×
21.06.2020
220.018.28f0

Результат интеллектуальной деятельности: Состав для ингибирования образования газовых гидратов

Вид РИД

Изобретение

Аннотация: Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при добыче, подготовке и транспортировке углеводородного сырья. Состав для ингибирования образования газовых гидратов, содержащий термодинамический ингибитор - метанол и этиленгликоль, кинетический ингибитор и воду, в качестве кинетического ингибитора содержит уротропин или неопентилполиол - 2,2-диметилолпропан, или триметилолпропан, или 2,2-бис(гидроксиметил)пропан-1,3-диол при следующем соотношении компонентов, мас.%: метанол 67,3-74,3, этиленгликоль 11,7-14,3, уротропин или неопентилполиол 0,5-2,0, вода - остальное. Технический результат – повышение ингибирования газовых гидратов в углеводородных жидкостях и газах, содержащих воду и снижение экологических последствий применения ингибитора 15 пр., 2 табл.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано в процессах добычи, сбора, подготовки, транспортировки и переработки углеводородного сырья для предотвращения образования, а также растворения газовых гидратов в различных углеводородсодержащих жидкостях и газах, содержащих воду.

Проблема гидратообразования часто встречается на различных стадиях технологических процессов нефтегазодобычи, в частности там, где имеет место значительное содержание газообразных углеводородов и воды; в местах резкого перепада давления и температуры. Поддержание безгидратных режимов осуществляется как с помощью технологических решений, так и с применением специализированных реагентов - ингибиторов и растворителей гидратов. Газовые гидраты - по своей природе являются клатратами, т.е. соединениями включения стехиометрического состава.

Ингибиторы гидратообразования разделяют на термодинамические и кинетические. К термодинамическим ингибиторам относят алифатические спирты C14, гликоли (моно-, ди- и триэтиленгликоль, пропиленгликоль). Термодинамическое ингибирование предотвращает первичное образование газовых гидратов и требует высоких концентраций ингибитора - 10-60 масс% от количества воды, присутствующей в потоке. Термодинамические ингибиторы - вещества, растворимые в воде, смещающие трехфазное равновесие «газ - водная фаза - газовые гидраты» в сторону более низких температур при данном давлении или в сторону более высоких давлений при данной температуре.

Разработаны и запатентованы различные термодинамические ингибиторы гидратов на основе метанола и гликолей или их смесей. Введение в поток 10-40 масс% метанола или этиленгликоля в расчете на содержащуюся в нем воду, снижает температуру образования гидратов и способствует их растворению. Водные растворы этиленгликоля можно использовать при температуре минус 35°С. При более низких температурах раствор становится трудно перекачиваемым, часть раствора постепенно накапливается в трубопроводах, что увеличивает потери давления. При температурах ниже минус 40°С в качестве ингибитора для предупреждения гидратообразования рекомендуется применять метанол (US 3348614 А, опубл. 24.10.1967) или диэтиленгликоль, который подают в скважину с обеспечением необходимой концентрации ингибитора в водной фазе. RU 2193647 С2, опубл. 27.11.2002.

Недостаток применения термодинамических ингибиторов - их высокие дозировки; использование значительных объемов реагентов влечет за собой значительные эксплуатационные расходы, проблемы хранения и транспортировки, трудности с регенерацией реагентов, т.е. технология применения термодинамических ингибиторов оказывается экологически небезопасной и дорогостоящей.

Альтернативным вариантом решения проблемы образования газовых гидратов является использование кинетических ингибиторов гидратообразования, которые, в отличие от термодинамических ингибиторов, замедляют процесс кристаллизации гидратов, а также воздействуют на начальные стадии роста кристаллов. Кинетические ингибиторы подавляют формирование мелких кристаллов посредством воздействия на их точки роста (центры кристаллизации) и, таким образом, увеличивают индукционный период образования газовых гидратов. Самым существенным является то, что кинетические ингибиторы эффективно подавляют процесс гидратообразования в значительно более низких концентрациях (0,01-3,0 масс%) по сравнению с термодинамическими. Значительная доля запатентованных кинетических ингибиторов представлена водорастворимыми полимерами.

