×
09.06.2020
220.018.25b5

Результат интеллектуальной деятельности: Способ получения сульфида кальция из фосфогипса

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу получения сульфида кальция из фосфогипса и может найти применение в химической промышленности, например, в препаративном неорганическом синтезе и при производстве полупроводниковых или люминесцентных материалов. Способ изготовления образцов сульфида кальция осуществляют посредством гомогенизации исходных предварительно высушенного при 100°С фосфогипса и кристаллической лимонной кислоты в соотношении фосфогипс : кислота 3,0-4,0:1 в смесителе мощностью 0,45 кВт со скоростью 1500 об/мин, помещения в алундовые тигли в рабочее пространство муфельной печи и термообработки полученной шихты при температуре 700-900°С в течение 1 ч. Технический результат состоит в использовании безопасного восстановителя - лимонной кислоты, снижении продолжительности процесса, более простом аппаратурном оформлении при одновременном получении материалов с улучшенными характеристиками. 10 ил., 1 табл., 5 пр.

Изобретение относится к способу получения неорганических материалов - сульфидов щелочных элементов и может найти применение в химической промышленности, например, в препаративном неорганическом синтезе и при производстве полупроводниковых или люминесцентных материалов.

Известен «Способ получения сульфида металла» [Перов Э.И., Ирхина Е.П., Ильина Е.Г., Гончарова И.В., Федоров И.С., Головачев А.Н. Способ получения сульфида металла. Пат. РФ 2112743, МПК C01G 1/12, Алтайский государственный университет; заявл. 10.12.1996, опубл. 10.06.1998], по которому сульфиды осаждают в неводной среде жидких углеводородов предельного ряда CnH2n+2, путем взаимодействия соединений металлов (гидроксидов, ацетатов, солей жирных кислот) с выделяющимся в ходе реакции сероводородом. В ходе реакции серу растворяют в углеводороде, вводят соединение металла (соль или гидроксид), проводят синтез при температуре 174°С в течение 6 часов, отфильтровывают продукт в горячем состоянии, промывают горячим деканом и высушивают при температуре 150°С.

Недостатком этого способа получения сульфида кальция являются необходимость использования горячей легковоспламеняющейся жидкости (предельных углеводородов, температура вспышки 47°С, температура самовоспламенения 66°С), что вызывает необходимость увеличения затрат на организацию безопасной работы, а также длительность процесса.

Наиболее близким к заявляемому, взятом за прототип, является способ получения сульфида кальция из гипса [Чудаков М.И. Способ получения сульфида кальция. Пат. SU №157672, МПК С01В 17/44, Заявл. 12.03.1962, Опубл. 14.10.1963], по которому гидролизный лигнин с влажностью 65% (в расчете на абсолютно сухой) перемешивают в течение 0,5-1 часа в лопастном смесителе с гипсовым шламом (содержащем 0,9-1 вес. ч. сульфата кальция безводного). Затем массу подают на гранулятор шнекового типа. Получаемые гранулы диаметром 2-40 мм после сушки обжигают при температуре 500-900°С без доступа воздуха. В результате получают 0,5 вес. ч. сульфида кальция и 0,1 вес. ч. угля.

Недостатком этого способа является сложное аппаратное оформление процесса, необходимость применения газовой среды без доступа воздуха, длительность гомогенизации, использование высокой температуры термообработки, что влечет за собой большие расходы электроэнергии, а также получение продукции, содержащей восстановитель (уголь), что требует дополнительной операции очистки.

Перед авторами стояла задача разработки экологичного и экономичного способа получения сульфида кальция, не загрязненного углем, без применения опасных для здоровья веществ (нагретые до температуры 174°С углеводороды) и сложной аппаратуры, что позволяет существенно снизить энергоемкость и, тем самым, удешевить его производство.

Технический результат обеспечивается за счет использования отхода производства - фосфогипса - вместо реактивного сульфата кальция, простого аппаратного оформления процесса, получения сульфида кальция, не загрязненного углем, использования безопасного восстановителя (лимонная кислота является продуктом питания), способного образовывать жидкую фазу при температуре 153°С, что позволяет улучшить гомогенизацию исходных веществ и перевести процесс формирования структуры образцов в процессе термообработки из диффузионной области в кинетическую.

