляли в техническую воду с постепенным увеличением их массовой концентрации в смеси от 40 до 300 кг/м3.

Далее, не прерывая закачки, закачали техническую воду с плотностью 1,06 г/см3 с добавлением оставшихся 6700 кг проппанта, причем частицы проппанта добавляли в техническую воду с постепенным увеличением их массовой концентрации от 300 до 800 кг/м3.

Далее, не прерывая закачки, произвели продавку смеси технической водой с плотностью 1,06 г/см3 в объеме, равном объему скважины до верхних отверстий перфорации.

В результате получили трещину ГРП с преимущественным развитием вниз.

С целью оценки фактической геометрии трещины ГРП и подтверждения факта преимущественного развития трещины вниз выполнили моделирование и адаптацию проведенного процесса в программе для ЭВМ «Симулятор гидроразрыва пласта РН-ГРИД 2017» с использование фактических данных закачки (давление и расход). По результатам моделирования было установлено, что развитие трещины в вышележащий водонасыщенный пласт не произошло. Лабораторный анализ притока добываемой нефти также показал, что добыча ведется только с целевого пласта ГРП, вода из нецелевого пласта отсутствует.

Пример 2.

Скважина глубиной 2800 м вскрыла газовые продуктивные пласты в интервале 2737,6-2743,5 м по вертикали. По результатам импульсного нейтрон-нейтронного каротажа, в интервале 2745,8-2756,0 м определили обводненный пропласток, в интервале 2738,0-2743,0 м определили зону с максимальной газонасыщением. Выполнили перфорацию в зоне с максимальным газонасыщением с плотностью 20 перфорационных отверстий на 1 погонный метр и диаметром входных отверстий 12 мм.

Исходя из геологических условий, при помощи программы для ЭВМ «Симулятор гидроразрыва пласта РН-ГРИД 2017», рассчитали необходимый расход закачки и общую массу закачиваемого проппанта. Необходимый расход закачки составил 4,7 м3/мин, масса проппанта 10000 кг. Истинная плотность проппанта, изготовленного из материала из метатезис-радикально сшитой смеси олигоциклопентадиенов, составила 1,06 г/см3.

В скважину спустили пакер с якорем на колонне НКТ с условным диаметром 89 мм. Причем ниже пакера установили хвостовик - две трубы НКТ. Пакер в скважине посадили таким образом, чтобы нижний конец хвостовика находился на уровне верхних отверстий перфорации. Произвели ГРП в следующей последовательности.

В скважину по колонне НКТ с высоким расходом закачали техническую воду с плотностью 1,06 г/см3 без добавления проппанта.

Далее, не прерывая закачки, для отклонения трещины вверх, закачали нефтяной дистиллят с плотностью 0,86 г/см3 с добавлением проппанта в количестве 3300 кг, причем частицы проппанта добавляли в нефтяной дистиллят с постепенным увеличением их массовой концентрацией в смеси от 40 до 300 кг/м3.

Далее, не прерывая закачки, закачали техническую воду с плотностью 1,06 г/см3 с добавлением оставшихся 6700 кг проппанта, причем частицы проппанта добавляли в техническую воду с постепенным увеличением их массовой концентрацией в смеси от 300 до 800 кг/м3.

Далее, не прерывая закачки, произвели продавку смеси технической водой с плотностью 1,06 г/см3 в объеме, равном объему скважины до верхних дыр перфорации.

В результате получили трещину ГРП с преимущественным развитием вверх.

С целью оценки фактической геометрии трещины ГРП и подтверждения факта преимущественного развития трещины вверх выполнили моделирование и адаптацию проведенного процесса в программе для ЭВМ «Симулятор гидроразрыва пласта РН-ГРИД 2017» с использование фактических данных закачки (давление и расход). По результатам моделирования было установлено, что развитие трещины в нижележащий водонасыщенный пласт не произошло. Лабораторный анализ притока добываемого газа также показал, что добыча ведется только с целевого пласта ГРП, вода из нецелевого пласта отсутствует.

