×
09.06.2020
220.018.2598

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ПОГЛОЩЕННОЙ ДОЗЫ ПРОТОННОГО ИЗЛУЧЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к медицинской технике, а именно к дозиметрии ионизирующих излучений. Способ определения поглощенной дозы протонного излучения включает выполнение посредством 3D-печати сосудов, повторяющих объемы облучаемого анатомического органа и критической структуры, находящейся рядом с объемом облучаемого анатомического органа, заполнение их жидким химическим дозиметром, установку в цилиндрический водный фантом, проведение облучения по предварительно рассчитанному плану облучения и расчет средней по объему поглощенной дозы протонного излучения, при этом сосуды, повторяющие форму и размеры облучаемого анатомического органа и критической структуры, изготавливают жестко соединенными, предварительно заполняют дистиллированной водой, снабжают сосуды и их пробки метками и устанавливают в водном фантоме таким образом, чтобы положение сосудов относительно центра фантома и стенок соответствовало положению облучаемого анатомического органа и критической структуры на томографическом изображении пациента, рассчитывают предварительный план облучения по полученному томографическому изображению, проводят в соответствии с ним облучение жестко соединенных сосудов, заполненных жидким химическим дозиметром и установленных в фантоме, посредством меток, в том же положении, и определяют среднюю в объеме облучаемого анатомического органа поглощенную дозу протонного излучения посредством калибровочной зависимости, полученной для данных условий облучения жидкого химического дозиметра. Использование изобретения позволяет ускорить верификацию терапевтических планов облучения в протонной терапии и дозиметрии при использовании сканирующего пучка протонов. 1 з.п. ф-лы, 2 ил.

Уровень техники.

Способ относится к медицине, а именно к определению поглощения дозы протонного излучения при лучевой терапии.

Терапия протонным излучением является высококонформным методом лучевой терапии. Точность значения дозы, подводимой к облучаемому объему согласно рассчитанному плану облучения, определяют с помощью разных дозиметрических методов (C. Guardiola, C. Fleta, J. Rodriguez, M. Lozano and F. Gomez Preliminary microdosimetric measurements with ultra-thin 3D silicon detectors of a 62 MeV proton beam // Journal of Instrumentation. V. 10. 2015; A. Carlino, M. Stock, N. Zagler, M. Marrale, J. Osorio, S. Vatnitsky, H. Palmans Characterization of PTW-31015PinPoint ionization chambers in photon and proton beams // Physics in Medicine & Biology. V. 63. N. 18. 2018; Li Zhao, Indra J Das Gafchromic EBT film dosimetry in proton beams // Physics in Medicine & Biology. V. 55. N. 10. 2010). Наиболее часто используемым и рекомендованным комиссией МАГАТЭ средством измерения являются ионизационные камеры (Серия технических докладов №398. Определение поглощенной дозы при дистанционной лучевой терапии. Международные практические рекомендации по дозиметрии, основанные на эталонах единицы поглощенной дозы в воде. Международное агентство по атомной энергии, Вена, 2004).

Однако при использовании сканирующего пучка протонов верификация планов облучения этим методом занимает довольно много времени. Для рутинной проверки плана облучения достаточно определения средней по облучаемому объему поглощенной дозы. Такие измерения могут быть проведены с использованием жидких химических дозиметров, которые способны заполнять сосуд любой формы, а также имеют линейную дозовую зависимость отклика в определенном диапазоне поглощенных доз.

Известен способ верификации терапевтических планов с помощью детектора MatriXX, включающий измерение с помощью массива ионизационных камер профиля доз протонного излучения на разных глубинах водного фантома (В. Arjomandy, N. Sahoo, G. Ciangaru et al. Verification of patient-specific dose distributions in proton therapy using a commercial two-dimensional ion chamber array // Medical Physics // 37 (11) // 2010 // P. 5831-5837). Этот способ позволяет проводить измерения за короткое время, что является важным в клинических условиях.

