×
09.06.2020
220.018.2598

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ПОГЛОЩЕННОЙ ДОЗЫ ПРОТОННОГО ИЗЛУЧЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к медицинской технике, а именно к дозиметрии ионизирующих излучений. Способ определения поглощенной дозы протонного излучения включает выполнение посредством 3D-печати сосудов, повторяющих объемы облучаемого анатомического органа и критической структуры, находящейся рядом с объемом облучаемого анатомического органа, заполнение их жидким химическим дозиметром, установку в цилиндрический водный фантом, проведение облучения по предварительно рассчитанному плану облучения и расчет средней по объему поглощенной дозы протонного излучения, при этом сосуды, повторяющие форму и размеры облучаемого анатомического органа и критической структуры, изготавливают жестко соединенными, предварительно заполняют дистиллированной водой, снабжают сосуды и их пробки метками и устанавливают в водном фантоме таким образом, чтобы положение сосудов относительно центра фантома и стенок соответствовало положению облучаемого анатомического органа и критической структуры на томографическом изображении пациента, рассчитывают предварительный план облучения по полученному томографическому изображению, проводят в соответствии с ним облучение жестко соединенных сосудов, заполненных жидким химическим дозиметром и установленных в фантоме, посредством меток, в том же положении, и определяют среднюю в объеме облучаемого анатомического органа поглощенную дозу протонного излучения посредством калибровочной зависимости, полученной для данных условий облучения жидкого химического дозиметра. Использование изобретения позволяет ускорить верификацию терапевтических планов облучения в протонной терапии и дозиметрии при использовании сканирующего пучка протонов. 1 з.п. ф-лы, 2 ил.

Уровень техники.

Способ относится к медицине, а именно к определению поглощения дозы протонного излучения при лучевой терапии.

Терапия протонным излучением является высококонформным методом лучевой терапии. Точность значения дозы, подводимой к облучаемому объему согласно рассчитанному плану облучения, определяют с помощью разных дозиметрических методов (C. Guardiola, C. Fleta, J. Rodriguez, M. Lozano and F. Gomez Preliminary microdosimetric measurements with ultra-thin 3D silicon detectors of a 62 MeV proton beam // Journal of Instrumentation. V. 10. 2015; A. Carlino, M. Stock, N. Zagler, M. Marrale, J. Osorio, S. Vatnitsky, H. Palmans Characterization of PTW-31015PinPoint ionization chambers in photon and proton beams // Physics in Medicine & Biology. V. 63. N. 18. 2018; Li Zhao, Indra J Das Gafchromic EBT film dosimetry in proton beams // Physics in Medicine & Biology. V. 55. N. 10. 2010). Наиболее часто используемым и рекомендованным комиссией МАГАТЭ средством измерения являются ионизационные камеры (Серия технических докладов №398. Определение поглощенной дозы при дистанционной лучевой терапии. Международные практические рекомендации по дозиметрии, основанные на эталонах единицы поглощенной дозы в воде. Международное агентство по атомной энергии, Вена, 2004).

Однако при использовании сканирующего пучка протонов верификация планов облучения этим методом занимает довольно много времени. Для рутинной проверки плана облучения достаточно определения средней по облучаемому объему поглощенной дозы. Такие измерения могут быть проведены с использованием жидких химических дозиметров, которые способны заполнять сосуд любой формы, а также имеют линейную дозовую зависимость отклика в определенном диапазоне поглощенных доз.

Известен способ верификации терапевтических планов с помощью детектора MatriXX, включающий измерение с помощью массива ионизационных камер профиля доз протонного излучения на разных глубинах водного фантома (В. Arjomandy, N. Sahoo, G. Ciangaru et al. Verification of patient-specific dose distributions in proton therapy using a commercial two-dimensional ion chamber array // Medical Physics // 37 (11) // 2010 // P. 5831-5837). Этот способ позволяет проводить измерения за короткое время, что является важным в клинических условиях.