Пример 3.

Скважина глубиной 2850 метров вскрыла газоконденсатные продуктивные пласты в интервале 2747,6-2753,5 метров по вертикали. По результатам импульсного нейтрон-нейтронного каротажа, в интервале 2755,8-2766,0 метров определили обводненный пропласток, в интервале 2748,0-2753,0 метров определили зону с максимальным газонасыщением. Выполнили перфорацию в зоне с максимальным газонасыщением с плотностью 20 перфорационных отверстий на 1 погонный метр и диаметром входных отверстий 12 мм.

Исходя из геологических условий, при помощи программы для ЭВМ «Симулятор гидроразрыва пласта РН-ГРИД 2017», рассчитали необходимый расход закачки и общую массу закачиваемого пропанта. Необходимый расход закачки составил 5,3 м3/мин, масса пропанта 12000 кг. Истинная плотность пропанта, изготовленного из олигоциклопентадиена, составила 1,06 г/см3.

В скважину спустили пакер с якорем на колонне НКТ с условным диаметром 89 мм. Причем ниже пакера установили хвостовик - две трубы НКТ. Пакер в скважине посадили таким образом, чтобы нижний конец хвостовика находился на уровне верхних отверстий перфорации. Произвели ГРП в следующей последовательности.

В скважину по колонне НКТ с высоким расходом закачали техническую воду с плотностью 1,06 г/см3 без добавления пропанта.

Далее, не прерывая закачки, для отклонения трещины вверх, закачали нефтяной дистиллят с плотностью 0,86 г/см3 с добавлением пропанта в количестве 3600 кг, причем частицы пропанта добавляли в нефтяной дистиллят с постепенным увеличением их массовой концентрацией в смеси от 40 до 300 кг/м3.

Далее, не прерывая закачки, закачали техническую воду с плотностью 1,06 г/см3 с добавлением оставшихся 8400 кг пропанта, причем частицы пропанта добавляли в техническую воду с постепенным увеличением их массовой концентрацией в смеси от 300 до 800 кг/м3.

Далее, не прерывая закачки, произвели продавку смеси технической водой с плотностью 1,06 г/см3 в объеме, равном объему скважины до верхних дыр перфорации.

В результате получили трещину ГРП с преимущественным развитием вверх.

С целью оценки фактической геометрии трещины ГРП и подтверждения факта преимущественного развития трещины вверх выполнили моделирование и адаптацию проведенного процесса в программе для ЭВМ «Симулятор гидроразрыва пласта РН-ГРИД 2017» с использование фактических данных закачки (давление и расход). По результатам моделирования было установлено, что развитие трещины в нижележащий водонасыщенный пласт не произошло. Лабораторный анализ притока добываемого газоконденсата также показал, что добыча ведется только с целевого пласта ГРП, вода из нецелевого пласта отсутствует.

Предложенный способ ГРП с применением легкого проппанта, изготовленного из материала из метатезис-радикально сшитой смеси олигоциклопентадиенов, позволяет снизить стоимость, а также упростить сам процесс проведения операции ГРП за счет применения дешевых материалов и создания простого и эффективного способа гидравлического разрыва пласта. В то же время предложенный способ позволяет повысить нефте-, газо- или газоконденсатоотдачу после выполнения ГРП за счет избирательного перфорирования пласта в зоне с максимальным нефте- или газонасыщением и контролируемого развития трещины ГРП по высоте.