Разработаны композиции, препятствующие образованию газовых гидратов, в состав которых входит ингибитор кинетического типа и ингибитор термодинамического типа.

Кинетические ингибиторы снижают скорость образования гидратов, тогда как термодинамические понижают температуру их образования по сравнению с не ингибированными системами. Совместное использование обоих ингибиторов приводит к синергетическому действию и снижает гидратообразование в большей степени. Кинетический ингибитор добавляют в количестве 0,01-5 масс%. Термодинамический ингибитор представлен спиртами, гликолями, полигликолями, эфирами гликолей или их смесью, в качестве кинетического ингибитора, как правило, используют низкомолекулярные полимеры, ациклические амины или амиды.

Описан состав для ингибирования гидратов, который включает термодинамический ингибитор - метанол, этанол, пропанол, изопропанол, гликоли и их смеси и кинетический ингибитор гидратообразования - сополимер винилкапролактама, винилпирролидона, алкенилсульфоновой кислоты (винилсульфоновая, 2-акриламидододецилсульфоновая или 2-акриламид-2-метилпропансульфоновая) и N-замещенного акриламида (изопропилметакриламид) с молекулярной массой 1000-1000000. Состав эффективен для ингибирования образования гидратов глубоководного бурового раствора, при низких концентрациях 0,55-1,5%. CN 102492407 А, опубл. 13.06.2012.

Известен ингибитор гидратообразования и роста газовых гидратов, содержащий кинетический ингибитор гидратообразований малой концентрации. Состав ингибитора гидратообразования включает низкомолекулярный полимер и растворитель, и дополнительно содержит гидролизованный полиакриламид (ПАА). В качестве низкомолекулярного полимера используют смесь поливинилпирролидона (ПВП) и поливинилкапролактама (ПВКап) разных марок с молекулярной массой 6000-8000 г/моль при их молярном соотношении 1:(1±0,1), в качестве растворителя используют этанолсодержащий раствор при следующем соотношении компонентов, масс%: смесь ПВП и ПВКап разных марок с молекулярной массой 6000-8000 г/моль при их молярном соотношении 1:(1±±0,1) - 10-20, гидролизованный ПАА - 0,1-1,0, этанолсодержащий раствор - остальное. RU 2481375 С1, опубл. 10.05.2013.

Недостатками этого ингибитора гидратов являются: сложность состава (а, следовательно, и его высокая стоимость), и его воспроизводимость, проблемы качества композиции, связанные с использованием смесей не детерминированных марок ПВКап и ПВП. Кроме того, возникают экологические затруднения, связанные с требованиями биодеградируемости кинетических ингибиторов гидратообразования.

Известен состав для ингибирования образования гидратов в углеводородсодержащем сырье, содержащий, масс%: кинетический ингибитор гидратообразования 0,1-2,0, термодинамический ингибитор гидратообразования 5,0-40,0, синергетическая добавка 0,1-2,0, вода - остальное. В качестве кинетического ингибитора гидратообразования используют водорастворимые полимеры, такие, в частности, как поли-N-виниллактамы, замещенные полиакриламиды, сверхразветвленные полиэфирамиды, поливиниловый спирт и его производные и другие высокомолекулярные соединения, обладающие свойствами кинетического ингибитора гидратообразования. В качестве термодинамического ингибитора гидратообразования возможно использовать, в частности, метанол, этанол, моно-, ди-, триэтиленгликоль, пропиленгликоль, глицерин, низкомолекулярные простые эфиры моно-, ди- и триэтиленгликоля, пропиленгликоля, мочевину или их смесь. В качестве синергетической добавки используют четвертичные аммониевые соли (например, галогениды тетрабутиламмония, галогениды цетилтриметиламмония, галогениды цетилдиметиламмония, галогениды додецилдиметиламмония, галогениды дидодецилдиметиламмония), моно- и диалкиловые эфиры этиленгликоля общей формулы R1OCH2CH2OR2, где R1 - атом водорода или алкильный радикал, в частности, с числом углеродных атомов больше 3, a R2 - алкильный радикал, в частности, с числом углеродных атомов больше 3 (например, монобутиловый эфир этиленгликоля, дибутиловый эфир этиленгликоля), оксиэтилированные жирные спирты (например, Синтанол АЛМ-10, Surfynol 485), оксипропилированные жирные спирты, полиэтиленоксид (с молекулярной массой, в частности, 200-8000), полипропиленоксид (с молекулярной массой, в частности, 200-8000), сополимеры этиленоксида и пропиленоксида (например, со средней молекулярной массой 5000) или смесь указанных веществ. Конкретное соотношение определяется природой компонентов композиции и термобарическими условиями на нефтегазовом объекте. Состав вводят в исходное сырье в количестве 2,5-50,0 масс% от воды, содержащейся в указанном сырье. RU 2601355 С1, опубл. 10.11.2016.

