×
17.06.2020
220.018.2750

Результат интеллектуальной деятельности: УСТРОЙСТВО ЗАГРУЗКИ ЖИДКОГО ЯДЕРНОГО ТОПЛИВА В ЯДЕРНЫЙ ГОМОГЕННЫЙ РЕАКТОР

Вид РИД

Изобретение

Аннотация: Изобретение относится к дополнительному оборудованию ядерного гомогенного реактора растворного типа, предназначенного, например, для получения медицинских изотопов. Для достижения этого технического результата предложено устройство загрузки жидкого ядерного топлива, представляющее собой систему емкостей и трубопроводов, оснащенных запорной арматурой, размещенных на единой мобильной раме. В состав предлагаемого устройства входит емкость-дозатор объемом не более 3000 см с уровнемером на весоизмерительном устройстве (тензометрическом датчике) с точностью не хуже 1%, воздушный фильтр, мановакуумметр и трубопроводы с запорной арматурой для слива топлива в корпус реактора и удаления газов в систему откачки и локализации этих газов. В нижней части устройство имеет поддон и опоры, а по периметру защитный кожух. Все элементы, контактирующие с жидким топливом, выполнены из стали 12Х18Н10Т. Техническим результатом является возможность дозированной ядерно-безопасной, дистанционной подачи жидкого ядерного топлива в корпус активной зоны ядерного гомогенного реактора растворного типа. 2 з.п. ф-лы, 2 ил.

Область техники

Изобретение относится к дополнительному оборудованию ядерного гомогенного реактора растворного типа, предназначенного, на пример, для получения медицинских изотопов.

Уровень техники

Оборудование растворного ядерного реактора для получения медицинских радиоизотопов, патент на изобретение РФ 2624823, определяет целесообразность использования системы загрузки жидкого ядерного топлива (УЗТ), для размещения которого может быть использован периферийное устройство.

Известен комплекс ядерных растворных реакторов, патент на изобретение РФ 2630259, отличительной особенностью которого является то, что реактор содержит систему загрузки свежего топливного раствора. Однако конструктивная схема системы загрузки свежего топливного раствора детально не раскрывается.

Технической проблемой аварийности при обращении с жидким ядерным топливом и, на решение которой направлено заявляемое изобретение является повышение ядерной безопасности при проведении заправки реактора ядерным топливом как при физическом пуске ядерного гомогенного реактора растворного типа, так и при планово-профилактических работах на нем.

Раскрытие сущности изобретения

Техническим результатом является возможность дозированной ядерно-безопасной, дистанционной подачи жидкого ядерного топлива в корпус активной зоны ядерного гомогенного реактора растворного типа.

Для достижения этого технического результата предложено устройство загрузки жидкого ядерного топлива (УЗТ) в ядерный гомогенный реактор включающее систему емкостей, расположенных на весоизмерительных устройствах, фильтра, трубопроводов, оснащенных запорной арматурой, размещенных на единой мобильной раме с поддоном и кожухом.

В состав предлагаемого устройства входит рама с закрепленными на ней: емкостью-дозатором объемом не более 3000 см3 и заправочной емкостью, установленные на весоизмерительных устройствах с точностью не хуже 1%, аэрозольным воздушным фильтром, датчиком давления и трубопроводами с запорной арматурой.

Электромагнитные вентили на трубопроводе из заправочной емкости и на трубопроводе в корпус реактора электрически соединены с СУЗ комплекта ядерного реактора.

Рама в нижней части имеет поддон и опоры, а по периметру защитный кожух, а все элементы, контактирующие с жидким топливом и кожух, выполнены из стали 12Х18Н10Т.

Емкость-дозатор объемом не более 3000 см3 (объем емкостей должен соответствовать требованиям ядерной безопасности согласно НП-009-17., т.е. скорость введения положительной реактивности составляет не более 0,07 beff/сек)

Краткое описание чертежей

На фиг. 1 показаны элементы технологической схемы устройства загрузки жидкого (УЗТ) ядерного топлива в ядерный гомогенный реактор, где:

ВН1, ВН4, ВН5, ВН7, ВН9 - клапан электромагнитный;

ВН2, ВНЗ, ВН6, ВН8 - вентиль ручной;

Е1 - емкость заправочная;

Е2 - дозатор;

Р - датчик давления;

Ф - фильтр аэрозольный;

G1, G2 - датчик тензометрический.

