×
21.06.2020
220.018.28b6

Результат интеллектуальной деятельности: Фюзеляж самолета

Вид РИД

Изобретение

Аннотация: Изобретение относится к области авиационной техники, преимущественно к фюзеляжам самолетов с дозвуковыми и околозвуковыми скоростями полета. Фюзеляж самолета, в кормовой части содержит выходы каналов для выдува воздуха, расположенные на его поверхности, выходы каналов выполнены с осями, наклоненными под углами 30°-60° к поверхности фюзеляжа и углами 30°-60° между проекциями осей каналов на поверхность фюзеляжа и направлениями потока у выходов каналов на крейсерском режиме полета самолета, выходы каналов для выдува воздуха расположены на расстоянии от конца кормовой части фюзеляжа равном 0.5-1.5 эквивалентного диаметра миделя фюзеляжа. Входы каналов для выдува воздуха соединены с салоном фюзеляжа самолета. Такое конструктивное решение позволит уменьшить энергетические затраты на создание воздушных струй и уменьшение сопротивления, создаваемого кормовой частью фюзеляжа. 2 з.п. ф-лы, 3 ил.

Изобретение относится к области авиационной техники, преимущественно к фюзеляжам самолетов с дозвуковыми и околозвуковыми скоростями полета.

Фюзеляж является одним из основных элементов самолета и предназначен для размещения перевозимых грузов, экипажа, пассажиров и различного оборудования. В фюзеляже самолета могут размещаться двигательные установки самолета и топливо для их работы. Фюзеляж не вносит существенного вклада в создание подъемной силы, но создает значительную долю аэродинамического сопротивления самолета [Кюхеман Д. Аэродинамическое проектирование самолетов. М.: Машиностроение, 1983].

Для уменьшения сопротивления фюзеляжа ему, как правило, придают хорошо обтекаемую «сигарообразную» форму, включающую среднюю часть цилиндрической формы, носовую и хвостовую части овальной формы (см. например, Jame's All the World's Aircraft. Пассажирские самолеты марки Ту, Ил, Ан, Фирм Боинг, Аэрбас).

Уменьшение сопротивление фюзеляжа выполняют также путем уменьшения площади его миделевого сечения (поперечного сечения фюзеляжа наибольшей площади), что приводит к значительным неудобствам при размещении пассажиров и перевозимых грузов.

Описанные выше модификации формы фюзеляжа не дают значительного снижения сопротивления фюзеляжа. У современных пассажирских и транспортных самолетов аэродинамическое сопротивление фюзеляжа составляет около 50% от полного сопротивления самолета.

Известна конструкция фюзеляжа самолета с выходами каналов для выдува высоконапорных струй воздуха в направлении поперек оси фюзеляжа по размаху крыла вдоль задней кромки крыла самолета и выдува реактивной струи вдоль оси фюзеляжа из торца его кормовой части (см. патент США 4,648,571). В данном техническом решении уменьшение сопротивления фюзеляжа осуществляется путем выдува реактивной струи двигателя из торца кормовой части фюзеляжа. Выдув высоконапорных струи воздуха от компрессора реактивного двигателя, расположенного внутри фюзеляжа, поперек оси фюзеляжа и вдоль задней кромки крыла самолета приводит к улучшению обтекания крыла, увеличению подъемной силы и уменьшению сопротивления самолета.

По техническим признакам данная конструкция фюзеляжа является наиболее близким аналогом заявляемого изобретения и его прототипом, у которого на участке фюзеляжа выполнены выходы для выдува высоконапорных струй в поперечном и продольном направлениях к оси фюзеляжа.

Недостатком фюзеляжа прототипа являются большие энергетические затраты для создания высоконапорных струй.

Задачей и техническим результатом заявляемого изобретения являются уменьшение энергетических затрат на создание воздушных струй и уменьшение сопротивления, создаваемого кормовой частью фюзеляжа.

Решение задачи и технический результат, достигаются тем, что в фюзеляже самолета, включающем кормовую часть и, расположенные на его поверхности выходы каналов для выдува струй воздуха, выходы каналов выполнены с осями наклоненными под углами 30°-60° к поверхности фюзеляжа и под углами 30°-60° между проекциями осей каналов на поверхность фюзеляжа и направлениями потока у поверхности фюзеляжа на крейсерском режиме полета самолета. При этом выходы каналов для выдува воздуха расположены на поверхности фюзеляжа на расстоянии от конца кормовой части равном 0.5-1.5 эквивалентного диаметра миделя фюзеляжа, а входы каналов для выдува струй воздуха могут быть соединены с салоном фюзеляжа самолета.

Сущность предлагаемого изобретения заключается в создании вихревых жгутов на поверхности кормовой части фюзеляжа путем выдува струй воздуха из выходов каналов под углами 30°-60° к поверхности фюзеляжа и углами 30°-60° между проекциями осей каналов на поверхность фюзеляжа и направлением потока у поверхности фюзеляжа при полете самолета на крейсерском режиме полета.