Недостатком этого метода является возможность получения двумерного изображения, для измерения профиля доз в нескольких проекциях необходимо изменять положение дозиметра.

Известен способ измерения трехмерного дозового распределения терапевтического плана с помощью набора радиохромных пленочных дозиметров, расположенных между пластинами акрилового фантома (J. Kim, M. Yoon, S. Kim et al. Three-dimensional radiochromic film dosimetry of proton clinical beams using a Gafchromic EBT2 film array). Указанный способ позволяет с хорошим разрешением определять распределения доз на разной глубине фантома.

Недостатком способа являются необходимость компьютерной реконструкции для получения трехмерного изображения распределения доз и значительное количество времени, затрачиваемое на обработку радиохромных пленок после проведения облучения.

Известен способ для контроля персонализированного лечения пациента лучевой терапией и система обеспечения качества (RU 2682455 С2), включающий получение медицинских изображений пациента, создание трехмерной модели части пациента на основании полученных изображений, установку дозиметра в персонализированную трехмерную модель, облучение и сканирование части трехмерной модели, содержащей дозиметр, на медицинском томографе. В данном способе предлагается использовать химический дозиметр на основе полимерного геля.

Недостатком этого способа является трудоемкость и дороговизна получения изображения распределения доз в облученном фантоме.

Наиболее близким (прототип) является способ, включающий измерение поглощенной дозы бета-излучения в гетерогенном фантоме головы человека с помощью модифицированного ферро-ферри-сульфатного дозиметра (Т.В. Вахлакова, Ю.С. Мардынский, В.И. Ермаков Методические рекомендации по измерению поглощенных доз с помощью модифицированного ферро-ферри-сульфатного дозиметра с бензойной кислотой (МФФД) в практике подготовки лучевой терапии, НИИ Медицинской радиологии АМН СССР, Обнинск, 1974). Способ позволяет оценивать величину дозы в органе при аппликации источника бета-излучения Р32. Описаны две конструкции гетерогенного фантома: в случае облучения гипофиза со стороны затылочной области и височной области. Первый вариант конструкции фантома включает слой полиэтиленовой пленки, парафиновых блоков и затылочную кость черепа; второй - заполненную зернами риса черепно-мозговую полость фантома, полиэтиленовые пленки, парафин. Оценка дозы проводится на глубине 4,5 см в фантоме. В качестве детектора используют сосуд с дозиметрическим раствором.

Недостатком этого метода является использование для заполнения химическим дозиметром стандартных сосудов, подбираемых по объему близкими к объему гипофиза, но не повторяющих его анатомическую форму.

Техническим результатом предлагаемого изобретения является измерение средней поглощенной дозы с помощью двух жестко соединенных сосудов, которые бы максимально соответствовали объему облучаемого органа и находящейся рядом критической структуры.

Указанный технический результат при осуществлении изобретения достигается за счет того, что также как и в известном способе измеряют поглощенную дозу в анатомическом объеме с помощью сосуда, заполненного жидким химическим дозиметром и помещенного в фантом.

Особенностью заявляемого способа является то, что используют два жестко соединенных сосуда, совпадающих по форме и размерам с двумя облучаемыми анатомическими объемами, причем сосуды изготавливают методом 3D печати и помещают в цилиндрический водный фантом. Сосуды повторяют объем облучаемого органа и критической структуры, находящейся рядом с облучаемой областью, причем пробка для сосуда содержит асимметричную полость для точной установки сосуда внутри водного фантома. Для определения средней в анатомическом объеме поглощенной дозы протонного излучения используют калибровочную зависимость, полученную для идентичных условий облучения жидкого химического дозиметра.

Изобретение поясняется подробным описанием, клиническим примером и иллюстрациями, на которых изображено:

Фиг. 1 - приведены изображения распределений доз в трех сечениях, полученных из системы планирования для рассчитанного плана облучения пациента (а), и плана, рассчитанного на водный фантом после переноса контуров (б) согласно этапу 5:

1 - коронарное сечение томограммы;

2 - сагиттальное сечение;

3 - фронтальное сечение.