Способ гидравлического разрыва нефтяного, газового или газоконденсатного пласта, включающий нагнетание в пласт жидкости с высоким расходом, добавление в жидкость расклинивающего наполнителя-проппанта, отличающийся тем, что расклинивающий наполнитель-проппант, представляет собой материал из метатезис-радикально сшитой смеси олигоциклопентадиенов, причем перед проведением гидравлического разрыва пласта в скважине проводят комплекс геофизических исследований по определению текущего насыщения, по результатам которых проводят избирательную перфорацию в зоне с максимальным нефте- и газонасыщением, далее проводят гидравлический разрыв пласта в четыре этапа, где на первом этапе проводят закачку технической воды с плотностью, равной плотности материала из метатезис-радикально сшитой смеси олигоциклопентадиенов без добавления проппанта, на втором этапе, в случае, когда расстояние от интервала перфорации до верхнего обводненного пропластка составляет менее 3 м, проводят закачку технической воды с плотностью, большей, чем плотность материала из метатезис-радикально сшитой смеси олигоциклопентадиенов, с добавлением проппанта в количестве 1/3 ч от его общей массы, рассчитанной для закачки, причем частицы проппанта добавляют в техническую воду с постепенным увеличением их массовой концентрации в смеси от 40 до 300 кг/м, а в случае, когда расстояние от интервала перфорации до нижнего обводненного пропластка составляет менее 3 м, проводят закачку нефтяного дистиллята с добавлением проппанта в количестве 1/3 ч. от его общей массы, рассчитанной для закачки, причем частицы проппанта добавляют в нефтяной дистиллят с постепенным увеличением их массовой концентрации в смеси от 40 до 300 кг/м, на третьем этапе проводят закачку технической воды с плотностью, равной плотности материала из метатезис-радикально сшитой смеси олигоциклопентадиенов, с добавлением оставшихся 2/3 ч. от общей массы проппанта, рассчитанной для закачки, причем частицы проппанта добавляют в техническую воду с постепенным увеличением их массовой концентрации в смеси от 300 до 800 кг/м, на четвертом этапе проводят продавку смеси жидкости с проппантом технической водой с плотностью, равной плотности материала из метатезис-радикально сшитой смеси олигоциклопентадиенов, в объеме, равном объему скважины до верхних отверстий перфорации.
Источник поступления информации: Роспатент

Показаны записи 41-50 из 63.
22.10.2019
№219.017.d895

Способ получения синтетического компонента основ гидравлических масел для ракетно-космической техники

Изобретение относится к нефтепереработке и нефтехимии. Предложен способ получения компонента основ синтетических гидравлических масел для авиационной и ракетно-космической техники, предусматривающий гидрирование ароматического углеводородного сырья - дитолилметана (диметилдифенилметана) в...
Тип: Изобретение
Номер охранного документа: 0002703538
Дата охранного документа: 21.10.2019
24.11.2019
№219.017.e566

Способ полимерного заводнения в слабосцементированном коллекторе

Изобретение относится к нефтяной и газовой промышленности, конкретно к разработке месторождений со слабосцементированным коллектором. В способе полимерного заводнения в слабосцементированном коллекторе, включающем закачку в нагнетательные скважины водного раствора полимера заданной...
Тип: Изобретение
Номер охранного документа: 0002706978
Дата охранного документа: 21.11.2019
14.12.2019
№219.017.ee01

Состав и способ получения пакета присадок к гидравлическим маслам и всесезонное гидравлическое масло, его содержащее

Изобретение относится к нефтепереработке и нефтехимии, конкретно к составу и способу получения пакета присадок к всесезонным гидравлическим маслам для гидросистем промышленного оборудования и всесезонному гидравлическому маслу, содержащему этот пакет. Способ приготовления пакета присадок к...
Тип: Изобретение
Номер охранного документа: 0002708887
Дата охранного документа: 12.12.2019
13.01.2020
№220.017.f4d1

Ингибитор коррозии и способ его получения

Изобретение относится к ингибиторам коррозии, которые используются в нефтегазодобывающей промышленности, в частности, к составам, применяемым в качестве ингибиторов коррозии в минерализованных средах. Способ включает получение активной основы реакцией триэтилентетрамина и жирных кислот...
Тип: Изобретение
Номер охранного документа: 0002710700
Дата охранного документа: 09.01.2020
15.02.2020
№220.018.027d