На фиг. 2 показано одно из возможных конструктивных решений устройства загрузки жидкого ядерного топлива в ядерный гомогенный реактор, где:

1 - дозатор Е2;

2 - клапан электромагнитный ВН4;

3 - перегородка;

4 - кожух;

5 - поддон;

6 - емкость заправочная Е1;

7 - короб технологический;

8 - опора;

9, 11 - вентиль ручной ВН2, ВН8;

10 - датчик давления Р;

12 - рама;

13 - магистраль топливного раствора;

Осуществление изобретения

Возможное конструктивное решение устройства загрузки жидкого ядерного топлива в ядерный гомогенный реактор, показанное на фиг. 2 представляет собой раму 12, на которой смонтированы все элементы технологической схемы фиг. 1.

Дозатор Е2 сварными соединениями труб подключен к вентилям ВН6, ВН2 и электроуправляемым клапанам ВН7, ВН1, ВН4 и ВН5. Сам дозатор Е2 размещен и закреплен винтовыми соединениями на тензометрических весах G2. Трубы дозатора имеют изгибы для минимизации влияния на показания весов при измерении дозы жидкого топлива. Электромагнитный клапан ВН7 с противоположной стороны от труб дозатора Е2 сварным соединением трубы подключен к аварийному ручному вентилю ВН8 и далее к резьбовому соединению с магистралью заправки реактора. Электроуправляемый клапан ВН5 с противоположной стороны от труб дозатора Е2 сварным соединением трубы и далее через резьбовое соединение подключается к заправочной емкости Е1, которая каждый раз доставляется из помещения хранения ядерного топлива, хомутами закрепляется на тензометрических весах G1 УЗТ и подключаются к трубам УЗТ. Электромагнитный клапан ВН4 трубой и сварным соединением подключается к электромагнитному клапану ВН9 и далее к аэрозольному фильтру для связи с атмосферой. Электромагнитный клапан ВН1 через резьбовое соединение подключается к системе откачки газа или УЛГ. Перед клапаном со стороны дозатора Е2 через тройник и вентили ВН2 и ВНЗ подключается датчик давления Р.

Рама УЗТ 12 по фиг. 2 с размещенным оборудованием закрыта кожухом 4, имеющим с двух противоположных сторон дверцы на фигурах не показаны. Передняя дверца на фиг. 2 не показана служит для доступа к месту установки заправочной емкости Е1 поз. 6 и технологическому коробу 7, задняя дверца на фиг. 2 не показана - для доступа к остальным агрегатам, в т.ч. к ручным клапанам. Перегородка 3 отделяет рабочее место персонала, производящего установку и снятие заправочной емкости Е1 поз. 6, от остальных агрегатов УЗТ. Поддон 5 обеспечивает локализацию возможной капельной течи из магистралей топливного раствора 13. Шланги и электрические кабели внешнего соединения на фиг. 2 не показаны, свернутые в бухты, закреплены внутри кожуха 4. Во время работы электрические кабели подключаются через клемную коробку к СУЗ гомогенного реактора. Основной конструкционный материал оборудования, контактирующего с топливом и кожуха 4 - сталь 12Х18Н10Т. Материал рамы 12 и опор 8 - углеродистая сталь, покрытая краской, стойкой к дезактивационным растворам.

Согласно технологической схемы по фиг. 1 разрежение в дозаторе Е2 поз. 1 обеспечивается устройством локализации газов (УЛГ), входящей в состав реакторного комплекса или системой вакуумирования, при открытии клапана ВН1 и контролируется датчиком давления Р поз. 10. Количество раствора в заправочной емкости Е1 поз. 6 и в дозаторе Е2 поз. 1 на первом этапе цикла контролируется соответственно двумя тензометрическими датчиками G1 и G2 (на фиг. 2 не показаны). Клапан ВН4 поз. 2 служит для развакуумирования дозатора Е2 поз. 1 с целью прекращения подачи в него раствора при наборе требуемого его количества. Клапан ВН7 служит для выдачи раствора из дозатора Е2 поз. 1 в реактор, вентиль ВН6 - для возврата из дозатора Е2 поз. 1 в заправочную емкость Е1 поз. 6 излишков раствора. Вентили ВН2 и ВНЗ служат для отсечки датчика Р от магистралей УЗТ при замене датчика, его ремонте или метрологической поверке.