Описана композиция ингибитора газогидратов, состоящая из 1-6 частей поливинилкапролактама с молекулярной массой полимера М=600-40000 и 1-8 массовых частей смеси спиртов (метанол, этанол, этиленгликоль и пропанол) и простых эфиров (метиловый, этиловый, бутиловый эфир этиленгликоля, бутиловый эфир диэтиленгликоля). Композицию добавляют в углеводородсодержащее сырье в количестве 1-30 масс%. CN 103194194 В, опубл. 08.07.2015.

Недостатком известных композиций является сложность состава, труднодоступность полимерных составляющих, сложность их синтеза, проблемы с воспроизводимостью характеристик, неустойчивость кинетических параметров для разных партий, а также негативные экологические аспекты их применения.

Наиболее близким по технической сущности к заявленному ингибитору и принятым ближайшим аналогом является состав для ингибирования гидратообразования, состоящий из термодинамического ингибитора - смесь этиленгликоля и метанола - 0,1-50 об%, кинетического ингибитора - 0,5-20 об%, вода - остальное. US 7994374 В2, опубл. 09.08.2011. В качестве кинетического ингибитора предложены сополимер диметилакриламида с малеимидом, этилмалеимидом, пропилмалеимидом и бутилмалеимидом, сополимеры акриламид/малеимид, N-виниламид/малеимид или лактам/малеимид, например, винилкапролактам/ этилмалеимид. В качестве кинетического ингибитора может быть использован также поливинилкапролактам.

Недостатком аналога является сложность синтеза полимерной составляющей кинетического ингибитора и высокая норма расхода дорогостоящего кинетического ингибитора в составе ингибитора гидратообразования (на 100 г воды, присутствующей в потоке нефти (до 70 об%), вводят 0,1-1 г кинетического ингибитора в сочетании с 5 г и более термодинамического ингибитора, т.е., интервал эффективных отношений «кинетический ингибитор / термодинамический ингибитор» составляет 0,02-0,2 масс%).

Технической задачей настоящего изобретения является создание упрощенного состава, повышающего ингибирование образования газовых гидратов в различных углеводородсодержащих жидкостях и газах, содержащих воду, с использованием доступных и недорогих компонентов и воспроизводимостью свойств, а также характеризующегося сниженными экологическими последствиями применения, благодаря присущему ему свойству биоразлагаемости.

Техническим результатом от реализации изобретения, является повышение эффективности ингибирования образования газовых гидратов, сочетающей эффективность термодинамического и кинетического типов ингибиторов низкой дозировки, улучшение экологических последствий его применения, удовлетворяющих требованиям биодеградации.

Технический результат достигается тем, что состав для ингибирования образования газовых гидратов, содержащий термодинамический ингибитор - метанол и этиленгликоль, кинетический ингибитор и воду, согласно изобретению, в качестве кинетического ингибитора содержит полициклической амин или неопентилполиол, при следующем содержании компонентов, масс%:

метанол - 67,3-74,3
этиленгликоль - 11,7-14,3
полициклический амин или неопентилполиол - 0,5-2,0
вода - остальное.

Достижению технического результата также способствует то, что в качестве полициклического амина он содержит уротропин, а в качестве неопентилполиола - 2,2-диметилолпропан (неопентилгликоль), или триметилолпропан (этриол), или 2,2-бис(гидроксиметил)пропан-1,3-диол (пентаэритрит).

