×
12.06.2020
220.018.2655

Результат интеллектуальной деятельности: Способ разделения речи и пауз по значениям дисперсий амплитуд спектральных составляющих

Вид РИД

Изобретение

№ охранного документа
0002723301
Дата охранного документа
09.06.2020
Аннотация: Изобретение относится к области техники передачи и трансляции речевой информации и может найти применение в устройствах связи. Техническим результатом является повышение эффективности принятия правильного решения о появлении речевого сигнала при наличии акустического шума. Это достигается тем, что проводят спектральный анализ шума или аддитивной смеси речевого сигнала и шума для «скользящего окна», разбитого на два интервала анализа, каждый из которых состоит из нескольких интервалов одинаковой длительности. Спектральный анализ проводят методом анализа многочастотных периодических сигналов, представленных цифровыми отсчетами, с использованием компенсации комбинационных составляющих. Находят дисперсию значений мощностей для интервалов анализа для каждой гармоники, рассчитывают среднее значение дисперсий мощностей первого и второго интервалов анализа. Значение разности средних значений дисперсий мощностей сравнивают с порогом. Считают, что во втором интервале анализа присутствует только помеха, если значение разности средних значений дисперсий мощностей не превышает порог, в противном случае считают, что во втором интервале анализа присутствует сигнал или смесь сигнала и помехи. Сдвигают «скользящее окно» на заданное число интервалов. Описанную процедуру повторяют. При использовании способа при значениях отношения мощностей сигнала и помехи, близких к 1, обеспечивается значение вероятности правильного решения о появлении речевого сигнала, близкой к 0,998, при этом вероятность ложной тревоги, т.е. принятия решения о появлении речевого сигнала при его отсутствии, равна 0,05. 4 ил.

Изобретение относится к области цифровой обработки речевых сигналов и может найти применение в устройствах связи.

Известен способ спектрального анализа электрических сигналов (патент РФ №2431853), в котором анализируемый электрический сигнал подают одновременно на гребенку фильтров, настроенных на различные частоты и измеряют сигналы на выходах этих фильтров, причем до проведения измерений диапазон контролируемых частот разбивают на элементы разрешения с шагом дискретизации, соответствующим желаемым точности и разрешению спектрального анализа. Недостатком данного способа является сложность технической реализации и недостаточно высокая эффективность подавления внешних акустических помех, при использовании данного способа для осуществления спектрального анализа.

Известен способ спектрального анализа сигналов (патент РФ №2127888), в котором при дискретизации и квантовании сигнала создают последовательности дискретных значений сигнала с различными частотами следования отсчетов в каждой из них. При этом дискретные значения этих последовательностей фильтруют с помощью цифровых полосовых фильтров и цифровых фильтров нижних частот. Сигналы с выходов цифровых полосовых фильтров подвергают обработке, связанной с определением амплитудных значений, а на их основе и остальных информативных параметров полосовых сигналов. Недостатком данного способа является то, что способ предназначен для проведения спектрального анализа сигналов с постоянной относительной разрешающей способностью по частоте, а также большая вычислительная сложность и, соответственно, трудность технической реализации в устройствах цифровой обработки речевых сигналов.

Известен способ спектрального анализа многочастотных периодических сигналов, представленных цифровыми отсчетами (Функциональный контроль и диагностика электротехнических систем и устройств по цифровым отсчетам мгновенных значений тока и напряжения. /под редакцией Е.И. Гольдштейна - Томск: Изд. «Печатная мануфактура», 2003, с.92-94), недостатком которого является невозможность определения сигналом или помехой являются выделенные гармонические составляющие, а также большое время анализа.

Известно устройство для выделения акустических сигналов в каналах связи, описанное в патенте RU 2171549, H04Q 1/46, недостатком которого является недостаточно высокая эффективность подавления внешних акустических помех.

Известно устройство для выделения тональных сигналов в каналах связи по патенту RU 2214051, H04B 3/46, H04Q 1/457, H04M 1/50. Изобретение относится к области электросвязи, в частности к автоматическим средствам приема сигналов канальной сигнализации в системах многоканальной связи, и может использоваться для обнаружения акустических сигналов в телефонных каналах. Известное техническое решение обладает недостаточно высокой эффективностью при решении задачи разделения речи и пауз в условиях наличия акустических помех.

Известен способ разделения речи и пауз путем анализа значений фаз частотных составляющих шума и сигнала по патенту RU 2680735 G10L 21/0272, недостатком которого является недостаточно высокая эффективность при решении задачи разделения речи и пауз в условиях наличия акустических помех с большим числом составляющих.

Известен способ разделения речи и пауз путем анализа значений корреляционной функции помехи и смеси сигнала и помехи по патенту RU 2691603 G10L 15/00. Известное техническое решение обладает недостаточно высокой эффективностью при решении задачи разделения речи и пауз в условиях априорной неопределенности информации о присутствии в интервале анализа только помехи или смеси помехи и сигнала.