Фиг. 2 - представлена последовательность изготовления сосуда для заполнения жидким химическим дозиметром: а) построение компьютерной модели; б) обработка поверхности и подготовка модели для печати на трехмерном принтере, в) готовые сосуды для заполнения жидким химическим дозиметром.

Раскрытие изобретения.

Способ осуществляют следующим образом.

1 этап.

Медицинские КТ-изображения пациента открывают в программе для просмотра и копируют контуры необходимых объемов (PTV и критический орган) для построения поверхностей анатомических объемов. С помощью программного обеспечения построенные поверхности корректируют (сглаживают поверхности при наличии артефактов и неровностей на исходном изображении, добавляют внешние стенки сосудов, соединительные детали и отверстия для заполнения жидким химическим дозиметром) и передают в соответствующем формате в устройства трехмерной печати. Отдельно изготовляют пробки для сосудов, внутри которых предусмотрена асимметричная воздушная полость.

2 этап.

Готовые сосуды обрабатывают хлористым метиленом с растворенным в нем PET-G пластиком для придания герметичности сосудам. После этого сосуды и пробки промывают раствором хромовой смеси для обеспечения химической чистоты внутренней поверхности сосудов и тщательно промывают дистиллированной водой.

3 этап.

Изготовленные два жестко соединенных сосуда заполняют дистиллированной водой, плотно закрывают пробками и делают метку на каждом сосуде и соответствующей ему пробке так, чтобы после повторного открытия-закрытия сосуда ориентация асимметричной полости в пробке относительно формы сосуда была сохранена. Два жестко соединенных сосуда устанавливают в водный фантом таким образом, чтобы положение сосудов относительно центра фантома и стенок соответствовало положению опухоли и критической структуры на томографическом изображении пациента. С помощью рентгеновского томографа получают трехмерное изображение фантома с заполненными водой сосудами.

4 этап.

Полученное изображение фантома с заполненными водой сосудами совмещают с медицинским изображением пациента и копируют контуры объемов из медицинского изображения на изображение фантома, при этом совмещают контур каждого объема (PTV и критический орган) с контуром соответствующего этому объему сосуда, видимого на томографическом изображении фантома. Сохраняют файл для возможности расчета плана облучения.

5 этап.

План облучения рассчитывают по томографическому изображению водного фантома с двумя жестко соединенными сосудами, содержащему контуры из медицинского изображения пациента. При этом углы облучения в рассчитываемом плане должны быть идентичны углам облучения пациента согласно проверяемому терапевтическому плану.

6 этап.

Изготовленный сосуды заполняют жидким химическим дозиметром. После этого два жестко соединенных сосуда с дозиметром устанавливают внутри водного фантома в положение, для которого были получены томографические изображения, описанные в этапе 3. Коррекцию положения сосудов выполняют по ориентации полости внутри пробки каждого сосуда под контролем рентгеновского томографа. Проводят облучение сосудов в водном фантоме согласно рассчитанному по 5 этапу плану облучения. После окончания облучения сосуды вынимают из фантома, переносят жидкий дозиметр из сосудов в химически инертную емкость и проводят измерения оптической плотности.

7 этап.

Среднюю по объему поглощенную дозу протонного излучения рассчитывают по полученному значению оптической плотности с помощью калибровочной зависимости для данного вида излучения и условий облучения.

Осуществление изобретения.

Пример 1. Для проверки был выбран план пациента, проходящего курс протонной лучевой терапии с диагнозом менингиома кавернозного синуса. Осуществляли проверку средней поглощенной дозы за одну фракцию (5 Гр). Изображения распределений доз терапевтического плана и плана, пересчитанного на водный фантом, приведены на Фиг. 1. В качестве дозиметрической системы использовали модифицированный ферросульфатный дозиметр FBX, который имеет линейную зависимость отклика от поглощенной дозы протонов в дозовом диапазоне от 0 до 6 Гр. После облучения раствор переносили в стеклянные пробирки и проводили измерения относительной оптической плотности спектрофотометрическим методом спустя час после облучения. В результате измерения средние поглощенные дозы, определенные с помощью жидкого химического дозиметра FBX, составили 5,0±0,19 Гр для PTV и 0,1±0,03 Гр для критического органа.