Технический результат достигается путем получения образцов сульфида кальция посредством смешивания исходных сульфата кальция и восстановителя, при этом в качестве восстановителя используют кристаллическую лимонную кислоту, а в качестве сульфата кальция используют фосфо-гипс, предварительно высушенный до постоянного веса при температуре 100°С, исходные вещества в соотношении фосфогипс : лимонная кислота 3,0-4,0:1 гомогенизируют в течение 30 с в смесителе мощностью 0,45 кВт со скоростью 1500 об/мин., термообрабатывают при температуре 700-900°С в течение 60 минут.

На фиг. 1 приведена рентгенограмма образцов фосфогипса, термообработанного при температуре 800°С в присутствии лимонной кислоты.

На фиг. 2 приведена микрофотография образца, восстановленного в присутствии лимонной кислоты.

На фиг. 3 приведена фотография образца восстановленного фосфогипса при освещении обычным светом. Восстановитель: лимонная кислота.

На фиг. 4 приведена фотография образца восстановленного фосфогипса при освещении ультрафиолетовым светом. Восстановитель: лимонная кислота.

На фиг. 5 приведена фотография образца восстановленного фосфогипса при освещении ультрафиолетовым светом со светофильтром. Восстановитель: лимонная кислота.

На фиг. 6 приведена фотография образца восстановленного фосфогипса при освещении обычным светом. Восстановитель: активированный уголь.

На фиг. 7 приведена фотография образца восстановленного фосфогипса при освещении ультрафиолетовым светом. Восстановитель: активированный уголь.

На фиг. 8 приведена фотография образца восстановленного фосфогипса при освещении ультрафиолетовым светом со светофильтром. Восстановитель: активированный уголь.

На фиг. 9 приведена рентгенограмма образцов фосфогипса, термообработанного без восстановителя.

На фиг. 10 приведена рентгенограмма образцов фосфогипса, термообработанного при температуре 700°С в присутствии восстановителя - лимонной кислоты.

В табл. 1 приведены данные по условиям проведения процесса и характеристика образующегося продукта.

В Приложении 1 представлены цветные фотографии образцов восстановленного фосфогипса при освещении ультрафиолетовым светом, ультрафиолетовым светом со светофильтром. Восстановитель: лимонная кислота и активированный уголь.

Пример 1. Для получения сульфида кальция был использован фосфогипс для сельского хозяйства (ТУ 113-08-418-94 (с изменениями 1-12)) с содержанием двуводного сульфата кальция (CaSO4⋅2 Н2О) 99% (масс). В качестве восстановителя использовали лимонную кислоту (C6H8O7). Фосфогипс был предварительно высушен до постоянного веса при температуре 100°С (проведение процесса сушки при температуре 100°С обусловлено физическими свойствами воды - температура перехода жидкой воды в состояние пара при атмосферном давлении составляет 100°С) в электрическом сушильном шкафу. Отмеряли с погрешностью 0,1 мг количества исходных фосфогипса 14,0 г и лимонную кислоту 4,0 г, гомогенизировали в течение 30 сек. в смесителе мощностью 0,45 кВт со скоростью 1500 об/мин (параметры смешивания, наиболее широко применяемые в технологических процессах), помещали в алундовых тиглях в рабочее пространство муфельной печи и термообрабатывали согласно температурно-временному режиму, включающему нагрев до 800°С в течение 60 минут, выдержку в течение 60 минут, медленное охлаждение с печью до комнатной температуры.

Окончание процесса формирования образца определяли с помощью рентгенофазового анализа: синтез прошел на 100% (на рентгенограммах образцов содержатся только линии, характеризующие минеральные вещества - сульфат кальция и сульфид кальция, не прореагировавшее органическое вещество отсутствует, фиг. 1). Образец представлен пластинчатыми кристаллами, на поверхности которых располагаются более мелкие частицы неправильной формы (фиг. 2). При этом материал обладает люминесцентной способностью, присущей сульфиду кальция, с равномерным распределением свечения по поверхности образца (фиг. 3, фиг. 4, фиг. 5).