Недостатком этого метода является возможность получения двумерного изображения, для измерения профиля доз в нескольких проекциях необходимо изменять положение дозиметра.

Известен способ измерения трехмерного дозового распределения терапевтического плана с помощью набора радиохромных пленочных дозиметров, расположенных между пластинами акрилового фантома (J. Kim, M. Yoon, S. Kim et al. Three-dimensional radiochromic film dosimetry of proton clinical beams using a Gafchromic EBT2 film array). Указанный способ позволяет с хорошим разрешением определять распределения доз на разной глубине фантома.

Недостатком способа являются необходимость компьютерной реконструкции для получения трехмерного изображения распределения доз и значительное количество времени, затрачиваемое на обработку радиохромных пленок после проведения облучения.

Известен способ для контроля персонализированного лечения пациента лучевой терапией и система обеспечения качества (RU 2682455 С2), включающий получение медицинских изображений пациента, создание трехмерной модели части пациента на основании полученных изображений, установку дозиметра в персонализированную трехмерную модель, облучение и сканирование части трехмерной модели, содержащей дозиметр, на медицинском томографе. В данном способе предлагается использовать химический дозиметр на основе полимерного геля.

Недостатком этого способа является трудоемкость и дороговизна получения изображения распределения доз в облученном фантоме.

Наиболее близким (прототип) является способ, включающий измерение поглощенной дозы бета-излучения в гетерогенном фантоме головы человека с помощью модифицированного ферро-ферри-сульфатного дозиметра (Т.В. Вахлакова, Ю.С. Мардынский, В.И. Ермаков Методические рекомендации по измерению поглощенных доз с помощью модифицированного ферро-ферри-сульфатного дозиметра с бензойной кислотой (МФФД) в практике подготовки лучевой терапии, НИИ Медицинской радиологии АМН СССР, Обнинск, 1974). Способ позволяет оценивать величину дозы в органе при аппликации источника бета-излучения Р32. Описаны две конструкции гетерогенного фантома: в случае облучения гипофиза со стороны затылочной области и височной области. Первый вариант конструкции фантома включает слой полиэтиленовой пленки, парафиновых блоков и затылочную кость черепа; второй - заполненную зернами риса черепно-мозговую полость фантома, полиэтиленовые пленки, парафин. Оценка дозы проводится на глубине 4,5 см в фантоме. В качестве детектора используют сосуд с дозиметрическим раствором.

Недостатком этого метода является использование для заполнения химическим дозиметром стандартных сосудов, подбираемых по объему близкими к объему гипофиза, но не повторяющих его анатомическую форму.

Техническим результатом предлагаемого изобретения является измерение средней поглощенной дозы с помощью двух жестко соединенных сосудов, которые бы максимально соответствовали объему облучаемого органа и находящейся рядом критической структуры.

Указанный технический результат при осуществлении изобретения достигается за счет того, что также как и в известном способе измеряют поглощенную дозу в анатомическом объеме с помощью сосуда, заполненного жидким химическим дозиметром и помещенного в фантом.

Особенностью заявляемого способа является то, что используют два жестко соединенных сосуда, совпадающих по форме и размерам с двумя облучаемыми анатомическими объемами, причем сосуды изготавливают методом 3D печати и помещают в цилиндрический водный фантом. Сосуды повторяют объем облучаемого органа и критической структуры, находящейся рядом с облучаемой областью, причем пробка для сосуда содержит асимметричную полость для точной установки сосуда внутри водного фантома. Для определения средней в анатомическом объеме поглощенной дозы протонного излучения используют калибровочную зависимость, полученную для идентичных условий облучения жидкого химического дозиметра.

Изобретение поясняется подробным описанием, клиническим примером и иллюстрациями, на которых изображено:

Фиг. 1 - приведены изображения распределений доз в трех сечениях, полученных из системы планирования для рассчитанного плана облучения пациента (а), и плана, рассчитанного на водный фантом после переноса контуров (б) согласно этапу 5:

1 - коронарное сечение томограммы;

2 - сагиттальное сечение;

3 - фронтальное сечение.