Создание вихревых жгутов приводит к повышению энергии пограничного слоя в кормовой части фюзеляжа и задержке возникновения отрыва потока, что приводит к уменьшению аэродинамического сопротивления, создаваемого кормовой частью фюзеляжа. Для создания вихревых жгутов не требуется больших затрат энергии. Проведенные экспериментальные исследования показали, что необходимая интенсивность вихревых жгутов обеспечивается путем выдува воздушных струй с небольшим перепадом давления 0.4-0.6 атм. при значительно меньших энергетических затратах чем при использовании высоконапорных струй. Для наибольшей эффективности влияния вихревых жгутов выходы каналов выполняются на поверхности фюзеляжа на расстоянии от конца его кормовой части фюзеляжа равном 0.5-1.5 эквивалентного диаметра миделя фюзеляжа.

На фиг. 1 приведен рисунок фюзеляжа самолета с выходами каналов для выдува воздуха в кормовой части.

На фиг. 2 приведен рисунок сечения выхода одного из каналов для выдува воздуха в стенке кормовой части фюзеляжа.

На фиг. 3 показаны углы ориентации оси одного из выходов каналов на поверхности фюзеляжа.

Предлагаемый фюзеляж самолета включает кормовую часть 1 выходы каналов 2 для выдува струй воздуха, расположенные на поверхности фюзеляжа (фиг. 1). Подводящие каналы 3 к выходам каналов 2 для выдува воздуха выполняются с внутренней стороны обшивки фюзеляжа 4 (фиг. 2). Выходы каналов 2 выполнены с осями 5, направленными под углами 6 к поверхности фюзеляжа равными 30°-60° и углами 7 между проекциями 8 осей каналов на поверхность фюзеляжа и направлением потока 9 у поверхности фюзеляжа на крейсерском режиме полета самолета равными 30°-60° (фиг. 3). Направление потока 9 у выходов каналов на поверхности фюзеляжа может быть определено экспериментальными или расчетными способами. Приближенно, для наиболее распространенных умеренно искривленных форм кормовых частей фюзеляжей, направлением потока у его поверхности можно считать проекцию оси фюзеляжа на его поверхность. Выдувы струй воздуха из выходов каналов на поверхности фюзеляжа с указанными углами к поверхности фюзеляжа и углами к потоку на поверхности фюзеляжа создают вихревые жгуты 10 (фиг. 2), которые перемешивают пограничный слой, увеличивают его кинетическую энергию, устойчивость вблизи обтекаемой поверхности и ослабляют отрыв потока в кормовой части фюзеляжа, что приводит к уменьшению его сопротивления. Проведенные экспериментальные исследования показали, что вихревые жгуты с интенсивностью достаточной для ослабления отрыва потока создаются при выдуве струй с перепадом давления 0.4-0.6 атм при значительно меньших энергетических затратах по сравнению с затратами при выдуве высоконапорных струй с перепадом давления в несколько атмосфер.

Для наибольшей эффективности влияния вихревых жгутов выходы каналов выполняются на поверхности фюзеляжа на расстоянии от конца его кормовой части равном 0.5-1.5 эквивалентного диаметра миделя фюзеляжа. Эквивалентным диаметром миделя фюзеляжа принято называть диаметр окружности с площадью равной площади миделевого сечения фюзеляжа.

Перепад давления 0.4-0.6 атм, как правило, создается в фюзеляжах пассажирских и транспортных самолетов для обеспечения нормальных условий и кондиционирования воздуха для пассажиров и экипажа. Это может позволить использовать отработанный воздух для выдува струй воздуха и уменьшения сопротивления фюзеляжа. Для этого входы каналов для выдува струй воздуха могут быть соединены с салоном фюзеляжа самолета.

Таким образом, достигнут технический результат: уменьшение энергетических затрат на создание воздушных струй и уменьшение сопротивления, создаваемого кормовой частью фюзеляжа.


Фюзеляж самолета
Фюзеляж самолета
Источник поступления информации: Роспатент

Показаны записи 21-30 из 255.
10.10.2013
№216.012.7251

Способ управления уборкой механизации крыла самолета транспортной категории

Изобретение относится к авиации, в частности к способам управления механизацией крыла при взлете, повышающим безопасность полета самолетов транспортной категории посредством защиты закрылков и предкрылков от чрезмерных аэродинамических нагрузок. Для управления уборкой механизации крыла самолета...
Тип: Изобретение
Номер охранного документа: 0002494922
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.73e6

Способ локального подвода энергии к потоку воздуха, обтекающего объект

Изобретение относится к аэродинамике и к энергетическим установкам транспортных средств, в частности к способам улучшения аэродинамического качества путем подвода энергии к их внешней поверхности. Способ локального подвода энергии к потоку воздуха, обтекающего объект, включает использование...
Тип: Изобретение
Номер охранного документа: 0002495327
Дата охранного документа: 10.10.2013
20.10.2013
№216.012.75af