Увеличение скорости формирования структуры сульфида кальция и снижение температуры, при которой происходит формирование его структуры, связано с протеканием реакции:

CaSO4+C6H8O7=CaS+CO2+5 СО+4 H2O.

Образовавшийся в ходе реакции разложения лимонной кислоты оксид углерода (II) взаимодействует с исходным сульфатом кальция с формированием сульфида кальция:

CaSO4+4 СО=CaS+4 CO2.

Степень конверсии сульфата кальция в сульфид составляет 60% (табл. 1).

Пример 2. Готовили сульфид кальция аналогично описанному в примере 1, только в качестве восстановителя использовали активированный уголь. По окончании термообработки рентгенофазовый анализ показал, что процесс формирования структуры завершен полностью, однако восстановление сульфата кальция в сульфид прошло значительно хуже: есть области, не обладающие люминесценцией, (фиг. 6, фиг. 7, фиг. 8). Это может быть связано с неравномерностью распределения восстановителя по объему реакционной системы.

Пример 3. Готовили сульфид кальция аналогично описанному в примере 1, только не использовали восстановитель. По окончании термообработки рентгенофазовый анализ показал, что процесс формирования структуры сульфида кальция не прошел (в образце основная фаза - сульфат кальция (фиг. 9)).

Пример 4. Готовили сульфид кальция аналогично описанному в примере 1, только термообработку проводили при температуре 700°С. По окончании термообработки рентгенофазовый анализ показал, что процесс формирования структуры сульфида кальция прошел частично (в образце основная фаза - сульфат кальция, степень конверсии сульфата кальция в сульфид кальция не превышает 40%).

Пример 5. Готовили сульфид кальция аналогично описанному в примере 1, только термообработку проводили при температуре 900°С. По окончании термообработки рентгенофазовый анализ показал, что в образце основная фаза - сульфат кальция. Данный результат может быть связан с окислением сульфида кальция в сульфат под действием кислорода воздуха по реакции

CaS+2 O2=CaSO4.

Как видно из приведенных примеров, процесс изготовления сульфида кальция из смеси фосфогипса и лимонной кислоты при температуре не выше 800°С проходит полнее по сравнению с процессом с применением в качестве восстановителя активированного угля. Без введения восстановителя или при проведении процесса при температуре 900°С целевой продукт не образуется (это может быть объяснено в первом случае - отсутствием возможности протекания реакции восстановления, во втором - процессами окисления целевого продукта под действием кислорода воздуха при повышенной температуре). Проведение процесса синтеза при температуре 700°С сопровождается пониженной степенью конверсии сульфата кальция в сульфид (это может быть объяснено недостаточно высокой температурой термообработки). Синтез сульфида кальция с использованием лимонной кислоты в качестве восстановителя требует значительно меньшей продолжительности и более простого аппаратного оформления, чем в прототипе. Это позволяет проводить процесс синтеза сульфида кальция с меньшими энергозатратами, приводит к удешевлению производства, одновременно получаются материалы с улучшенными характеристиками (образцы не содержат примеси углерода, которую необходимо удалять с применением дополнительных операций).

Способ получения сульфида кальция из фосфогипса путем смешивания исходных сульфата кальция и восстановителя, отличающийся тем, что в качестве восстановителя используют кристаллическую лимонную кислоту, а в качестве сульфата кальция используют фосфогипс, предварительно высушенный до постоянного веса при температуре 100°С, исходные вещества в соотношении фосфогипс : лимонная кислота 3,0-4,0:1 гомогенизируют в течение 30 с в смесителе мощностью 0,45 кВт со скоростью 1500 об/мин, термообрабатывают при температуре 700-900°С в течение 60 мин.
Способ получения сульфида кальция из фосфогипса
Способ получения сульфида кальция из фосфогипса
Способ получения сульфида кальция из фосфогипса
Способ получения сульфида кальция из фосфогипса
Источник поступления информации: Роспатент