Известен способ разделения речи и пауз, описанный в книге «Цифровая обработка речевых сигналов. //Л.Р. Рабинер, Р.В. Шафер. Перевод с английского под редакцией М.В. Назарова и Ю.Н. Прохорова. Москва, «Радио и связь», 1981», стр. 123 - 126. Недостатком данного способа являются недостаточно высокая точность решения задачи определения момента появления речевого сигнала и высокая вероятность ошибочного решения о появлении сигнала в условиях наличия акустического шум.

Наиболее близким аналогом по технической сущности к предлагаемому является способ разделения речи и пауз путем сравнительного анализа значений мощностей помехи и смеси сигнала и помехи по патенту RU 2668407 G10L 25/93.

Способ-прототип заключается в следующем.

На всем интервале анализа, состоящего из интервала, который не содержит речевой сигнал, и интервала, который содержит смесь сигнала и помехи, сигнал (помеха или смесь сигнала и помехи), поступающий в систему, возводят в квадрат, после возведения в квадрат сигнал разветвляют на две одинаковые составляющие, одну из них фильтруют фильтром нижних частот (ФНЧ), вторую составляющую фильтруют полосовым фильтром, сигналы с выходов фильтров дискретизируют и заносят в память для последующей обработки, формируют «скользящее окно», состоящее из двух интервалов одинаковой длительности (одинаковое количество отсчетов). Мощность для каждого интервала рассчитывают как разность сумм отсчетов, взятых на выходах ФНЧ и полосового фильтра в течение длительности соответствующего интервала, после чего разность значений мощностей, полученных для второго и для первого интервалов сравнивают с заранее определенным порогом, если разность полученных значений мощностей не превышает порог, то «скользящее окно» сдвигают на некоторое, заранее определенное количество отсчетов (K1), описанную процедуру повторяют до тех пор, пока порог не будет превышен, этот момент считают моментом возможного появления сигнала, значение этого момента определяют как значение положения правой границы первого интервала, входящего в «скользящее окно», данное значение запоминают, после чего заданное число раз осуществляют следующую процедуру, «скользящее окно» сдвигают на некоторое, заранее определенное количество отсчетов (K2), осуществляют расчет значений мощности для второго интервала, полученное значение сравнивают со значением мощности для первого интервала, которое было запомнено в момент формирования гипотезы о появлении сигнала. После завершения данной процедуры рассчитывают суммарное количество превышений значением мощности, полученным для второго интервала запомненного значения мощности, для первого интервала, если данное значение превышает заданный порог, то процесс завершают, рассчитывают время появления речевого сигнала как сумму значений запомненного момента превышения порога и половины одного временного интервала, входящего в «скользящее окно».

Недостатком способа-прототипа является его недостаточно высокая эффективность при решении задачи разделения речи и пауз в условиях априорной неопределенности информации о присутствии в интервале анализа только помехи или только речевого сигнала или смеси помехи и речевого сигнала.

Задачей предлагаемого способа является повышение эффективности принятия правильного решения о появлении речевого сигнала при наличии акустического шума в условиях неопределенности информации о присутствии в интервале анализа только помехи или только речевого сигнала или смеси помехи и речевого сигнала.