Изобретение может быть использовано для быстрой верификации терапевтических планов облучения в протонной терапии, а также в дозиметрии при использовании сканирующего пучка протонов. Предложенный способ обладает высокой точностью и низкой стоимостью материалов для печати и реагентов для химического дозиметра, что способствует широкому применению в практике для проведения дозиметрических измерений.


СПОСОБ ОПРЕДЕЛЕНИЯ ПОГЛОЩЕННОЙ ДОЗЫ ПРОТОННОГО ИЗЛУЧЕНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ПОГЛОЩЕННОЙ ДОЗЫ ПРОТОННОГО ИЗЛУЧЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 31-40 из 103.
29.08.2019
№219.017.c48a

Способ реконструкции комбинированного дефекта подвздошной области

Изобретение относится к медицине, а именно к хирургии, и может быть применимо для реконструкции комбинированного дефекта подвздошной области. Формируют каркас брюшной стенки пролен-викриловой сеткой. Пролен-викриловую сетку винтообразно фиксируют в крыло подвздошной кости при помощи трех или...
Тип: Изобретение
Номер охранного документа: 0002698415
Дата охранного документа: 26.08.2019
02.10.2019
№219.017.cf51

Способ снижения клоногенной активности стволовых клеток рака молочной железы

Изобретение относится к области медицины, в частности онкологии, и может быть использовано для снижения клоногенной активности опухолевых стволовых клеток рака молочной железы. Способ заключается в 72-часовом воздействии на опухолевые клетки in vitro ДНК-связывающих лигандов - водонерастворимых...
Тип: Изобретение
Номер охранного документа: 0002700695
Дата охранного документа: 19.09.2019
17.10.2019
№219.017.d66f

Способ снижения количества стволовых клеток рака молочной железы

Изобретение относится к области медицины, в частности онкологии, и может быть использовано для снижения количества опухолевых стволовых клеток (ОСК). Способ снижения количества стволовых клеток рака молочной железы заключается в 72-часовом воздействии на опухолевые клетки in vitro...
Тип: Изобретение
Номер охранного документа: 0002702910
Дата охранного документа: 14.10.2019
18.10.2019
№219.017.d81e

Способ комбинированного лечения больных нерезектабельным раком внепеченочных желчных протоков

Изобретение относится к медицине, а именно к хирургии, гепатологии, онкологии, и может быть использовано для комбинированного лечения больных нерезектабельным раком внепеченочных желчных протоков. Для этого проводят курсы системной химиотерапии с использованием препаратов платины,...
Тип: Изобретение
Номер охранного документа: 0002703330
Дата охранного документа: 16.10.2019
26.10.2019
№219.017.dae5

Способ фотодинамической терапии перевивной поверхностной солидной соединительнотканной саркомы м-1 крыс

Изобретение относится к медицине, а именно к экспериментальной медицине и онкологии, и может быть использовано для фотодинамической терапии перевивной поверхностной солидной соединительнотканной саркомы М-1 крыс. Для этого вводят фотосенсибилизатор «Фоторан Е6» в дозах 5,0 мг/кг, что при...
Тип: Изобретение
Номер охранного документа: 0002704202
Дата охранного документа: 24.10.2019
26.10.2019
№219.017.dae9

Способ неоадъювантного термохимиолучевого лечения рака прямой кишки

Изобретение относится к медицине, а именно к лучевой терапии, и может быть использовано для неоадъювантного термохимиолучевого лечения рака прямой кишки. Проводят лучевую терапию с фракционированием дозы в разовой очаговой дозе (РОД) 2 Гр до суммарной очаговой дозы (СОД) 50 Гр в течение 5...
Тип: Изобретение
Номер охранного документа: 0002704205
Дата охранного документа: 24.10.2019
07.11.2019
№219.017.dedc

