×
07.06.2020
220.018.2552

Результат интеллектуальной деятельности: Способ трехмерной печати термопластичным композиционным материалом

Вид РИД

Изобретение

Аннотация: Изобретение относится к трехмерной печати термопластичным композиционным материалом. Осуществляют предварительную пропитку армированной нити расплавленным матричным полимером под давлением, сушку армированной нити, подачу армированной нити в экструдер печатающей головки, нагрев армированной нити до температуры, превышающей температуру плавления матричного полимера армированной нити, экструдирование армированной нити на поверхность детали с образованием приваренного слоя композитного материала с обрезкой армированной нити. После подачи в зону трехмерной печати армированной нити приваривают ее при одновременном воздействиии температуры, превышающей температуру плавления матричного материала армированной нити, и ультразвуковых колебаний. Процесс печати осуществляют в термостатированной подогреваемой камере. В результате чего обеспечивается возможность изготовления детали сложной геометрии. 3 ил.

Изобретение относится к области аддитивных технологий в частности к технологии моделирования методом послойного наплавления («Fused Deposition Modeling» FDM или «Fused Filament Fabrication» FFF) или послойной 3Д-печати расплавленной полимерной нитью, в частности, армированной непрерывным углеродным волокном полимерной нитью.

3Д-печать может осуществляться разными способами и с использованием различных материалов, в основе которых лежит принцип послойного создания детали. Процесс печати - это ряд повторяющихся циклов, связанных с послойным нанесением материала до полного формирования детали. Циклы непрерывно следуют один за другим: на первый слой материала наносится следующий.

Известны различные способы 3Д-печати методом послойного наплавления термопластичной нити армированной волокном.

В частности, из патентов (US 5121329 МПК B22F3/115; B29C35/02, опубл. 09.06.1992), (US 5340433 МПК B22F3/115; B29C35/02, опубл. 23.08.1994), (US 5738817, МПК B29C41/36; B29C67/00, опубл. 14.04.1998), (US 5764521, МПК B29C41/36; B29C48/33, опубл.09.06.1998), (US 6022207, МПК B29C31/00; B29C41/02, опубл. 08.02.2000) компании Стратасис (Stratasys, Inc), известна технология построения 3Д-объекта по модели для автоматизированного проектирования (CAD) методом «слой за слоем» путем экструзионного осаждения расплавленного материала.

В способе изготовления (Патент US 2019232550, МПК B29B15/14; B29C48/154, опубл. 01.08.2019) описаны методы 3Д-печати детали, которые включают в себя: подготовку цифровой 3Д-модели детали, предварительную пропитку армированной нити расплавленным матричным полимером под давлением, подачу армированной нити в экструдер печатающей головки установки 3Д-печати, нагрев армированной нити до температуры, превышающей температуру плавления матричного полимера, экструдирование армированной нити на поверхность детали с образованием слоя термопластичного композитного материала, регулировку скорости подачи армированной нити и ее обрезку, повторение цикла до полного формирования детали.

Общая проблема и недостатки вышеперечисленных способов 3Д-печати по технологии послойного наплавления FDM, FFF или 3Д-печати полимерной термопластичной нитью, в частности, армированной непрерывным углеродным волокном, заключается в том, что материалы, полученные по этой технологии уступают по прочности и стойкости полимерным материалам, полученным формированием под давлением, например, литьем под давлением. В частности, испытания на межслоевой сдвиг (Short-Beam Strength ASTM D2344) показывают прочность более чем в два раза ниже материала, полученного формованием под давлением. Снижение прочности и стойкости напечатанных полимерных материалом связана с более слабым сцеплением напечатанных слоев и большим количеством пор и пустот в материале, ограничивая их применение в аэрокосмической и других областях, поскольку производятся детали с понижением качества.

Технической проблемой, решение которой обеспечивается только при осуществлении предлагаемого способа и не может быть реализовано при использовании прототипа, является высокая пористость, низкое сцепление слоев и неоднородность термопластичного композитного материала готового изделия.