Для решения поставленной задачи в способе разделения речи и пауз по значениям дисперсий амплитуд спектральных составляющих, который заключается в том, что на всем интервале анализа, состоящего из интервала, который содержит шум или речевой сигнал или смесь речевого сигнала и шума, которые поступают в устройство (входной сигнал), сигнал разветвляют на две одинаковые составляющие, одну из них фильтруют фильтром нижних частот (ФНЧ), вторую составляющую фильтруют полосовым фильтром, сигналы, поступившие на выходы фильтров дискретизируют и заносят в память для последующей обработки, формируют «скользящее окно», состоящее из интервалов одинаковой длительности, «скользящее окно» сдвигают на некоторое, заранее определенное количество отсчетов, согласно изобретению, «скользящее окно» формируют так, что оно включает в себя два интервала анализа, каждый из которых состоит из нескольких интервалов одинаковой длительности, первое положение «скользящего окна» устанавливают так, что в первом интервале анализа присутствует только помеха, осуществляют спектральный анализ входного сигнала для каждого интервала следующим образом, каждый результат преобразования входного сигнала, который образуется после умножения входного сигнала на синус и косинус опорных частот, разветвляют на две одинаковые составляющие, первую составляющую фильтруют фильтром нижних частот (ФНЧ), полоса которого согласована с полосой анализируемого сигнала, одновременно вторую составляющую фильтруют полосовым фильтром, полоса пропускания которого выбирается так, что верхняя частота полосового фильтра соответствует верхней частоте анализируемого сигнала, нижнюю частоту полосового фильтра устанавливают равной некоторому заранее заданному значению, выбор ФНЧ и полосового фильтра осуществляют с идентичными в максимальной степени фазо-частотными характеристиками и так, что амплитудно-частотная характеристика (АЧХ) полосового фильтра в области частот близких к нулю имеет максимально-возможную крутизну, в области частот, начиная со значения, для которого разность значений АЧХ ФНЧ и полосового фильтра становится меньше некоторой заранее заданной величины, обеспечивают идентичность их АЧХ в максимальной степени, сигналы, прошедшие ФНЧ и полосовой фильтр, вычитают один из другого, результаты вычитания преобразуют в цифровой вид, по данным значениям, соответствующим синусной и косинусной составляющей одной частоты, определяют мгновенную спектральную плотность (МСП) для каждой опорной частоты и запоминают эти значения пропорциональные амплитуде сигналов, находят среднее значение МСП, определяют значение порога путем умножения найденного среднего значения МСП на коэффициент, значение которого устанавливают заранее, полученные значения МСП сравнивают с порогом, по результатам сравнения принимают решение о наличии или об отсутствии сигнала с соответствующей частотой, находят значения мощности каждого выделенного сигнала путем возведения в квадрат соответствующих значений МСП, находят для каждой гармоники дисперсию значений мощностей для первого и второго интервалов анализа, рассчитывают среднее значение дисперсий мощностей первого и второго интервалов, усреднение осуществляют по числу гармоник, определяют пороговое значение путем умножения среднего значения дисперсии значений мощностей первого интервала анализа, принадлежащего «скользящему окну», на коэффициент, значение которого определяют заранее, находят значение разности средних значений дисперсий мощностей, рассчитанных для первого и второго интервалов анализа, данное значение разности сравнивают с порогом, считают, что во втором интервале анализа присутствует только помеха, если значение разности среднее значение дисперсий значений мощностей не превышает порог, в противном случае считают, что во втором интервале анализа присутствует сигнал или смесь сигнала и помехи, сдвигают «скользящее окно» на заданное значение интервалов, описанную процедуру повторяют, для последующих шагов пороговое значение для разности средних значений дисперсии значений мощностей интервалов анализа определяют с использованием среднего значения средних значений дисперсии мощностей интервалов анализа, которое рассчитывают, применяя принцип «первый пришел, первый ушел», процесс продолжают до тех пор, пока не закончится время, отведенное для анализа входного сигнала.

Предлагаемый способ заключается в следующем.

«Скользящее окно» формируют так, что каждый из двух интервалов анализа, которые его образуют, состоит из нескольких интервалов одинаковой длительности (иллюстративный пример приведен на фиг. 2, 3).

Первое положение «скользящего окна» устанавливают так, что в первом интервале анализа присутствует только помеха.

Осуществляют спектральный анализ входного сигнала для каждого интервала следующим образом.

Каждый результат преобразования входного сигнала, который образуется после умножения входного сигнала на синус и косинус опорных частот, разветвляют на две одинаковые составляющие.

Первую составляющую фильтруют фильтром нижних частот (ФНЧ), полоса которого согласована с полосой анализируемого сигнала. Одновременно вторую составляющую фильтруют полосовым фильтром, полоса пропускания которого выбирается так, что верхняя частота полосового фильтра соответствует верхней частоте анализируемого сигнала, нижнюю частоту полосового фильтра устанавливают равной некоторому заранее заданному значению. Выбор ФНЧ и полосового фильтра осуществляют с идентичными в максимальной степени фазо-частотными характеристиками и так, что амплитудно-частотная характеристика (АЧХ) полосового фильтра в области частот близких к нулю имеет максимально возможную крутизну в области частот, начиная со значения, для которого разность значений АЧХ ФНЧ и полосового фильтра становится меньше некоторой заранее заданной величины, обеспечивают идентичность их АЧХ в максимальной степени (иллюстративный пример приведен на фиг. 1).

Сигналы, прошедшие ФНЧ и полосовой фильтр, преобразованные в цифровой вид, вычитают один из другого, по данным значениям, соответствующим синусной и косинусной составляющей одной частоты, определяют значения мгновенной спектральной плотности (МСП) пропорциональные амплитуде сигналов для каждой опорной частоты по выражениям (см., например, «Функциональный контроль и диагностика электротехнических систем и устройств по цифровым отсчетам мгновенных значений тока и напряжения. /под редакцией Е.И. Гольдштейна - Томск: Изд. «Печатная мануфактура», 2003», с.92-94):

S(ωj)= ; (1)

;

, (2)

где S1j) и S2j) – синусная и косинусная составляющие МСП;

a(ti) – отсчеты мгновенных значений в моменты времени t1, t2, …, tj, …, tN;

t2-t1=t3-t2=tN-tN-1=…=Δt;

Δt=Т/N,

где Δt - шаг дискретизации;

N - количество точек за время T,

ω1, ω2, …, ωj, …, ωn – опорные частоты.