Указанные признаки весьма существенны.

Заявленный состав для ингибирования образования газовых гидратов имеет сниженные экологические последствия применения, характеризуется низкими дозировками (1-2 масс% в расчете на воду), использует в качестве кинетического ингибитора доступные, недорогие и стабильные соединения, производимые отечественной промышленностью по известным технологиям.

Метанол по ГОСТ 6995-77 или ГОСТ 2222-95;

Этиленгликоль (ЭГ) по ГОСТ 10164-75;

Уротропин по ГОСТ 1381-73 или ТУ 2478-037-00203803-2012;

2,2-Диметилолпропан (неопентилгликоль, НПГ) по ТУ 2422-013-53505711-2005;

2,2-бис(Гидроксиметил)пропан-1,3-диол (пентаэритрит, ПЭ) по ГОСТ 9286-2012;

Триметилолпропан (этриол) по ТУ 38.102101-76.

Наличие неопентилполиола в составе для ингибирования образования газовых гидратов способствует более полной сорбции реагента на клатратные образования и обеспечивает, помимо этого, улучшение экологических последствий его применения: эти полиолы поддаются биоразложению, относятся к малоопасным веществам, не обладают потенциальной способностью к биоаккумуляции. Werle P., Morawietz М., Lundmark S., K., Karvinen Е., Lehtonen J. Alcohols, Polyhydric V. 2. Ullmann's Encyclopedia of Industrial Chemistry. - Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. P. 263-284; Neopentylglycol. MSDS (Material Safety Data Sheet), Perstorp. - 2017. - V. 2. Достоинством заявляемого состава для ингибирования образования газовых гидратов является, кроме того, тот факт, что эффективность, которую обеспечивают уротропин или неопентилполиол, проявляется при их весьма небольшом содержании в составе (0,5-2,0 масс%), при этом эффективная дозировка состава для ингибирования образования газовых гидратов не превышает 1-2 масс%, а интервал эффективных отношений «кинетический ингибитор / термодинамический ингибитор» значительно превышает заявленный в прототипе, составляя 0,02-0,0006 масс%).

В патентах SU 1281288 А1, опубл. 07.01.1987, и RU 2504571 С2, опубл. 20.01.2014, сообщается о составе универсальной композиции для совмещенного ингибирования гидратообразования, солевых отложений и коррозии металла. Композиция включает ПАВ, спирт, минерализованную воду и полимер: (сополимер пирролидона или капролактама, терполимер на основе N-винил-2-пирролидона, полиакриамид, гипан, полипропиленгликоль, полиоксипропиленполиол, диметиламиноэтилметакрилат, простой эфир марки Лапрол, гидроксиэтилцеллюлозу, замещенную аминополикарбоновую или фосфоновую кислоту, двунатриевую соль этилендиаминтетруксусную кислоту, натриевую соль аминометиленфосфоновой кислоты, гексаметафосфат или триполифосфат натрия, хлорид или нитрат аммония, «спирт в виде смеси формалина или уротропина», или карбамидоформальдегидного концентрата - КФК, одноатомный спирт С14, кубовые остатки производства бутиловых спиртов методом оксосинтеза, эфироальдегиную фракцию - побочный продукт при ректификации этилового спирта, двухатомный спирт С13, низкомолекулярный полиэтиленгликоль и полигликоль марки Гликойл-1, многоатомный спирт: глицерин или продукт, его содержащий, - полиглицерин, где смесь, содержащая уротропин, составляет 5,0-30,0 масс%. Пример 11 данного патента иллюстрирует использование уротропин - эфироальдегидной фракции, взятой при объемном отношении компонентов 3,2:1, доля которой в составе комплексного ингибитора 26 масс%. Очевидно, что в данном случае действие уротропина направлено на обеспечение комплексного ингибирования коррозии металла, гидратообразования и солевых отложений. Это обеспечивается сложным составом композиции и требует на порядок более высокого, чем в настоящем изобретении, содержания (25 масс%) индивидуального уротропина (плотность 1,33 г/см3) в ингибиторе комплексного действия. При этом известно, что уротропин традиционно применяют в качестве активного компонента в составе ингибиторов коррозии металлов. Алцыбеева А.И., Левин С.З. Ингибиторы коррозии металлов. Л. Химия, 1968, с. 28-29.