Технической задачей является снижение пористости, повышение сцепления слоев напечатанного термопластичного композитного материала и в соответствии повышение физико-механических характеристик (далее ФМХ) материалов и повышение качества деталей.

Техническая задача решается тем, что в способе трехмерной печати термопластичным композиционным материалом, включающим предварительную пропитку армированной нити расплавленным матричным полимером под давлением, сушку армированной нити, подачу армированной нити в экструдер печатающей головки, нагрев армированной нити до температуры, превышающей температуру плавления матричного полимера армированной нити, экструдирование армированной нити на поверхность детали с образованием слоя термопластичного композитного материала, с регулированием скорости подачи армированной нити, с обрезкой армированной нити и повторением циклов до полного формирования детали, согласно изобретению, дополнительно используют термостатированную подогреваемую камеру, после подачи в зону трехмерной печати армированной нити, приваривают армированную нить при одновременном воздействии температуры, превышающей температуру плавления матричного полимера армированной нити и колебаний, образованных ультразвуковым преобразователем, при этом процесс печати осуществляют в термостатированной подогреваемой камере при оптимальной температуре 100-300оС в зоне печати.

В предлагаемом изобретении в отличии от прототипа приваривание армированной нити при одновременном воздействии высокой температуры и ультразвуковых колебаний, приводит к интенсивной диффузии макромолекул полимера, быстрому привариванию и распределению армированной нити по поверхности слоя, что приводит к уменьшению пористости материала, усилению сцепления слоев до уровня литого материала, что, соответственно, приводит к повышению его ФМХ и повышению качества деталей.

Использование термостатированной подогреваемой камеры с оптимальной температурой 100-300 оС в зоне печати, в зависимости от используемого матричного полимера, в которой регулируется разность температур между нижележащим слоем и выкладываемой нитью, под действием избыточного тепла нити и ультразвуковых колебаний приводит к интенсивной диффузии молекул термопласта в месте контакта слоев, что с свою очередь приводит к уменьшению пористости материала, усилению сцепления слоев до уровня литого материала, и, соответственно, приводит к повышению ФМХ получаемого материала детали.

На фиг. 1 изображен общий вид устройства для способа трехмерной печати термопластичным композиционным материалом;

На фиг. 2 изображена общая схема печатающей головки;

На фиг. 3 представлена блок-схема способа трехмерной печати термопластичным композиционным материалом.

Процесс трехмерной печати заключается в следующем: просушенная армированная нить 6 подающим элементом (без позиции) подается на печатающую головку 2. Далее нить подающим элементом 11 в составе печатающей головки 2 дозированным усилием проталкивается через нагретый экструдер 7 печатающей головки 2. Внутренний канал 8 экструдера 7 имеет определенную форму поперечного и продольного сечения для обеспечения прохождения нити без избыточного сопротивления при эффективном прогреве матричного полимера. Внутренний канал 8 имеет диаметр 0,55-1,3 мм в зависимости от используемой армированной нити 6.

Нагревателем 13 в процессе 3Д-печати может служить любое устройство, обеспечивающее нагрев экструдера 7 до требуемых температур. Например, экструдер 7 может нагреваться высокочастотным индукционным нагревателем 13 с рабочей частотой в диапазоне 2-10 МГц. Диапазон рабочих температур экструдера 7 составляет 320-450оС, при печати армированной нитью 6 на основе, например, полиэфирэфиркетона. Проходящая через экструдер 7 армированная нить 6 нагревается от стенки и непосредственно от индукционных токов, возникающих в углеволокне, до температур, превышающих температуру плавления матричного полимера. Армированная нить 6 с расплавленным матричным полимером на выходе из сопла экструдера 14 печатающей головки 2 утюжится плоской поверхностью сопла 14 и равномерно выкладывается по поверхности детали 4 или нижележащего слоя в виде ленточной дорожки согласно траектории движения печатающей головки 2.

Печать продолжается до полного формирования детали. Выкладка или печать слоев может осуществляться в произвольном направлении в пределах плоскости печати. Движение печатающей головки 2 и соответственно и траектория печати задается программной частью 5 установки для 3Д-печати (3Д принтером) на основе трехмерной модели детали.