Работа УЗТ производится следующим образом. Арматура УЗТ приводится в исходное положение - вентили ВН2 и ВН8 открыты, остальные вентили и клапаны закрыты. Заправочная емкость поз. 6 Е1 с приготовленной порцией раствора топлива устанавливается на тензометрический датчик G1 и стыкуется с трубопроводами УЗТ. При этом газовая полость заправочной емкости поз. 6 Е1 соединяется с атмосферой через фильтр Ф. Все последующие операции производятся дистанционно по командам с центрального пульта СУЗ. Так же с пульта СУЗ задается величина каждой порции в соответствии с установленным алгоритмом, но не более 3-х литров в одной порции.

При открытии клапана ВН1 разрежение из УЛГ передается в дозатор Е2 поз. 1. При открытии клапана ВН5 раствор из заправочной емкости Е1 поз. 6 под действием разрежения начинает перетекать в дозатор Е2 поз. 1. Показания тензометрического датчика G2 увеличиваются, показания G1 уменьшаются. При достижении в дозаторе Е2 поз. 1 требуемого количества раствора клапан ВН4 открывается, соединяя полость дозатора с атмосферой. Заполнение дозатора Е2 поз. 1 прекращается, остатки раствора из подающего трубопровода сливаются в заправочную емкость Е1 поз. 6. Закрывается клапан ВН5, открывается клапан ВН7, порция раствора из дозатора Е2 поз. 1 сливается в реактор (на фиг. 1 и 2 не показан). Арматура УЗТ приводится в исходное положение, опорожненная заправочная емкость Е1 поз. 6 меняется на заполненную из помещения хранения топлива, и цикл повторяется.

Учитывая возможность обслуживания нескольких реакторов одним УЗТ, оно может выполняться мобильным и автономным. Наличие в конструкции УЗТ четырех опор поз.8 и жесткого поддона (на фиг. 2 не показан) в нижней части рамы поз. 12 допускает возможность его перемещения из помещения хранения к месту работы и обратно с помощью гидравлической тележки.

УЗТ и загрузочные емкости с топливным раствором доставляются из хранилища к месту работы. Производится стыковка гидравлической магистрали УЗТ с загрузочным патрубком реактора и пневматической магистрали УЗТ с патрубком УЛГ, обеспечивающего вакуумирование дозатора Е2 поз. 1. На УЗТ открываются ручные вентили - подачи раствора в реактор и соединения с датчиком давления Р поз. 10. После этого все операции по загрузке производятся по управляющим сигналам с системы управления защитой реактора (СУЗ).

В соответствие с требованиями НП-09-17 перекачка жидкого ядерного топлива из заправочных емкостей в корпус реактора для обеспечения требований безопасности производится дозированными порциями от 100 до 2000 см3 с точностью не хуже 1% или не более ±20 см3. Дозирование обеспечивается двумя весоизмерительными устройствами. С целью обеспечения ядерной безопасности каждый цикл загрузки одной порции жидкого ядерного топлива производится в два этапа:

- перекачка порции топливного раствора из заправочной емкости Е1 в дозатор Е2 под действием разрежения, создаваемого в дозаторе системой УЛГ;

- слив топлива самотеком из дозатора в корпус реактора через быстродействующий клапан с электроприводом ВН7.

При этом электромагнитные клапаны, перекрывающие подачу раствора в корпус реактора и в дозатор Е2 поз. 1, предотвращают бесконтрольное попадание топлива в реактор, т.к. электрическая схема управления этими клапанами, размещенная в СУЗ, оснащена взаимной блокировкой, исключающей возможность их одновременного открытия. Дополнительно в магистрали, соединяющей УЗТ с реактором, установлен отсечной аварийный клапан с электромеханическим приводом ВН7. По окончании загрузки все клапаны закрываются, магистрали расстыковываются, при необходимости промываются водой. УЗТ перемещается в хранилище.


УСТРОЙСТВО ЗАГРУЗКИ ЖИДКОГО ЯДЕРНОГО ТОПЛИВА В ЯДЕРНЫЙ ГОМОГЕННЫЙ РЕАКТОР
УСТРОЙСТВО ЗАГРУЗКИ ЖИДКОГО ЯДЕРНОГО ТОПЛИВА В ЯДЕРНЫЙ ГОМОГЕННЫЙ РЕАКТОР
УСТРОЙСТВО ЗАГРУЗКИ ЖИДКОГО ЯДЕРНОГО ТОПЛИВА В ЯДЕРНЫЙ ГОМОГЕННЫЙ РЕАКТОР
Источник поступления информации: Роспатент