Таким образом, анализ отобранных в процессе поиска известных технических решений показал, что в науке и технике нет объекта, аналогичного по заявленной совокупности признаков и преимуществ, что позволяет сделать вывод о соответствии условиям патентоспособности "новизна" и "изобретательский уровень".

В соответствии с изобретением, процесс получения состава для ингибирования образования газовых гидратов заключается в смешении компонентов, которые берут в произвольной последовательности в количествах, соответствующих заданному составу.

Осуществление настоящего изобретения иллюстрируют приведенные ниже примеры, которые не ограничивают объем притязаний, представленных в формуле изобретения.

Пример 1.

Получение состава для ингибирования образования газовых гидратов.

В трехгорлую колбу, снабженную холодильником и термометром, помещают 34 мл дистиллированной воды и при интенсивном перемешивании с помощью магнитной мешалки со скоростью 700 об/мин, при температуре 23°С и атмосферном давлении 742 мм рт. ст. одной порцией добавляют 28,37 г (25 мл) этиленгликоля. Полученный раствор перемешивают в течение 30 мин до достижения комнатной температуры (23°С), после чего порциями (3×65 мл) прибавляют 154,5 г (195 мл) метанола в течение 10 мин при перемешивании со скоростью 1000 об/мин. При добавлении первой порции метанола наблюдают подъем температуры раствора до 26°С, при дальнейшем добавлении метанола температура не меняется. Получают таким образом базовый состав для ингибирования образования газовых гидратов. Затем к полученной смеси добавляют 1,09 г уротропина и композицию перемешивают со скоростью 1000 об/мин до полного растворения осадка уротропина. Получают 217,68 г состава для ингибирования газогидратов в виде гомогенного бесцветного прозрачного раствора состава, масс%: метанол - 70,9, этиленгликоль - 13,0, уротропин - 0,5, вода - 15,6.

Аналогично получают состав для ингибирования образования газовых гидратов, содержащий неополполиолы в качестве кинетического ингибитора.

Примеры 2-7.

Эффективность заявляемого состава для ингибирования образования газовых гидратов для предотвращения образования клатратов тетрагидрофуран (ТГФ) - вода (модельные системы).

Для определения скорости образования газовых гидратов как параметра эффективности ингибирования гидратов использовали тесты с модельными системами ТГФ - вода, которые, как известно, образуют структуру, аналогичную гидратам природного газа. Образование клатратов ТГФ и воды происходит при атмосферном давлении и температуре 4°С при мольном отношении вода: ТГФ=17:1. Makogon T.Y., Larsen R., Knight C.A., Sloan E.D., Jr. Melt growth of tetrahydrofuran clathrate hydrate and its inhibition: method and first results. J. Crystal Growth. 1997, v. 179, p. 258-262. Yagasaki Т., Matsumoto M., Tanaka H. Mechanism of Slow Crystal Growth of Tetrahydrofuran Clathrate Hydrate. J. Phys. Chem. C. 2016, v. 120, №6, p. 3305-3313.

Оценку эффективности проводили путем сравнения масс гидрата ТГФ, образующегося в течение 1 ч, для смесей с различными концентрациями компонентов состава для ингибирования образования газовых гидратов в ходе модельных экспериментов.

Методика тестирования.

В термостатируемую пробирку (180×30 мм) помещают 40 г смеси 3,5 масс%-ного водного раствора хлорида натрия и ТГФ, взятых в отношении 4:1 по объему, и необходимое количество состава для ингибирования гидратов. Смесь охлаждают до температуры минус 1°С. Пипеткой Пастера, закрепленной в корковой пробке, набирают каплю воды, взвешивают и выдерживают в течение 2 ч при температуре минус 20°С. Затем быстро помещают пипетку в пробирку с охлажденной смесью так, чтобы кончик пипетки был погружен в жидкость приблизительно на 15 мм. Через 1 ч пипетку вместе с корковой пробкой и образовавшимися кристаллами гидрата вынимают из пробирки и немедленно взвешивают. Определяют скорость образования гидратов ТГФ по массе образовавшихся гидратов. За результат принимают среднее из трех параллельных измерений. Результаты показаны в таблице 1.