Показаны записи 51-57 из 57.
04.07.2020
№220.018.2f0b

Сырьевая смесь для производства искусственного пористого заполнителя

Изобретение относится к отрасли производства строительных материалов – заполнителя искусственного пористого, применяемого в качестве заполнителя при приготовлении легких и силикатных бетонов, а также в качестве засыпок для теплоизоляции кровель, стен, перекрытий, полов нижних этажей зданий и...
Тип: Изобретение
Номер охранного документа: 0002725365
Дата охранного документа: 02.07.2020
04.07.2020
№220.018.2f2b

Винтовой конвейер с гибким рабочим органом для транспортировки сыпучих грузов

Винтовой конвейер с гибким рабочим органом для транспортировки сыпучих грузов содержит привод (1) и цилиндрический желоб (2), с расположенным в нем гибким винтом (3), состоящим из трех коаксиально расположенных спирально изогнутых стержней (4, 5, 6), причем средний стержень (5) выполнен в виде...
Тип: Изобретение
Номер охранного документа: 0002725364
Дата охранного документа: 02.07.2020
04.07.2020
№220.018.2f2d

Винтовой конвейер с гибким рабочим органом

Винтовой конвейер с гибким рабочим органом содержит привод (1) и цилиндрический желоб (2), с расположенным в нем гибким винтом (3), состоящим из трех коаксиально расположенных спирально изогнутых стержней (4, 5, 6). Один из стержней выполнен в виде трехгранной пряди каната двойной правой...
Тип: Изобретение
Номер охранного документа: 0002725404
Дата охранного документа: 02.07.2020
22.07.2020
№220.018.3569

Способ получения органоминерального удобрения

Изобретение относится к сельскому хозяйству, в частности к технологии производства удобрений, и может быть использовано для получения эффективных органоминеральных удобрений из отходов свинокомплексов. Способ получения органоминерального удобрения заключается в обработке жидких отходов в...
Тип: Изобретение
Номер охранного документа: 0002727004
Дата охранного документа: 17.07.2020
05.08.2020
№220.018.3c8e

Способ построения и обработки изображений и система его реализующая

Изобретение относится к области построения и обработки первичного RAW изображения в цифровую форму. Технический результат заключается в повышении качества процедуры построения и обработки динамического изображения. Предлагается способ построения и обработки изображений на множестве цветов в...
Тип: Изобретение
Номер охранного документа: 0002728949
Дата охранного документа: 03.08.2020
12.05.2023
№223.018.543a

Способ изготовления анода литий-ионного аккумулятора на основе олова

Изобретение относится к технологиям получения отрицательного электрода литий-ионных аккумуляторов (ЛИА). Техническим результатом является обеспечение возможности нанесения на единицу поверхности максимальной массы активного материала без снижения его удельной емкости и механической прочности....
Тип: Изобретение
Номер охранного документа: 0002795516
Дата охранного документа: 04.05.2023
20.05.2023
№223.018.66ac

Способ получения электродов анодных заземлителей

Изобретение относится к области производства электродов для анодных заземлителей из высококремнистого чугуна. Используют чугун, содержащий 9-12% кремния, модификатор добавляют в расплав в количестве 0,01% от общей массы компонентов, в качестве модификатора используют комплексный модификатор на...
Тип: Изобретение
Номер охранного документа: 0002761062
Дата охранного документа: 02.12.2021
Показаны записи 1-2 из 2.
13.01.2017
№217.015.89c5

Способ получения ферритов-хромитов переходных элементов со структурой шпинели

Изобретение относится к способу получения твердых растворов со структурой шпинели на основе ферритов и хромитов переходных элементов и может найти применение в химической промышленности в процессах органического синтеза для производства бутадиена и углеводородов из синтез-газа. Авторами решена...
Тип: Изобретение
Номер охранного документа: 0002602277
Дата охранного документа: 20.11.2016
18.10.2019
№219.017.d78d

Способ получения ферритов и хромитов со структурой шпинели

Изобретение относится к способу получения твердых растворов со структурой шпинели на основе ферритов и хромитов переходных элементов и может найти применение в химической промышленности в процессах органического синтеза для производства бутадиена и углеводородов из синтез-газа. Способ получения...
Тип: Изобретение
Номер охранного документа: 0002703251
Дата охранного документа: 15.10.2019
+ добавить свой РИД