Находят среднее значение МСП, определяют значение порога путем умножения найденного среднего значения МСП на коэффициент, значение которого устанавливают заранее. Значение данного коэффициента определяется путем математического моделирования или экспериментальным путем. Полученные значения МСП сравнивают с порогом, по результатам сравнения принимают решение о наличии или об отсутствии сигнала с соответствующей частотой.

Находят значения мощности каждого выделенного сигнала путем возведения в квадрат соответствующих значений МСП.

Рассчитывают известным способом дисперсию значений мощностей для первого и второго интервалов анализа для каждой гармоники, и среднее значение дисперсий мощностей первого и второго интервалов, усреднение осуществляют по числу гармоник.

Определяют пороговое значение путем умножения среднего значения дисперсии значений мощностей гармоник первого интервала анализа, принадлежащего «скользящему окну», на коэффициент, значение которого определяют заранее. Значение данного коэффициента определяется путем математического моделирования или экспериментальным путем.

Находят значение разности средних значений дисперсий мощностей гармоник, рассчитанных для первого и второго интервалов анализа.

Данное значение разности сравнивают с порогом. Если значение разности средних значений дисперсий значений мощностей не превышает порог, то считают, что во втором интервале анализа присутствует только помеха, в противном случае считают, что во втором интервале анализа присутствует сигнал или смесь сигнала и помехи.

Сдвигают «скользящее окно» на заданное значение интервалов, описанную процедуру повторяют.

Для последующих шагов пороговое значение для разности средних значений дисперсии значений мощностей гармоник определяют с использованием среднего значения средних значений дисперсии мощностей гармоник, которое рассчитывают, применяя принцип «первый пришел, первый ушел» (см., например, Роберт Круз. «Структуры данных и проектирования программ». – Бином. Лаборатория знаний. 2008). То есть из списка усредненных средних значений дисперсии мощностей гармоник (ДМГ), вычеркивают первое значение и добавляют последнее рассчитанное значение. После чего значения ДМГ перенумеровывают, а именно, значению со вторым номером присваивают номер один, значению с третьим номером присваивают номер два, и т.д., последнему рассчитанному значению присваивают последний номер.

Количество средних значений дисперсии мощностей, используемое при расчете их средних значений с использованием принципа «первый пришел, первый ушел», определяют путем математического моделирования или экспериментальным путем.

Процесс продолжают до тех пор, пока не закончится время, отведенное для анализа входного сигнала.

Ниже приведены результаты моделирования процесса определения вероятности правильного решения о появлении речевого сигнала при использовании предлагаемого способа.

Сумма гармонических сигналов при моделировании представлена в виде совокупности гармонических колебаний со случайными значениями амплитуд (Usi) и фаз (ϕsi), которые распределены по нормальному (амплитуды) и равномерному (фазы) законам, соответственно

U=, (3)

где: ωsi φsi – частота, фаза, амплитуда i-го гармонического сигнала;

Ns – число гармонических сигналов.

При моделировании:

– частоты гармоник помехи и сигнала формировались как случайные величины, значения которых распределены по равномерному закону в полосе сигнала;

– фазы гармоник помехи и сигнал представлены как случайные величины, значения которых распределены по равномерному закону;

– амплитуды сигналов представлены как случайные величины, распределенные по равномерному закону в диапазоне от 1 до 2;

– амплитуды гармоник помехи представлены как случайные величины, значения которых распределены по нормальному закону.

Моделирование проведено для следующих значений параметров

– диапазон изменения частот речевого сигнала: 300 Гц – 3400 Гц;

– число реализаций – 300;

– число гармоник сигнала – 8;

– число гармоник помехи – 20;

– число временных шагов – 50;

– число интервалов, на которые осуществлялся сдвиг «скользящего окна» – 3;

– число опорных частот – 39;

– коэффициент, определяющий частоту дискретизации – 9000;

– значение первой опорной частоты – 300 Гц;

– коэффициент, определяющий шаг изменения опорной частоты составляет 1,05 для частот, значения которых не превышают 1000 Гц, и составляет 1,1 для частот, значения которых превышают 1000 Гц;

– значение порога для амплитуды гармоник – 0,1;

– значение полосы частот полосового фильтра с максимальной крутизной АЧХ – 200 Гц.

Результаты моделирования процесса разделения речи и пауз приведены в таблице.

Наименование параметра Отношение мощностей сигнала и помехи
4 2 1 0,5 0,3
Число интервалов, образующих интервал анализа 2
Значение вероятности правильного решения о появлении речевого сигнала 0,7 0,51 0,42 0,4 0,35
Значение вероятности ложной тревоги 0,1 0,1 0,1 0,1 0,1
Число интервалов, образующих интервал анализа 3
Значение вероятности правильного решения о появлении речевого сигнала 1 1 0,998 0,987 0,94
Значение вероятности ложной тревоги 0,05 0,05 0,05 0,05 0,05

На основе результатов анализа данных, приведенных в таблице, установлено, что при значениях отношения мощностей сигнала и помехи близких к 1 вероятность правильного решения о появлении речевого сигнала близка к 0,999 при этом значение вероятности ложной тревоги (принятие решения о появлении речевого сигнала при его отсутствии) равна 0,05.