Примеры 3-5 демонстрируют эффект добавки в базовый состав, снижающей скорость гидратообразования системы ТГФ/Н2О на 42% при концентрации кинетического ингибитора 0,5 масс% и на 53% - при концентрации 2 масс%.

Примеры 6, 7 и 8 показывают эффект снижения скорости гидратообразования на 52% и на 55% в присутствии 2 масс% неопентилполиола - неопентилгликоля, пентаэритрита и этриола соответственно.

Примеры 9-15 отражают результаты по исследованию ингибирующей способности заявляемого состава по параметру «температура начала гидратообразования».

Для определения эффекта ингибирования образования газовых гидратов заявленным составом использовали углеводородный газ, содержащий: С15 - 97 об%, (С234) - 3 об%. Эксперименты проводили в изобарических условиях, с начальным давлением 12 МПа, на приборе для определения реологических свойств - реометре в составе аппаратно-программного комплекса MARS (НААКЕ). Температуру образца в системе аппаратно-программного комплекса доводят до 40°С, после чего его постепенно охлаждают до минус 5°С с шагом 3°С. Температуру поддерживают с помощью криостата с точностью ±0,05°С, время выдержки при каждой температуре перед измерением 10 мин, скорость сдвига постоянна и составляет 20 с-1. Температуру, при которой наблюдают резкое повышение напряжения сдвига, принимают за температуру начала гидратообразования.

Перед проведением опытов с составом для ингибирования образования газовых гидратов был проведен холостой опыт (в отсутствие какого-либо ингибитора), для которого наблюдали значение температуры начала гидратообразования 15°С (пример 8). Способность ингибирования гидратов тестировали при дозировках 0,5; 1; 2 об%. (примеры 10-15). Также для сравнения был испытан коммерческий реагент в тех же дозировках (примеры 13-15). Результаты испытания состава для ингибирования образования газовых гидратов представлены в таблице 2.

Все образцы состава для ингибирования образования газовых гидратов по примерам 1-8 и 9-12 по физико-химическим и технологическим свойствам удовлетворяют нормативным требованиям: кинематическая вязкость не более 20 и 500 мм2/с при температуре 20°С и минус 40°С соответственно, температура застывания ниже минус 50°С, коррозионная агрессивность (скорость коррозии Ст3 при температуре 20°С) - менее 0,089 г/(м2⋅ч).

Примеры 9-15 показывают, что по ингибирующему эффекту заявляемый состав обладает большей способностью ингибировать образование газовых гидратов, чем коммерческий реагент, поскольку снижает температуру начала гидратообразования в большей степени, чем коммерческий реагент - на 1,1 и 1,5°С при дозировках 0,5 об% и 2,0 об% соответственно. Заявляемый состав превосходит по эффективности известный ингибитор гидратообразования, тогда как ингибитор кинетического действия (уротропин, неопентилполиол) присутствует в составе ингибирования гидратов в концентрации 0,5-2,0 масс%.

Источник поступления информации: Роспатент

Показаны записи 31-40 из 63.
20.12.2018
№218.016.a9e2

Способ гидрирования ацетона в изопропиловый спирт

Настоящее изобретение относится к способу гидрирования ацетона в изопропиловый спирт, который широко используется в качестве октаноповышающей добавки к бензинам, противообледенительной жидкости, растворителя при производстве поверхностно-активных веществ, пластификаторов, присадок к маслам,...
Тип: Изобретение
Номер охранного документа: 0002675362
Дата охранного документа: 19.12.2018
18.01.2019
№219.016.b114

Способ приготовления катализатора гидроочистки нефтяных фракций в сульфидной форме (варианты)

Предложено три варианта способа приготовления катализатора гидроочистки нефтяных фракций в сульфидной форме. Один из вариантов способа приготовления катализатора гидроочистки нефтяных фракций в сульфидной форме осуществляется формованием соэкструзией смеси гидроксида алюминия, оксида молибдена...
Тип: Изобретение
Номер охранного документа: 0002677285
Дата охранного документа: 16.01.2019
19.01.2019
№219.016.b1a4