Под действием колебаний, образованных ультразвуковым преобразователем 9 (ультразвук), с частотой 22-44 кГц в пятне контакта усиливается диффузия макромолекул матричного полимера. Совместное концентрированное использование избыточного тепла армированной нити 6, утюжения (прикладываемого давления), и ультразвуковых колебаний в пятне контакта приводит к быстрой диффузии полимерных молекул, эффективному привариванию слоев материала и распределению армированной нити 6 по поверхности детали 4. Ультразвуковые колебания активизируют поверхность и препятствуют образованию пор и пустот приводя к их схлопыванию при совместном воздействии с утюжащим воздействием плоской поверхности сопла экструдера 14.

Процесс печати протекает в обогреваемой термостатированной камере 1 в составе установки 3Д-печати в которой поддерживается оптимальная температура в зависимости от типа используемого матричного полимера (его температур стеклования, кристаллизации, перекристаллизации, температуры плавления) и поддерживается в диапазоне 100-300оС. Совместное воздействие тепла камеры 1, которое уменьшает разность температур между нижележащим слоем и выкладываемой нитью, тепла нити и ультразвуковых колебаний приводит к интенсивной диффузии молекул термопласта при контакте, что в свою очередь приводит к уменьшению пористости материала, усилению сцепления слоев до уровня литого материала, что соответственно приводит к повышению его ФМХ.

Трехмерная печать осуществляется на 3Д принтере, состоящем из аппаратной и программной части 5. Аппаратная часть принтера представлена устройствами и системами, обеспечивающими печать армированной нитью 6, в том числе это: печатающая головка 2, кинематическая система перемещения печатающей головы по заданной траектории, система обратной связи (датчики) положения и параметров печатающей головки 2 и печатаемой детали, опорная плита завязанная или нет на кинематические системы, корпус или станина установки, контроллер или система контроллеров, система энергоснабжения. Программная же часть 5 представлена в виде g-кода и реализует формирование детали сложной геометрии в соответствии с трехмерной моделью в заданных условиях. С помощью программной части 5 отслеживается положение всех подвижных частей установки и все контролируемые параметры процесса (например, температура экструдера печатающей головки) в соответствии с заданием проводит управляющее воздействие на исполнительные механизмы.

Печатающая головка 2 в составе установки 3Д-печати армированной нитью в общем виде состоит из следующих основных узлов: силовая рамка 10, подающий элемент 11, экструдер 7, нагревательный элемент 13, узел обрезки 12.

Силовая рамка 10 обеспечивает крепление всех элементов конструкции печатающей головки 2 к системе управления перемещением. Подающий элемент 11 обеспечивает прием армированной нити 6 и направление ее на вход экструдера 7 с определенным усилием и скоростью заданной системой управления программной части 5.

Экструдер 7 обеспечивает расплавление матричного полимера армированной нити 6 и наплавление армированной нити 6 на нижележащий слой или поверхность детали 4 в процессе выкладки.

Нагревательный элемент 13 обеспечивает нагрев горячей части экструдера 7 до температур, обеспечивающих надежное расплавление матричного полимера армированной нити 6. В качестве нагревателя 13 может быть использовано, например, индукционное высокочастотное устройство или резистивное устройство. Контроль температуры осуществляется датчиком 3, установленным у сопла экструдера 14.

Для осуществления процесса печати нитью 6 с армированием непрерывным волокном используется узел обрезки 12, обеспечивающий разрезание и выкладывания армированной нити 6 определенной длины заданной системой управления. Узел обрезки 12 может быть расположен на любом участке траектории движения армированной нити 6. Например он располагается после подающего элемента 11 до входа в экструдер 7, обеспечивая после обрезки свободный канал от нити 6 после ее вытягивания.

Кроме основных устройств печатающая голова включает в себя и другие компоненты (без позиций), например, позиционеры различных конструкций, датчики температуры, наличия армированной нити 6 и другие устройства, обеспечивающие процесс печати. Реализация и взаимное расположение деталей и узлов печатающей головы зависит от конкретной реализации.