Фиг. 2 - представлена последовательность изготовления сосуда для заполнения жидким химическим дозиметром: а) построение компьютерной модели; б) обработка поверхности и подготовка модели для печати на трехмерном принтере, в) готовые сосуды для заполнения жидким химическим дозиметром.

Раскрытие изобретения.

Способ осуществляют следующим образом.

1 этап.

Медицинские КТ-изображения пациента открывают в программе для просмотра и копируют контуры необходимых объемов (PTV и критический орган) для построения поверхностей анатомических объемов. С помощью программного обеспечения построенные поверхности корректируют (сглаживают поверхности при наличии артефактов и неровностей на исходном изображении, добавляют внешние стенки сосудов, соединительные детали и отверстия для заполнения жидким химическим дозиметром) и передают в соответствующем формате в устройства трехмерной печати. Отдельно изготовляют пробки для сосудов, внутри которых предусмотрена асимметричная воздушная полость.

2 этап.

Готовые сосуды обрабатывают хлористым метиленом с растворенным в нем PET-G пластиком для придания герметичности сосудам. После этого сосуды и пробки промывают раствором хромовой смеси для обеспечения химической чистоты внутренней поверхности сосудов и тщательно промывают дистиллированной водой.

3 этап.

Изготовленные два жестко соединенных сосуда заполняют дистиллированной водой, плотно закрывают пробками и делают метку на каждом сосуде и соответствующей ему пробке так, чтобы после повторного открытия-закрытия сосуда ориентация асимметричной полости в пробке относительно формы сосуда была сохранена. Два жестко соединенных сосуда устанавливают в водный фантом таким образом, чтобы положение сосудов относительно центра фантома и стенок соответствовало положению опухоли и критической структуры на томографическом изображении пациента. С помощью рентгеновского томографа получают трехмерное изображение фантома с заполненными водой сосудами.

4 этап.

Полученное изображение фантома с заполненными водой сосудами совмещают с медицинским изображением пациента и копируют контуры объемов из медицинского изображения на изображение фантома, при этом совмещают контур каждого объема (PTV и критический орган) с контуром соответствующего этому объему сосуда, видимого на томографическом изображении фантома. Сохраняют файл для возможности расчета плана облучения.

5 этап.

План облучения рассчитывают по томографическому изображению водного фантома с двумя жестко соединенными сосудами, содержащему контуры из медицинского изображения пациента. При этом углы облучения в рассчитываемом плане должны быть идентичны углам облучения пациента согласно проверяемому терапевтическому плану.

6 этап.

Изготовленный сосуды заполняют жидким химическим дозиметром. После этого два жестко соединенных сосуда с дозиметром устанавливают внутри водного фантома в положение, для которого были получены томографические изображения, описанные в этапе 3. Коррекцию положения сосудов выполняют по ориентации полости внутри пробки каждого сосуда под контролем рентгеновского томографа. Проводят облучение сосудов в водном фантоме согласно рассчитанному по 5 этапу плану облучения. После окончания облучения сосуды вынимают из фантома, переносят жидкий дозиметр из сосудов в химически инертную емкость и проводят измерения оптической плотности.

7 этап.

Среднюю по объему поглощенную дозу протонного излучения рассчитывают по полученному значению оптической плотности с помощью калибровочной зависимости для данного вида излучения и условий облучения.

Осуществление изобретения.

Пример 1. Для проверки был выбран план пациента, проходящего курс протонной лучевой терапии с диагнозом менингиома кавернозного синуса. Осуществляли проверку средней поглощенной дозы за одну фракцию (5 Гр). Изображения распределений доз терапевтического плана и плана, пересчитанного на водный фантом, приведены на Фиг. 1. В качестве дозиметрической системы использовали модифицированный ферросульфатный дозиметр FBX, который имеет линейную зависимость отклика от поглощенной дозы протонов в дозовом диапазоне от 0 до 6 Гр. После облучения раствор переносили в стеклянные пробирки и проводили измерения относительной оптической плотности спектрофотометрическим методом спустя час после облучения. В результате измерения средние поглощенные дозы, определенные с помощью жидкого химического дозиметра FBX, составили 5,0±0,19 Гр для PTV и 0,1±0,03 Гр для критического органа.