Устройство для доставки приборов в горизонтальную скважину на основе скважинной торпеды

Изобретение относится к нефтегазодобывающей промышленности и может быть применено для доставки в горизонтальные скважины. Средство перемещения приборов имеет форму скважинной торпеды, корпус которой содержит камеру, разбитую на герметичные отсеки. Гребные винты установлены на противоположных...
Тип: Изобретение
Номер охранного документа: 0002677503
Дата охранного документа: 17.01.2019
23.02.2019
№219.016.c6f6

Способ определения профиля притока в низкодебитных горизонтальных скважинах с многостадийным гидроразрывом пласта

Изобретение относится к области геофизических исследований нефтедобывающих скважин на нефтяных месторождениях с низкопроницаемыми коллекторами в условиях неоднозначности замеров, выполненных на притоке флюида в забойных условиях, в частности, к определению профиля притока флюидов, поступающих в...
Тип: Изобретение
Номер охранного документа: 0002680566
Дата охранного документа: 22.02.2019
14.03.2019
№219.016.df02

Способ определения линейных ресурсов углеводородных отложений нетрадиционного резервуара юрской высокоуглеродистой формации

Изобретение относится к способам и методам петрофизических и геохимических исследований коллекции керна нетрадиционного резервуара юрской высокоуглеродистой формации (ЮВУФ) и может быть использовано при определении линейных ресурсов нефти и газа, технически извлекаемых из ЮВУФ, с учетом их...
Тип: Изобретение
Номер охранного документа: 0002681801
Дата охранного документа: 12.03.2019
11.04.2019
№219.017.0b4d

Депрессорно-диспергирующая присадка к дизельному топливу, способ ее получения и способ получения депрессорного и диспергирующего компонентов депрессорно-диспергирующей присадки

Изобретение описывает депрессорно-диспергирующую присадку к дизельному топливу, которая содержит смесь депрессорного и диспергирующего компонентов, при этом в качестве депрессорного компонента применяется полимерное соединение, полученное реакцией радикальной сополимеризации малеинового...
Тип: Изобретение
Номер охранного документа: 0002684412
Дата охранного документа: 09.04.2019
11.04.2019
№219.017.0b52

Способ получения синтетической нефти из природного/попутного нефтяного газа и компактная установка для получения синтетической нефти из природного/попутного нефтяного газа

Изобретение относится к нефтехимии. Изобретение касается способа получения синтетической нефти из природного/попутного нефтяного газа, пригодной для транспортировки по магистральным нефтепроводам совместно с природной нефтью. Исходный сырьевой газ смешивают с водой, полученную водогазовую...
Тип: Изобретение
Номер охранного документа: 0002684420
Дата охранного документа: 09.04.2019
11.04.2019
№219.017.0b65

Способ получения катализатора гидроочистки дизельных фракций и катализатор, полученный этим способом

Изобретение относится к способу получения катализатора гидроочистки дизельных фракций. Гидроксид алюминия в форме бемита или псевдобемита смешивают с порошками оксида молибдена, кобальта углекислого основного или никеля углекислого основного, взятых в массовом соотношении от 1,7:1 до 2,3:1....
Тип: Изобретение
Номер охранного документа: 0002684422
Дата охранного документа: 09.04.2019
19.04.2019
№219.017.294f

Способ получения фосфорномолибденовых кислот

Изобретение может быть использовано в производстве гетерогенных катализаторов гидроочистки нефтяных фракций. Для получения фосфорномолибденовых кислот оксид молибдена смешивают с водным раствором 0,28-1,86%-ной фосфорной кислоты в мольном отношении MoO к НРО, равном 12:1. Полученный раствор...
Тип: Изобретение
Номер охранного документа: 0002685207
Дата охранного документа: 16.04.2019
13.06.2019
№219.017.813c