Изготовление армированной нити 6 для процесса 3Д-печати осуществляется на отдельной, специальной установке. Процесс пропитки жгута или пучка армирующих волокон расплавом полимера протекает под высоким давлением подачи матричного полимера. Давление пропитки может достигать 60 МПа. Температура пропитки определяется используемым в процессе матричным полимером, и оптимальное значение температуры находится в диапазоне 350-500 оС. Полученный полностью пропитанный матричным полимером жгут или пучок углеродных волокон, фактически представляет из себя армированную нить 6 для процесса 3Д-печати. Но при этом при армировании нити 6 не ограничивается длина волокон, в зависимости от требований к готовому материалу может использоваться как непрерывное, так и рубленное волокно. Пористость используемой армированной нити 6 не более 2%, но не ограничивается этим значением в зависимости от требований к ФМХ материала.

В процессе печати может использоваться армированная нить 6 с любым требуемым содержанием армирующего волокна, например, для формирования защитного ламинированного покрытия, для печати может использоваться полимерный материал без армирования.

Материалы, используемые в процессе 3Д-печати могут иметь любую подходящую комбинацию. Например, подходящие термопластичные полимеры включают: полиарилэфиркетоны различных марок (ПЭЭК, ПЭКК, ПАЭК и др), полифениленсульфид (ПФС), полисульфоны (ПЭС, ПСФ), полиэфиримид (ПЭИ), полиамиды различных марок (ПА), жидкокристаллические полимеры, и различные другие термопласты и термореактивные смолы в зависимости от требований к готовому материалу. Армирующий материал так же подбирается в зависимости от требований к готовому изделию. Например, может быть использовано непрерывное высокопрочное углеродное волокно.

Поперечный размер армированной нити 6 может быть различным и подбирается в зависимости от требований к процессу печати и конкретного оборудования. Например, диаметр нити может составлять 0,55-1,2 мм. К тому же возможны вариации формы поперечного сечения нити: круг, овал, многогранник и другие.

Матричные полимеры в процессе хранения набирают влагу, которая в процессе печати под действием температуры приводит к вспениванию, что увеличивает количество пор и пустот в готовом материале. Перед подачей на печать, армированную нить просушивают на специальном оборудовании и прогревают до оптимальной температуры процесса печати в зависимости от используемого термопластичного полимера. Сушка и прогрев армированной нити 6 может осуществляться как в составе установки 3Д-печати в отдельной камере, так и в отдельном сушильном шкафу или другом оборудовании.

Предлагаемый способ позволяет изготавливать детали сложной геометрии из термопластичных композиционных материалов армированным непрерывным волокном пригодные для использования в аэрокосмической области, например, для печати секции заготовки решетки реверсивного устройства авиационного двигателя без использования сложной оснастки и без последующей термообработки в автоклаве под давлением.

Способ трехмерной печати термопластичным композиционным материалом детали, включающий предварительную пропитку армированной нити расплавленным матричным полимером под давлением, сушку армированной нити, подачу армированной нити в экструдер печатающей головки, нагрев армированной нити до температуры, превышающей температуру плавления матричного полимера армированной нити, экструдирование армированной нити на поверхность детали с образованием приваренного слоя композитного материала с регулированием скорости подачи армированной нити с обрезкой армированной нити и повторением цикла до полного формирования детали, отличающийся тем, что дополнительно используют термостатированную подогреваемую камеру, после подачи в зону трехмерной печати армированной нити приваривают армированную нить при одновременном воздействии температуры, превышающей температуру плавления матричного полимера армированной нити, и колебаний, образованных ультразвуковым преобразователем, при этом процесс печати осуществляют в термостатированной подогреваемой камере при оптимальной температуре 100-300°С в зоне печати.
Способ трехмерной печати термопластичным композиционным материалом
Способ трехмерной печати термопластичным композиционным материалом
Способ трехмерной печати термопластичным композиционным материалом
Способ трехмерной печати термопластичным композиционным материалом
Источник поступления информации: Роспатент