Показаны записи 91-100 из 259.
20.11.2015
№216.013.8ffe

Способ разложения карбонатов

Изобретение может быть использовано в химической, горнодобывающей промышленности. Способ разложения карбонатов включает измельчение исходного сырья, разложение карбонатов за счет подвода внешней энергии, отвод конверсионного газа, охлаждение целевого продукта. В качестве карбонатов используют...
Тип: Изобретение
Номер охранного документа: 0002568478
Дата охранного документа: 20.11.2015
20.12.2015
№216.013.9a64

Реактор конверсии метана

Изобретение относится к установкам получения водорода, водород-метановой смеси, синтез-газа, содержащего в основном Н и СО, для производства водорода, спиртов, аммиака, диметилового эфира, этилена, для процессов Фишера-Тропша и может быть использовано в химической промышленности для переработки...
Тип: Изобретение
Номер охранного документа: 0002571149
Дата охранного документа: 20.12.2015
20.01.2016
№216.013.a3ee

Термоэлектрическая батарея

Изобретение относится к области термоэлектрического приборостроения и может быть использовано при изготовлении термоэлектрических устройств, основанных на эффекте Пельтье или Зеебека, прежде всего термоэлектрических генераторов электрической энергии, а также холодильных термоэлектрических...
Тип: Изобретение
Номер охранного документа: 0002573608
Дата охранного документа: 20.01.2016
10.02.2016
№216.014.c33e

Способ изготовления защитного диэлектрического слоя

Изобретение относится к способам получения тонкопленочных материалов, в частности тонких пленок на основе оксида европия(III), и может быть использовано для защиты функционального слоя EuO. Способ изготовления защитного диэлектрического слоя EuO для полупроводниковой пленки, полученной на...
Тип: Изобретение
Номер охранного документа: 0002574554
Дата охранного документа: 10.02.2016
20.03.2016
№216.014.c8df

Способ изготовления наноструктурированной мишени для производства радиоизотопа молибдена-99

Изобретение относится к реакторной технологии получения радиоизотопа молибден-99 (Мо), являющегося основой для создания радиоизотопных генераторов технеция-99m (Tc). В заявленном способе производство радиоизотопа молибден-99 по реакции Мо(n,γ)Мо, осуществляемой в потоке тепловых нейтронов...
Тип: Изобретение
Номер охранного документа: 0002578039
Дата охранного документа: 20.03.2016
27.03.2016
№216.014.c8fb

Микротвэл ядерного реактора

Изобретение относится к области ядерной энергетики, в частности к микросферическому топливу с керамическими защитными покрытиями, и может быть использовано в ядерных реакторах, применяемых как для транспорта, так и в стационарных энергоустановках, в частности в сверхвысокотемпературных...
Тип: Изобретение
Номер охранного документа: 0002578680
Дата охранного документа: 27.03.2016
20.03.2016
№216.014.c9f3

Способ защиты от окисления биполярных пластин и коллекторов тока электролизеров и топливных элементов с твердым полимерным электролитом

Изобретение относится к способу защиты от окисления биполярных пластин топливных элементов и коллекторов тока электролизеров с твердым полимерным электролитом (ТПЭ), заключающемуся в предварительной обработке металлической подложки, нанесении на обработанную металлическую подложку...
Тип: Изобретение
Номер охранного документа: 0002577860
Дата охранного документа: 20.03.2016
20.04.2016
№216.015.3472

Способ изготовления сверхпроводящих многосекционных оптических детекторов

Использование: для изготовления сверхпроводниковых датчиков излучения. Сущность изобретения заключается в том, что способ изготовления сверхпроводящих многосекционных оптических детекторов, включающий формирование отдельных секций из сверхпроводящих нанопроводов, образующих рисунок в виде...
Тип: Изобретение
Номер охранного документа: 0002581405
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3605

Структура полупроводник-на-изоляторе и способ ее получения

Изобретение относится к твердотельной электронике. Изобретение заключается в том, что на изоляторе формируют поверхностный слой полупроводника. В изоляторе на расстоянии от поверхностного слоя полупроводника, меньшем длины диффузии носителей заряда, возникающих при облучении внешним...
Тип: Изобретение
Номер охранного документа: 0002581443
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.3891

Способ измерения профиля стационарных мегаваттных пучков ионов и атомов в инжекторах

Изобретение относится к диагностике профилей (распределения плотности тока по сечению пучка) пучков ионов и атомов в мегаваттных квазистационарных (десятки и сотни секунд) инжекторах, предназначенных для нагрева плазмы и поддержания тока в термоядерных установках типа токамак. Способ измерения...
Тип: Изобретение
Номер охранного документа: 0002582490
Дата охранного документа: 27.04.2016
+ добавить свой РИД