Способ использования катализатора гидрирования диолефинов в процессе гидрогенизационной переработки нефтяного сырья

Изобретение относится к способам использования катализатора гидрирования диолефинов в процессе гидрогенизационной переработки нефтяного сырья и может быть использовано в нефтеперерабатывающей промышленности. Предлагается способ использования катализатора гидрирования диолефинов в процессе...
Тип: Изобретение
Номер охранного документа: 0002714139
Дата охранного документа: 12.02.2020
15.02.2020
№220.018.02cd

Состав и способ приготовления катализатора гидрирования диолефинов

Изобретение относится к нефтеперерабатывающей промышленности, в частности к катализаторам гидрооблагораживания нефтяных фракций, а именно, к катализаторам защитного слоя для гидрирования диолефинов и к способам их приготовления. Предлагается катализатор гидрирования диолефинов для использования...
Тип: Изобретение
Номер охранного документа: 0002714138
Дата охранного документа: 12.02.2020
17.02.2020
№220.018.034e

Система подводного позиционирования устройства типа "купол" для ликвидации подводных разливов нефти

Изобретение относится к подводному позиционированию несамоходной подводной техники и удержанию ее в заданных координатах, в частности специализированного устройства типа «купол» для ликвидации подводных разливов нефти. Техническим результатом изобретения является обеспечение возможности точного...
Тип: Изобретение
Номер охранного документа: 0002714336
Дата охранного документа: 14.02.2020
06.03.2020
№220.018.09ce

Депрессорно-диспергирующая присадка к дизельным топливам и способ ее получения

Изобретение раскрывает депрессорно-диспергирующую присадку к дизельному топливу, содержащую смесь депрессорного и диспергирующего компонентов, при этом она в качестве депрессорного компонента содержит полимерное соединение, полученное реакцией радикальной сополимеризации малеинового ангидрида и...
Тип: Изобретение
Номер охранного документа: 0002715896
Дата охранного документа: 04.03.2020
28.03.2020
№220.018.1116

Состав для предотвращения асфальтосмолопарафиновых отложений

Изобретение относится к нефтедобывающей промышленности, в частности к составам для предотвращения отложения асфальтенов, смол и парафинов, и может быть использовано в процессах добычи, транспорта и хранения нефти. Состав ингибитора образования асфальтосмолопарафиновых отложений содержит, масс....
Тип: Изобретение
Номер охранного документа: 0002717859
Дата охранного документа: 26.03.2020
04.05.2020
№220.018.1af7

Состав для удаления асфальтосмолопарафиновых отложений

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для удаления и растворения асфальтосмолопарафиновых отложений (АСПО) с поверхности скважинного и нефтепромыслового оборудования, в резервуарах и нефтесборных коллекторах, напорных и магистральных трубопроводах....
Тип: Изобретение
Номер охранного документа: 0002720435
Дата охранного документа: 29.04.2020
Показаны записи 41-50 из 123.
20.08.2015
№216.013.6f1e

Способ добычи высоковязкой нефти и битума

Изобретение относится к нефтегазодобывающей промышленности и может быть применено для добычи высоковязкой нефти и битума с помощью теплового воздействия на пласт. Способ включает бурение кустовым способом верхней, средней и нижней скважин с вертикальными участками и горизонтальными стволами,...
Тип: Изобретение
Номер охранного документа: 0002560016
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.6f24

Способ разработки массивной нефтяной залежи с применением гидравлического разрыва пласта

Группа изобретений относится к нефтедобывающей промышленности и может быть применена при разработке залежи нефти массивного типа. Способ включает строительство добывающих и нагнетательных скважин, проведение гидравлического разрыва пласта, закачку вытесняющего агента через нагнетательные...
Тип: Изобретение
Номер охранного документа: 0002560022
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.6f36