Структурная схема устройства, реализующего предлагаемый способ, приведена на фиг. 4, где обозначено:

1 – электроакустическое устройство (ЭАУ);

2 – усилитель низкой частоты (УНЧ);

3.1 – 3.n – блоки умножения с первого по n-й;

4.1 – 4.n – фильтры нижних частот (ФНЧ) с первого по n-й;

5.1 – 5.n – устройства вычитания с первого по n-й;

6.1 – 6.n – аналого-цифровые преобразователи (АЦП) с первого по n-й;

7.1 – 7.n – полосовые фильтры с первого по n-й;

8 – вычислительное устройство (ВУ).

Устройство содержит последовательно соединенные ЭАУ 1 и УНЧ 2, вход ЭАУ 1 является входом устройства. Кроме того – n параллельных линеек, каждая из которых состоит из соответствующих последовательно соединенных блока умножения 3, ФНЧ 4, устройства вычитания 5 и АЦП 6, при этом полосовой фильтр 7 включен между выходом блока умножения 3 и вторым входом устройства вычитания 5. Входы n блоков умножения 3.1 – 3.n объединены и соединены с выходом УНЧ 2. Выходы с первого по n-й АЦП 6.1 – 6.n соединены с соответствующими входами с первого по n-й вычислительного устройства 8, выход которого является выходом устройства. Вторые входы блоков умножения 3.1 – 3.n являются входами для опорных сигналов.

Устройство работает следующим образом.

Шум или аддитивную смесь сигнала и шума, которые поступают с выхода ЭАУ 1, усиливают в УНЧ 2 и подают на вход n параллельных линеек.

Для обработки одной поднесущей используют две линейки устройства. То есть, если используют k поднесущих, то число линеек равно

n =2*k.

Помеху или аддитивную смесь сигнала и помехи с выхода УНЧ 2 подают на первые входы блоков умножения 3.1-3.n, на вторые входы которых подают соответствующие опорные сигналы, например,

Uоп1=sin(x);

Uоп2=cos(x).

….

Uоп(n-1)=sin(x);

Uопn=cos(x).

Результат умножения сигнала и помехи на опорные сигналы разветвляют на две одинаковые составляющие. Первую составляющую фильтруют ФНЧ 4.1 – 4.n, полоса каждого из которых согласована с полосой сигнала. Одновременно вторую составляющую фильтруют полосовыми фильтрами 7.1 – 7.n, полоса пропускания каждого из которых выбирается так, что верхняя частота полосовых фильтров 7.1 – 7.n соответствует верхней частоте сигнала, нижнюю частоту полосовых фильтров 7.1 – 7.n устанавливают согласованно со значениями разности между соседними опорными частотами.

Значение нижней частоты полосовых фильтров 7.1 – 7.n определяют на этапе разработки экспериментальным путем или методом математического моделирования как значение, обеспечивающее максимальную эффективность спектрального анализа.

Выбор ФНЧ 4.1 – 4.n и полосовых фильтров 7.1 – 7.n осуществляют с идентичными в максимальной степени фазо-частотными характеристиками и так, что АЧХ полосовых фильтров 7.1 – 7.n в области частот близких к нулю имеет максимально-возможную крутизну, в области частот, начиная со значения, для которого разность значений АЧХ ФНЧ 4.1 – 4.n и полосовых фильтров 7.1 – 7.n становится меньше некоторой заранее заданной величины (Fр), обеспечивают идентичность их АЧХ в максимальной степени (иллюстративный пример приведен на фиг. 1).

Сигналы, прошедшие ФНЧ 4.1 – 4.n и полосовые фильтры 7.1 – 7.n, вычитают один из другого. То есть, из сигнала первого ФНЧ 4.1 вычитают сигнал первого полосового фильтра 7.1, из сигнала второго ФНЧ 4.2 вычитают сигнал второго полосового фильтра 7.2 и т.д.

Полученные сигналы преобразуют в цифровой вид в соответствующих с первого по n-й АЦП 6.1 – 6.n. Данные сигналы в цифровом виде подают в ВУ 8.

В ВУ 8 по данным значениям, соответствующим синусной и косинусной составляющей одной частоты, определяют мгновенную спектральную плотность (МСП) по ф. 1 и ф. 2 для каждой опорной частоты и запоминают эти значения, пропорциональные амплитуде сигналов.

Из полученных значений находят МСП с максимальным значением. Определяют значение порога путем умножения найденного максимального значения МСП на коэффициент, значение которого устанавливают заранее.

Полученные значения МСП сравнивают с рассчитанным значением порога. По результатам сравнения принимают решение о наличии или об отсутствии сигнала с соответствующей частотой.