Показаны записи 1-10 из 35.
26.08.2017
№217.015.d864

Стенд для испытания газогенераторов турбореактивных двухконтурных двигателей

Изобретение относится к области турбостроения, а именно - к испытаниям газогенераторов турбореактивных двухконтурных двигателей на стенде. Стенд для испытания газогенераторов турбореактивных двухконтурных двигателей имеет воздуховод с установленными по тракту заслонками и турбореактивный...
Тип: Изобретение
Номер охранного документа: 0002622588
Дата охранного документа: 16.06.2017
26.08.2017
№217.015.ddb3

Способ измерения фактической минимальной площади проходного сечения межлопаточных каналов

Изобретение относится к области машиностроения и предназначено для автоматизированного измерения фактической минимальной площади проходного сечения проточной части межлопаточных каналов сопловых аппаратов турбин, роторов компрессоров. В способе измерения фактической минимальной площади...
Тип: Изобретение
Номер охранного документа: 0002624784
Дата охранного документа: 06.07.2017
26.08.2017
№217.015.dddb

Система топливопитания камеры сгорания газотурбинного двигателя

Изобретение относится к газотурбинным двигателям, а более конкретно к конструкциям основных камер сгорания. Система топливопитания камеры сгорания газотурбинного двигателя содержит кольцевой топливный коллектор, установленный вокруг внешней стороны корпуса камеры сгорания, и множество...
Тип: Изобретение
Номер охранного документа: 0002624783
Дата охранного документа: 06.07.2017
19.01.2018
№218.016.0436

Центробежно-струйная форсунка

Изобретение относится к форсункам для распыления жидкости и может быть использовано в авиадвигателестроении, а также на других промышленных объектах, где требуется распыление жидкости. Центробежно-струйная форсунка включает корпус и завихрительную камеру. В камеру с помощью резьбового...
Тип: Изобретение
Номер охранного документа: 0002630521
Дата охранного документа: 11.09.2017
20.01.2018
№218.016.1167

Жаровая труба камеры сгорания газотурбинного двигателя

Изобретение относится к газотурбинным двигателям авиационного и наземного применения. Жаровая труба камеры сгорания газотурбинного двигателя содержит фронтовое устройство. На фронтовой плите устройства расположены горелочные модули с продольной осью, коллинеарной оси жаровой трубы, с...
Тип: Изобретение
Номер охранного документа: 0002633982
Дата охранного документа: 20.10.2017
13.02.2018
№218.016.1efe

Способ изготовления керамических форм для равноосного литья жаропрочных сплавов по выплавляемым моделям

Изобретение относится к литейному производству. Поверхности модельного блока очищают от смазок и загрязнителей водным раствором моющих средств. Наносят на модельный блок керамическую суспензию на основе кремнезоля. Обсыпают огнеупорным зернистым материалом. Сушат лицевой слой в потоке воздуха с...
Тип: Изобретение
Номер охранного документа: 0002641205
Дата охранного документа: 16.01.2018
13.02.2018
№218.016.1f4d

Способ доставки измерительного элемента в заданную позицию при замерах параметров газового потока газотурбинного двигателя

Изобретение относится к области измерительной техники, к испытаниям, доводке и эксплуатации всех типов газотурбинных двигателей (ГТД), к способам доставки измерительного элемента в заданную позицию при замерах параметров газового потока, к проведению инженерных и сертификационных испытаний ГТД,...
Тип: Изобретение
Номер охранного документа: 0002641182
Дата охранного документа: 16.01.2018
13.02.2018
№218.016.268f

Упругодемпферная опора турбины

Изобретение относится к упругодемпферным опорам турбин газотурбинных двигателей авиационного и наземного применения. Упругодемпферная опора турбины, содержащая корпус опоры с установленными внутри корпуса внешним и внутренним упругими элементами с щелевой масляной полостью между ними, а также...
Тип: Изобретение
Номер охранного документа: 0002644003
Дата охранного документа: 06.02.2018
04.04.2018
№218.016.2fcc