Способ разработки залежи высоковязкой нефти и битума

Изобретение относится к нефтегазодобывающей промышленности и предназначено для разработки залежи высоковязкой нефти и битума путем нагревания. Способ разработки залежи высоковязкой нефти и битума включает разбуривание залежи скважинами с горизонтальными стволами, направленными параллельно друг...
Тип: Изобретение
Номер охранного документа: 0002560040
Дата охранного документа: 20.08.2015
27.09.2015
№216.013.7e30

Способ гидроразрыва пласта

Изобретение относится к нефтяной промышленности и может быть применено для гидравлического разрыва пласта. Способ включает спуск в скважину колонны НКТ с пакером, посадку пакера над кровлей пласта, подлежащего гидроразрыву, закачку жидкости разрыва в пласт по колонне НКТ через скважину до...
Тип: Изобретение
Номер охранного документа: 0002563901
Дата охранного документа: 27.09.2015
27.09.2015
№216.013.7fca

Способ добычи высоковязкой нефти и битума

Изобретение относится к нефтегазодобывающей промышленности. Технический результат - повышение эффективности прогревания пласта высоковязкой нефти и битума; увеличение охвата пласта тепловым воздействием с его равномерным прогревом; повышение объема отбора разогретой высоковязкой нефти и...
Тип: Изобретение
Номер охранного документа: 0002564311
Дата охранного документа: 27.09.2015
27.09.2015
№216.013.7fcb

Способ гидравлического разрыва пласта в скважине

Изобретение относится к нефтяной промышленности и может быть применено для гидроразрыва пласта. Способ включает перфорацию стенок скважины в интервале пласта каналами глубиной не менее протяженности зоны концентрации напряжений в породах от ствола скважины, спуск колонны труб с пакером так,...
Тип: Изобретение
Номер охранного документа: 0002564312
Дата охранного документа: 27.09.2015
27.09.2015
№216.013.7fcf

Способ заканчивания строительства добывающей горизонтальной скважины с проведением поинтервального гидравлического разрыва пласта

Изобретение относится к нефтяной промышленности и может быть использовано при заканчивании строительства скважин. При осуществлении способа эксплуатационную колонну спускают и крепят до начала горизонтального участка скважины, производят поинтервальный гидравлический разрыв пласта в зонах...
Тип: Изобретение
Номер охранного документа: 0002564316
Дата охранного документа: 27.09.2015
20.10.2015
№216.013.84de

Способ разработки многопластовой нефтяной залежи с применением гидравлического разрыва пласта

Изобретение относится к области разработки многопластовых нефтяных месторождений и может быть использовано в нефтегазовой промышленности. Технический результат - повышение дебита добывающих скважин за счет эффективного гидроразрыва пласта. По способу осуществляют закачку вытесняющего агента...
Тип: Изобретение
Номер охранного документа: 0002565617
Дата охранного документа: 20.10.2015
27.10.2015
№216.013.87c2

Способ гидравлического разрыва пласта

Изобретение относится к области добычи углеводородов и может быть применено для интенсификации притока флюида к скважине за счет образования трещин в продуктивном пласте. Способ гидравлического разрыва пласта (ГРП) включает перфорацию стенок скважины в интервале пласта каналами глубиной не...
Тип: Изобретение
Номер охранного документа: 0002566357
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.887b

Способ гидравлического разрыва продуктивного пласта с глинистым прослоем и подошвенной водой

Изобретение относится к нефтегазодобывающей промышленности и может быть применено для гидравлического разрыва продуктивного пласта. Способ включает спуск колонны насосно-компрессорных труб - НКТ с пакером в скважину, посадку пакера, проведение гидравлического разрыва пласта закачиванием...
Тип: Изобретение
Номер охранного документа: 0002566542
Дата охранного документа: 27.10.2015
+ добавить свой РИД