Способ получения микросфер полимерного проппанта

Изобретение относится к проппантам из полимерных материалов, применяемым при добыче нефти и газа методом гидравлического разрыва пласта. В способе получения микросфер полимерного проппанта, включающем приготовление полимерной матрицы на основе метатезис-радикально сшитой смеси...
Тип: Изобретение
Номер охранного документа: 0002691226
Дата охранного документа: 11.06.2019
Показаны записи 21-28 из 28.
19.06.2019
№219.017.8705

Способ получения альдегидов c-c

Изобретение относится к способу получения альдегидов С-С, заключающийся в том, что олефины подвергают гидроформилированию в присутствии каталитической системы, содержащей родий, полифосфитный лиганд, имеющий общую формулу: где k+m≥2, причем, возможно, k=0 или m=0; X - углеводородный радикал,...
Тип: Изобретение
Номер охранного документа: 0002354642
Дата охранного документа: 10.05.2009
19.06.2019
№219.017.872b

Катализатор гидроформилирования олефинов c-c, способ его получения (варианты) и способ получения альдегидов c-c

Изобретение относится основному органическому, тонкому органическому и нефтехимическому синтезу и может быть использовано для гидроформилирования α-олефинов в соответствующие альдегиды. Катализатор получения альдегидов С-С гидроформилированием соответствующих олефинов, представляет собой...
Тип: Изобретение
Номер охранного документа: 0002352552
Дата охранного документа: 20.04.2009
19.06.2019
№219.017.886d

Катализатор для гидроформилирования олефинов c, способ его получения и способ получения альдегидов c

Изобретение относится к основному органическому, тонкому органическому и нефтехимическому синтезу и касается катализатора синтеза альдегидов С из олефинов С, окиси углерода и водорода методом гидроформилирования, способа получения указанного катализатора и способа получения альдегидов С с...
Тип: Изобретение
Номер охранного документа: 0002320412
Дата охранного документа: 27.03.2008
13.01.2020
№220.017.f4d1

Ингибитор коррозии и способ его получения

Изобретение относится к ингибиторам коррозии, которые используются в нефтегазодобывающей промышленности, в частности, к составам, применяемым в качестве ингибиторов коррозии в минерализованных средах. Способ включает получение активной основы реакцией триэтилентетрамина и жирных кислот...
Тип: Изобретение
Номер охранного документа: 0002710700
Дата охранного документа: 09.01.2020
28.03.2020
№220.018.1116

Состав для предотвращения асфальтосмолопарафиновых отложений

Изобретение относится к нефтедобывающей промышленности, в частности к составам для предотвращения отложения асфальтенов, смол и парафинов, и может быть использовано в процессах добычи, транспорта и хранения нефти. Состав ингибитора образования асфальтосмолопарафиновых отложений содержит, масс....
Тип: Изобретение
Номер охранного документа: 0002717859
Дата охранного документа: 26.03.2020
04.05.2020
№220.018.1af7

Состав для удаления асфальтосмолопарафиновых отложений

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для удаления и растворения асфальтосмолопарафиновых отложений (АСПО) с поверхности скважинного и нефтепромыслового оборудования, в резервуарах и нефтесборных коллекторах, напорных и магистральных трубопроводах....
Тип: Изобретение
Номер охранного документа: 0002720435
Дата охранного документа: 29.04.2020
21.06.2020
№220.018.28e3

Состав для предотвращения кальциевых солеотложений

Изобретение относится к нефтедобыче, а именно к составам для предотвращения осаждения неорганических солей при добыче и транспорте нефти. Состав для предотвращения кальциевых солеотложений, включающий нитрилотриметилфосфоновую кислоту - НТФ, оксиэтилидендифосфоновую кислоту - ОЭДФ,...
Тип: Изобретение
Номер охранного документа: 0002723809
Дата охранного документа: 17.06.2020
21.06.2020
№220.018.290f

Взаимный растворитель для обработки призабойной зоны пласта

Изобретение относится к нефтедобыче и может быть использовано при кислотных, щелочных и других видах обработок пласта. Технический результат - широкий диапазон совместимости с водной и нефтяной фазами, низкая высаливающая способность, высокая технологическая эффективность для снятия водной...
Тип: Изобретение
Номер охранного документа: 0002723810
Дата охранного документа: 17.06.2020
+ добавить свой РИД