Находят значения мощности каждого выделенного сигнала путем возведения в квадрат соответствующих значений МСП.

Рассчитывают известным способом дисперсию значений мощностей для первого и второго интервалов анализа для каждой гармоники, и среднее значение дисперсий мощностей первого и второго интервалов, причем усреднение осуществляют по числу гармоник.

Определяют пороговое значение путем умножения среднего значения дисперсии значений мощностей первого интервала анализа, принадлежащего «скользящему окну», на коэффициент, значение которого определяют заранее. Значение данного коэффициента определяется путем математического моделирования или экспериментальным путем.

Рассчитывают значение разности средних значений дисперсий мощностей, рассчитанных для первого и второго интервалов анализа.

Данное значение разности сравнивают с порогом. Считают, что во втором интервале анализа присутствует только помеха, если значение разности среднее значение дисперсий значений мощностей не превышает порог, в противном случае считают, что во втором интервале анализа присутствует сигнал или смесь сигнала и помехи.

Сдвигают «скользящее окно» на заданное значение интервалов, описанную процедуру повторяют.

Для последующих шагов пороговое значение для разности средних значений дисперсии значений мощностей интервалов анализа определяют с использованием среднего значения средних значений дисперсии мощностей интервалов анализа, которое рассчитывают, применяя принцип «первый пришел, первый ушел».

Процесс продолжают до тех пор, пока не закончится время, отведенное для анализа входного сигнала.

Результаты моделирования процесса спектрального анализа приведены выше.

В качестве ЭАУ 1 могут использоваться, например, микрофоны или ларингофоны.

УНЧ 2 может быть реализован, например, на микросхеме OP467GS фирмы Analog Devices.

Блоки умножения 3.1 – 3.n могут быть выполнены, например, в виде преобразователя частоты (смесителя), см., например, учебное пособие «Основы теории радиотехнических систем». Учебное пособие.//В.И. Борисов, В.М. Зинчук, А.Е. Лимарев, Н.П. Мухин. Под ред. В.И. Борисова. Воронежский научно-исследовательский институт связи, 2004», стр. 186 – 189.

АЦП 6.1 – 6.n могут быть выполнены, например, на микросхеме AD7495BR фирмы Analog Devices.

Вычислительное устройство может быть выполнено, например, в виде единого микропроцессорного устройства с соответствующим программным обеспечением, например процессора серии TMS320VC5416 фирмы Texas Instruments, или в виде программируемой логической интегральной схемы (ПЛИС), с соответствующим программным обеспечением, например ПЛИС XCV400 фирмы Xilinx.

Таким образом, заявляемый способ может быть реализован описанным устройством.

Способ разделения речи и пауз по значениям дисперсий амплитуд спектральных составляющих, заключающийся в том, что на всем интервале анализа, состоящего из интервала, который содержит шум или речевой сигнал, или смесь речевого сигнала и шума, которые поступают в устройство цифровой обработки речевых сигналов (входной сигнал), сигнал разветвляют на две одинаковые составляющие, одну из них фильтруют фильтром нижних частот (ФНЧ), вторую составляющую фильтруют полосовым фильтром, сигналы, поступившие на выходы фильтров, дискретизируют и заносят в память для последующей обработки, формируют «скользящее окно», состоящее из интервалов одинаковой длительности, «скользящее окно» сдвигают на некоторое заранее определенное количество отсчетов, отличающийся тем, что «скользящее окно» формируют так, что оно включает в себя два интервала анализа, каждый из которых состоит из нескольких интервалов одинаковой длительности, первое положение «скользящего окна» устанавливают так, что в первом интервале анализа присутствует только помеха, осуществляют спектральный анализ входного сигнала для каждого интервала следующим образом, каждый результат преобразования входного сигнала, который образуется после умножения входного сигнала на синус и косинус опорных частот, разветвляют на две одинаковые составляющие, первую составляющую фильтруют фильтром нижних частот (ФНЧ), полоса которого согласована с полосой анализируемого сигнала, одновременно вторую составляющую фильтруют полосовым фильтром, полоса пропускания которого выбирается так, что верхняя частота полосового фильтра соответствует верхней частоте анализируемого сигнала, нижнюю частоту полосового фильтра устанавливают равной некоторому заранее заданному значению, выбор ФНЧ и полосового фильтра осуществляют с идентичными в максимальной степени фазочастотными характеристиками и так, что амплитудно-частотная характеристика (АЧХ) полосового фильтра в области частот, близких к нулю, имеет максимально возможную крутизну, в области частот, начиная со значения, для которого разность значений АЧХ ФНЧ и полосового фильтра становится меньше некоторой заранее заданной величины, обеспечивают идентичность их АЧХ в максимальной степени, сигналы, прошедшие ФНЧ и полосовой фильтр, вычитают один из другого, результаты вычитания преобразуют в цифровой вид, по данным значениям, соответствующим синусной и косинусной составляющей одной частоты, определяют мгновенную спектральную плотность (МСП) для каждой опорной частоты и запоминают эти значения, пропорциональные амплитуде сигналов, находят среднее значение МСП, определяют значение порога путем умножения найденного среднего значения МСП на коэффициент, значение которого устанавливают заранее, полученные значения МСП сравнивают с порогом, по результатам сравнения принимают решение о наличии или об отсутствии сигнала с соответствующей частотой, находят значения мощности каждого выделенного сигнала путем возведения в квадрат соответствующих значений МСП, находят дисперсию значений мощностей для первого и второго интервалов анализа для каждой гармоники, рассчитывают среднее значение дисперсий мощностей первого и второго интервалов, усреднение осуществляют по числу гармоник, определяют пороговое значение путем умножения среднего значения дисперсии значений мощностей первого интервала анализа, принадлежащего «скользящему окну», на коэффициент, значение которого определяют заранее, находят значение разности средних значений дисперсий мощностей, рассчитанных для первого и второго интервалов анализа, данное значение разности сравнивают с порогом, если значение разности средних значений дисперсий мощностей не превышает порог, то считают, что во втором интервале анализа присутствует только помеха, в противном случае считают, что во втором интервале анализа присутствует сигнал или смесь сигнала и помехи, сдвигают «скользящее окно» на заданное значение интервалов, описанную процедуру повторяют для последующих шагов, пороговое значение для разности средних значений дисперсии значений мощностей интервалов анализа определяют с использованием усредненного значения средних значений дисперсии мощностей интервалов анализа, которое рассчитывают, применяя принцип «первый пришел, первый ушел», процесс продолжают до тех пор, пока не закончится время, отведенное для анализа входного сигнала.
Способ разделения речи и пауз по значениям дисперсий амплитуд спектральных составляющих
Способ разделения речи и пауз по значениям дисперсий амплитуд спектральных составляющих
Способ разделения речи и пауз по значениям дисперсий амплитуд спектральных составляющих
Источник поступления информации: Роспатент