Способ лечения плоскоклеточного рака полости рта и глотки в сочетании с лучевым и лекарственным воздействием

Изобретение относится к области медицины, а именно к способам лечения плоскоклеточного рака полости рта и глотки в сочетании с лучевым и лекарственным воздействием. Способ включает введение цисплатина с первого дня в виде внутривенной инфузии в дозе 100 мг/м 1 раз в 3 недели в сочетании с...
Тип: Изобретение
Номер охранного документа: 0002705109
Дата охранного документа: 05.11.2019
08.11.2019
№219.017.df07

Способ одномоментной реконструкции молочной железы при раке с использованием аллоимплантата на основе твердой мозговой оболочки и силиконового эндопротеза

Изобретение относится к медицине, а именно к реконструктивно-пластическим хирургии молочной железы. Большую грудную мышцу мобилизуют путем отсечения от нижнего края ее прикрепления, латеральнее до уровня, соответствующего 9 часам по циферблату. Нижнелатеральную часть большой грудной мышцы...
Тип: Изобретение
Номер охранного документа: 0002705265
Дата охранного документа: 06.11.2019
08.11.2019
№219.017.df24

Способ оценки эффективности неоадъювантной химиолучевой терапии больных раком прямой кишки

Изобретение относится к медицине и может быть использовано для оценки результата лечения онкологических больных при использовании неоадьювантной химиолучевой терапии (НХЛТ) больных раком прямой кишки. Для текстурного анализа используют MP-изображения в режиме Т2-ВИ в аксиальной плоскости на...
Тип: Изобретение
Номер охранного документа: 0002705257
Дата охранного документа: 06.11.2019
08.11.2019
№219.017.df5e

Флуоресцентные репортерные системы для оценки эпителиального и/или мезенхимального состояния клетки

Изобретение относится к биотехнологии и генной инженерии и представляет собой набор плазмид для дифференцирования процесса эпителиально-мезенхимальной трансформации клеток, включающий две плазмиды для трансфекции в клетки человека, одна из которых предназначена для выявления эпителиального...
Тип: Изобретение
Номер охранного документа: 0002705251
Дата охранного документа: 06.11.2019
Показаны записи 11-13 из 13.
23.04.2023
№223.018.5171

Устройство для фиксации инструмента

Изобретение относится к области подводного нефтяного и газового машиностроения и предназначено для установки, фиксации и извлечения из подводной скважины или подвески насосно-компрессорных труб (НКТ) различных инструментов. Техническим результатом является создание автоматического устройства...
Тип: Изобретение
Номер охранного документа: 0002737629
Дата охранного документа: 01.12.2020
30.05.2023
№223.018.732e

Способ доставки терапевтической дозы для проведения ингаляционной низкодозной радионуклидной терапии у пациентов с covid-19

Изобретение относится к медицине, а именно к радиологии, и может быть использовано для доставки терапевтической дозы для проведения ингаляционной низкодозной радионуклидной терапии у пациентов с COVID-19. Дозу облучения подводят ингаляционно посредством вдыхания пациентом в течение 2 мин...
Тип: Изобретение
Номер охранного документа: 0002772393
Дата охранного документа: 19.05.2022
16.06.2023
№223.018.7a3a

Способ высокомощностной брахитерапии местнораспространенного рака поджелудочной железы

Изобретение относится к медицине, а именно к способу высокомощностной брахитерапии местнораспространенного рака поджелудочной железы, заключающемуся в том, что под спиральной компьютерной навигацией с предварительным внутривенным введением йодсодержащего контраста в объеме 50-100 мл или под...
Тип: Изобретение
Номер охранного документа: 0002738652
Дата охранного документа: 15.12.2020
+ добавить свой РИД