Изобретение может быть использовано для быстрой верификации терапевтических планов облучения в протонной терапии, а также в дозиметрии при использовании сканирующего пучка протонов. Предложенный способ обладает высокой точностью и низкой стоимостью материалов для печати и реагентов для химического дозиметра, что способствует широкому применению в практике для проведения дозиметрических измерений.


СПОСОБ ОПРЕДЕЛЕНИЯ ПОГЛОЩЕННОЙ ДОЗЫ ПРОТОННОГО ИЗЛУЧЕНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ПОГЛОЩЕННОЙ ДОЗЫ ПРОТОННОГО ИЗЛУЧЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 41-50 из 103.
29.11.2019
№219.017.e78f

Способ интраоперационного измерения внутрилоханочного давления в процессе хирургического лечения нефролитиаза у взрослых

Изобретение относится к медицине, а именно к урологии. Непосредственно перед началом операции у пациента проводят калибровку измерительного оборудования с выставлением нулевых значений по давлению и проверкой чувствительности датчика. Электроманометр соединяют с заполненной физиологическим...
Тип: Изобретение
Номер охранного документа: 0002707438
Дата охранного документа: 26.11.2019
29.11.2019
№219.017.e7b6

Способ выполнения нервосберегающей радикальной гистерэктомии при раке шейки матки ia2-iia стадии

Изобретение относится к медицине, а именно к онкологии и гинекологии. На первом этапе выполняют двустороннюю подвздошно-обтураторную лимфаденэктомию. Затем диссекцию параректальных медиального и латерального и паравезикальных медиального и латерального пространств с двусторонним тоннелированием...
Тип: Изобретение
Номер охранного документа: 0002707439
Дата охранного документа: 26.11.2019
12.12.2019
№219.017.ec42

Способ комбинированного неинвазивного лечения недержания мочи у пациентов после радикальной простатэктомии

Способ относится к медицине, а именно к терапии, и может быть использован для комбинированного неинвазивного лечения недержания мочи у пациентов после радикальной простатэктомии. Назначают солифенацин в дозе 5 мг в сутки в течение 1 месяца. Одновременно с курсом терапии солифенацином назначают...
Тип: Изобретение
Номер охранного документа: 0002708490
Дата охранного документа: 09.12.2019
12.12.2019
№219.017.ec6b

Способ мечения активированных лимфоцитов in vitro комплексным соединением

Изобретение относится к области медицины, а именно к способу мечения активированных лимфоцитов in vitro комплексным соединением. Способ включает инкубирование активированных лимфоцитов с РФП Tc-ТЕОКСИМ в объеме 2 мл активностью 350-500 МБк, с периодическим встряхиванием в течение в течение 20...
Тип: Изобретение
Номер охранного документа: 0002708458
Дата охранного документа: 09.12.2019
06.02.2020
№220.017.fefa

Способ комбинированного лечения мышечно-инвазивного рака мочевого пузыря т3-т4 n0-+m0

Изобретение относится к медицине, а именно к онкологии, урологии, и может быть использовано в способе комбинированного лечения мышечно-инвазивного рака мочевого пузыря Т3-Т4 N0-+M0, включающем проведение неоадъюватной химиотерапии по схеме - цисплатин 75 мг/м и гемцитабин - 1000 мг/м в 1-й день...
Тип: Изобретение
Номер охранного документа: 0002713443
Дата охранного документа: 05.02.2020
06.02.2020
№220.017.ff21

Способ лечения боли при реабилитации онкологических пациентов после проведения хирургических вмешательств на позвоночнике