Законцовка крыла летательного аппарата

Изобретение относится к авиационной технике. Законцовка крыла летательного аппарата имеет корневой профиль, который выполнен с S-образной средней линией и участком отрицательной вогнутости длиной 20-70% хорды. Изломный и концевой профили законцовки выполнены с положительной вогнутостью....
Тип: Изобретение
Номер охранного документа: 0002495787
Дата охранного документа: 20.10.2013
20.11.2013
№216.012.82ed

Сверхзвуковой плазмохимический стабилизатор горения

Изобретение относится к области авиационной техники. Сверхзвуковой плазмохимический стабилизатор горения для прямоточной камеры сгорания состоит из установленных в проточной части камеры сгорания двух последовательно расположенных по потоку электродов, выполненных в виде обтекаемых пилонов с...
Тип: Изобретение
Номер охранного документа: 0002499193
Дата охранного документа: 20.11.2013
10.12.2013
№216.012.8808

Способ изготовления аэродинамических поверхностей лопаток роторов газотурбинных двигателей на станках с чпу

Изобретение относится к машиностроению и может быть использовано при обработке профиля пера рабочих лопаток газотурбинных двигателей. Способ основан на выборе безопасной частоты вращения шпинделя, обеспечивающей исключение резонанса между частотами колебаний фрезы, воздействующих на...
Тип: Изобретение
Номер охранного документа: 0002500506
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.8812

Способ снижения вибраций нежесткой заготовки, обрабатываемой фрезерованием

Изобретение относится к машиностроению и может быть использовано при обработке нежестких заготовок при фрезеровании. Способ включает прикрепление к вибрирующей нежесткой заготовке динамического виброгасителя, который состоит из набора механических резонаторов с различными значениями собственной...
Тип: Изобретение
Номер охранного документа: 0002500516
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.88d0

Способ диспергирования наночастиц в эпоксидной смоле

Изобретение относится к области нанотехнологии и может применяться в отраслях машиностроения, транспорта, строительства, энергетики для повышения прочности и ресурса конструкций из металлических, композиционных полимерных и металлополимерных материалов. Способ диспергирования заключается в...
Тип: Изобретение
Номер охранного документа: 0002500706
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.89f1

Разборная упругоподобная аэродинамическая модель и способ ее изготовления

Изобретение относится к области экспериментальной аэродинамики, в частности к исследованию проблем аэроупругости летательных аппаратов в области авиационной техники, а именно к разработке моделей для аэродинамических труб. Модель содержит силовой сердечник и крышку, представляющие в сборе...
Тип: Изобретение
Номер охранного документа: 0002500995
Дата охранного документа: 10.12.2013
20.12.2013
№216.012.8e1b

Способ испытания железобетонных шпал и стенд для его реализации

Изобретение относится к области машиностроения и может быть использовано, в частности, при аттестации, сертификации и исследовании продукции заводов, выпускающих шпалы. Сущность: максимальную нормированную нагрузку на шпалу задают отдельно в ее наиболее нагруженных сечениях. Проводят испытания...
Тип: Изобретение
Номер охранного документа: 0002502062
Дата охранного документа: 20.12.2013
27.12.2013
№216.012.904e

Механизированное крыло летательного аппарата

Изобретение относится к авиационной технике. Механизированное крыло летательного аппарата состоит из кессонной части крыла, внутренней и внешней секций однощелевых закрылков, внутренней и внешних секций однощелевых предкрылков, элерона, интерцепторов, воздушных тормозов, мотогондолы с пилоном,...
Тип: Изобретение
Номер охранного документа: 0002502635
Дата охранного документа: 27.12.2013
Показаны записи 11-12 из 12.
07.06.2020
№220.018.24fe

Стенд для измерения аэродинамических характеристик модели отсека крыла

Изобретение относится к области экспериментальной аэродинамики и может быть использовано для измерений аэродинамических характеристик моделей отсеков крыльев, преимущественно, при дозвуковых скоростях. Стенд включает аэродинамическую трубу с открытой рабочей частью, подвеску для крепления...
Тип: Изобретение
Номер охранного документа: 0002722856
Дата охранного документа: 04.06.2020
22.04.2023
№223.018.5152

Сверхзвуковой самолет

Изобретение относится к авиационной технике, в частности, к конструкциям самолетов со сверхзвуковой скоростью полета. Сверхзвуковой самолет включает крыло, на участках нижней поверхности которого, обтекаемых потоком со сверхзвуковой скоростью, выполнены протяженные углубления или выпуклости,...
Тип: Изобретение
Номер охранного документа: 0002794307
Дата охранного документа: 14.04.2023
+ добавить свой РИД