Показаны записи 51-60 из 105.
02.08.2019
№219.017.bb74

Способ двухмерного моноимпульсного пеленгования источников радиоизлучений

Изобретение относится к радиотехнике и может быть использовано в многоканальных моноимпульсных обнаружителях-пеленгаторах систем радиомониторинга, размещаемых, в том числе, на беспилотных летательных аппаратах, для двухмерного моноимпульсного пеленгования источников радиоизлучения по азимуту и...
Тип: Изобретение
Номер охранного документа: 0002696095
Дата охранного документа: 31.07.2019
02.08.2019
№219.017.bba5

Способ повышения точности и достоверности пеленгования при накоплении спектральных компонент сигналов источников радиоизлучения

Изобретение относится к радиотехнике и может быть использовано в многоканальных моноимпульсных обнаружителях-пеленгаторах систем радиомониторинга для решения задач пеленгования источников радиоизлучения (ИРИ). Достигаемый технический результат – повышение точности и достоверности пеленгования...
Тип: Изобретение
Номер охранного документа: 0002696094
Дата охранного документа: 31.07.2019
02.08.2019
№219.017.bbb0

Способ адаптивного отождествления спектральных компонент по принадлежности к сигналу одного источника радиоизлучения

Изобретение относится к радиотехнике и может быть использовано в многоканальных моноимпульсных обнаружителях-пеленгаторах систем радиомониторинга для решения задач отождествления спектральных компонент по принадлежности к сигналу одного источника радиоизлучения. Технический результат –...
Тип: Изобретение
Номер охранного документа: 0002696093
Дата охранного документа: 31.07.2019
09.08.2019
№219.017.bd4b

Устройство стохастической синхронизации символов

Изобретение относится к области вычислительной техники. Технический результат заключается в повышении точности синхронизации символов. Устройство содержит: последовательно соединенные приемник, демодулятор и схему регистрации, выход которой является выходом устройства, последовательно...
Тип: Изобретение
Номер охранного документа: 0002696553
Дата охранного документа: 02.08.2019
12.09.2019
№219.017.c9ee

Быстродействующий фотодетектор

Изобретение относится к области оптического приборостроения и касается быстродействующего фотодетектора на основе эффекта увлечения электронов фотонами. Фотодетектор содержит проводящую нанографитную пленку, представляющую собой кристаллиты графита, и по меньшей мере одну пару электродов,...
Тип: Изобретение
Номер охранного документа: 0002699930
Дата охранного документа: 11.09.2019
12.09.2019
№219.017.ca20

Способ формирования сигналов с расширенным спектром

Изобретение относится к помехозащищённым системам связи и может быть использовано для формирования сигналов с расширенным спектром. Технический результат – повышение скорости передачи информации и разведзащищённости, снижение уровня внеполосного излучения. Способ формирования состоит в том,...
Тип: Изобретение
Номер охранного документа: 0002699819
Дата охранного документа: 11.09.2019
12.09.2019
№219.017.ca3a