Изобретение относится к медицине, а именно к онкологии, и касается лечения боли при реабилитации онкологических больных после проведения хирургического вмешательства на позвоночнике. Для этого осуществляют ингаляцию смесью криптона и кислорода в соотношении 70/30 об.%. Процедуру проводят в...
Тип: Изобретение
Номер охранного документа: 0002713455
Дата охранного документа: 05.02.2020
08.02.2020
№220.018.007d

Способ инфузионной терапии при брахитерапии рака предстательной железы, выполняемой под спинальной анестезией

Изобретение относится к медицине, а именно к анестезиологии, и может быть использовано для стабилизации гемодинамики при проведении брахитерапии рака предстательной железы под спинальной анестезией. Перед выполнением спинальной анестезии в течение 15 минут вводят 2 г фосфокреатина, растворенных...
Тип: Изобретение
Номер охранного документа: 0002713532
Дата охранного документа: 05.02.2020
08.02.2020
№220.018.00bf

Способ лечения рака полости рта

Изобретение относится к медицине, а именно к онкологии и челюстно-лицевой хирургии, и может быть использовано для лечения начальных стадий рака полости рта и губы при глубине инвазии не более 7 мм. Для этого за сутки до проведения операции выполняют перитуморальное введение радиофармпрепарата...
Тип: Изобретение
Номер охранного документа: 0002713530
Дата охранного документа: 05.02.2020
13.02.2020
№220.018.0233

Способ определения времени максимальной концентрации фотосенсибилизатора хлорин е6 лизин димеглюминовая соль в опухоли

Изобретение относится к медицине, а именно к онкологии, и может быть использовано для определения времени достижения максимальной концентрации фотосенсибилизатора (ФС) хлоринового ряда - хлорин е6 лизин димеглюминовая соль в тканях организма после его введения. В организм вводят ФС хлорин е6...
Тип: Изобретение
Номер охранного документа: 0002713941
Дата охранного документа: 11.02.2020
02.03.2020
№220.018.07ce

Способ лечения плоскоклеточного рака полости рта и глотки

Изобретение относится к медицине, а именно к способу лечения плоскоклеточного рака полости рта и глотки, включающему проведение лучевой терапии. С 1 по 35 день проводят лучевую терапию с разовой очаговой дозой 2 Гр ежедневно по 5-дневной рабочей неделе до суммарной очаговой дозы 50 Гр на...
Тип: Изобретение
Номер охранного документа: 0002715550
Дата охранного документа: 28.02.2020
Показаны записи 11-13 из 13.
23.04.2023
№223.018.5171

Устройство для фиксации инструмента

Изобретение относится к области подводного нефтяного и газового машиностроения и предназначено для установки, фиксации и извлечения из подводной скважины или подвески насосно-компрессорных труб (НКТ) различных инструментов. Техническим результатом является создание автоматического устройства...
Тип: Изобретение
Номер охранного документа: 0002737629
Дата охранного документа: 01.12.2020
30.05.2023
№223.018.732e

Способ доставки терапевтической дозы для проведения ингаляционной низкодозной радионуклидной терапии у пациентов с covid-19

Изобретение относится к медицине, а именно к радиологии, и может быть использовано для доставки терапевтической дозы для проведения ингаляционной низкодозной радионуклидной терапии у пациентов с COVID-19. Дозу облучения подводят ингаляционно посредством вдыхания пациентом в течение 2 мин...
Тип: Изобретение
Номер охранного документа: 0002772393
Дата охранного документа: 19.05.2022
16.06.2023
№223.018.7a3a

Способ высокомощностной брахитерапии местнораспространенного рака поджелудочной железы

Изобретение относится к медицине, а именно к способу высокомощностной брахитерапии местнораспространенного рака поджелудочной железы, заключающемуся в том, что под спиральной компьютерной навигацией с предварительным внутривенным введением йодсодержащего контраста в объеме 50-100 мл или под...
Тип: Изобретение
Номер охранного документа: 0002738652
Дата охранного документа: 15.12.2020
+ добавить свой РИД