Антенное устройство с переключаемой диаграммой направленности

Изобретение относится к области антенной техники и может быть использовано, например, в системах корпоративной, мобильной связи, а также системах связи специального назначения. Антенное устройство с переключаемой диаграммой направленности, содержащее пассивные и активный электрические вибраторы...
Тип: Изобретение
Номер охранного документа: 0002699936
Дата охранного документа: 11.09.2019
12.09.2019
№219.017.ca4d

Способ маскировки электромагнитного канала утечки речевой информации в цифровых радиолиниях связи

Изобретение относится к области создания искусственных помех для маскировки электромагнитных каналов утечки речевой информации. Технический результат – одновременное обеспечение маскировки электромагнитного канала утечки речевой информации и выполнение требований к электромагнитной...
Тип: Изобретение
Номер охранного документа: 0002699826
Дата охранного документа: 11.09.2019
12.09.2019
№219.017.ca5c

Способ формирования сигналов с расширенным спектром

Изобретение относится к помехозащищённым системам связи и может быть использовано для формирования сигналов с расширенным спектром. Технический результат – повышение скорости передачи информации и разведзащищенности, понижение уровня внеполосного излучения. Способ формирования заключается в...
Тип: Изобретение
Номер охранного документа: 0002699817
Дата охранного документа: 11.09.2019
12.09.2019
№219.017.ca73

Способ формирования сигналов с расширенным спектром

Изобретение относится к помехозащищённым системам связи и может быть использовано для формирования сигналов с расширенным спектром. Технический результат – повышение скорости передачи информации и разведзащищенности, понижение уровня внеполосного излучения. Способ формирования заключается в...
Тип: Изобретение
Номер охранного документа: 0002699818
Дата охранного документа: 11.09.2019
Показаны записи 21-26 из 26.
12.06.2020
№220.018.2620

Способ выделения сигнала с модуляцией частотным сдвигом и компенсацией комбинационных составляющих

Изобретение относится к радиотехнике и может найти применение в системах связи. Технический результат состоит в повышении помехоустойчивости средств связи. Для этого устанавливают заранее значения частотных сдвигов между соседними сигналами так, что значение разности любой пары частот не...
Тип: Изобретение
Номер охранного документа: 0002723300
Дата охранного документа: 09.06.2020
14.06.2020
№220.018.26d6

Способ передачи сигналов с модуляцией фазовым сдвигом по каналу связи с многолучевым распространением

Изобретение относится к области техники связи и может быть использовано в средствах связи. Технический результат заключается в повышении эффективности компенсации отраженного сигнала с модуляцией фазовым сдвигом (PSK) с неравномерной длительностью импульсов. Для этого в на этапе вхождения в...
Тип: Изобретение
Номер охранного документа: 0002723108
Дата охранного документа: 08.06.2020
17.05.2023
№223.018.6462

Мобильная аппаратная система подвижной связи с повышенной защитой от воздействия помех

Изобретение относится к радиотехнике и может найти применение в системах связи. Технический результат заключается в повышении степени защиты от воздействия помех и повышении надежности аппаратной системы подвижной связи. Это достигается тем, что в устройство введены последовательно соединенные...
Тип: Изобретение
Номер охранного документа: 0002794343
Дата охранного документа: 17.04.2023
17.05.2023
№223.018.6469

Способ энергетического обнаружения сигнала с его компенсацией в дополнительном канале

Изобретение относится к технике связи и может использоваться в средствах связи. Технический результат заключается в повышении скорости обмена информацией в условиях воздействия помех. Для этого входную смесь сигнала и помехи разветвляют на две одинаковые составляющие. Первую составляющую в...
Тип: Изобретение
Номер охранного документа: 0002794344
Дата охранного документа: 17.04.2023
23.05.2023
№223.018.6f03

Способ оценки фаз многочастотных периодических сигналов в условиях наличия помех с использованием компенсации шумов преобразования

Изобретение относится к радиотехнике. Технический результат - повышение точности оценки фаз многочастотных периодических сигналов в условиях наличия помех. Это достигается тем, что для исходного сигнала, заданного отсчетами мгновенных значений в моменты времени для последовательности частот...
Тип: Изобретение
Номер охранного документа: 0002740790
Дата охранного документа: 21.01.2021
17.06.2023
№223.018.7fbc

Способ снижения эффективности систем извлечения информации, использующих индивидуальную структуру излучаемых сигналов

Изобретение относится к радиотехнике. Технический результат – снижение эффективности несанкционированного приема информации системами извлечения информации, использующими индивидуальную структуру сигналов. Это достигается тем, что в станциях одновременно используют от двух до n...
Тип: Изобретение
Номер охранного документа: 0002768255
Дата охранного документа: 23.03.2022
+ добавить свой РИД