Газотурбинный двигатель

Изобретение относится к газотурбинным двигателям авиационного и наземного применения. Газотурбинный двигатель содержит газогенератор, выход которого соединен с силовой свободной турбиной. Выход из газогенератора дополнительно соединен с реактивным соплом, выполненным в виде секторов и...
Тип: Изобретение
Номер охранного документа: 0002644660
Дата охранного документа: 13.02.2018
10.05.2018
№218.016.3ca0

Газотурбинный двигатель с биротативным вентилятором

Изобретение относится к газотурбинным двигателям с биротативным вентилятором авиационного применения. Газотурбинный двигатель с биротативным вентилятором содержит подпорные ступени, размещенные между рабочими колесами биротативного вентилятора, а также биротативную турбину, соединенную валами с...
Тип: Изобретение
Номер охранного документа: 0002647944
Дата охранного документа: 21.03.2018
Показаны записи 1-7 из 7.
10.02.2013
№216.012.23ff

Реверсивное устройство турбореактивного двигателя

Изобретение относится к турбореактивным двухконтурным двигателям и может быть использовано в авиационной промышленности. Реверсивное устройство турбореактивного двигателя включает подвижный обтекатель, перекрывающие створки, установленные со стороны наружного воздушного канала в двигателе,...
Тип: Изобретение
Номер охранного документа: 0002474717
Дата охранного документа: 10.02.2013
13.01.2017
№217.015.8fa8

Устройство для присоединения реверсивного устройства к переднему корпусу двигателя

Изобретение относится к двигателестроению, а именно к реверсивным устройствам газотурбинных двигателей. Устройство для присоединения реверсивного устройства к переднему корпусу двигателя включает «пушечный» замок с подвижным кольцом. Подвижное кольцо выполнено цельным по окружности, имеет...
Тип: Изобретение
Номер охранного документа: 0002605160
Дата охранного документа: 20.12.2016
25.08.2017
№217.015.b941

Шевронное сопло газотурбинного двигателя

Изобретение относится к области двигателестроения, в частности к реактивным соплам с устройствами подавления шума, и предназначено для использования в авиационных двигателях. Шевронное сопло газотурбинного двигателя включает выхлопную трубу, а также сопла наружного и внутреннего контуров,...
Тип: Изобретение
Номер охранного документа: 0002615309
Дата охранного документа: 04.04.2017
09.08.2018
№218.016.787c

Способ изготовления секций несущей решетки реверсера тяги

Изобретение относится к области авиации и касается разработки и производства элементов газотурбинного двигателя самолета. При изготовлении секций несущей решетки реверсера тяги самолета из полимерных композиционных материалов в продольные и поперечные канавки оправки непрерывным жгутом из...
Тип: Изобретение
Номер охранного документа: 0002663249
Дата охранного документа: 03.08.2018
13.09.2018
№218.016.8729

Отклоняющая решетка реверсивного устройства наружного корпуса двигателя

Изобретение относится к области авиационных двигателей и тормозных устройств самолетов. Отклоняющая решетка реверсивного устройства наружного корпуса двигателя включает монолитные секции. Каждая из секций изготовлена из полимерного композиционного материала и содержит продольные ребра и...
Тип: Изобретение
Номер охранного документа: 0002666889
Дата охранного документа: 12.09.2018
17.03.2019
№219.016.e29d

Сигнализатор закрытого положения механизма крепления реверсивного устройства мотогондолы к газотурбинному двигателю

Изобретение относится к области авиации, в частности к системам крепления реверсивных устройств газотурбинных двигателей самолетов. Сигнализатор закрытого положения механизма крепления реверсивного устройства мотогондолы к газотурбинному двигателю, блокирующий закрытие створок капота...
Тип: Изобретение
Номер охранного документа: 0002682145
Дата охранного документа: 14.03.2019
06.09.2019
№219.017.c7f4

Способ изготовления заготовки акустической структуры

Настоящее изобретение относится к акустическим системам и может быть преимущественно использовано как заполнитель звукопоглощающей конструкции мотогондолы авиационных двигателей, применяемой для снижения акустических шумов. В области авиационного двигателестроения существует проблема, связанная...
Тип: Изобретение
Номер охранного документа: 0002699298
Дата охранного документа: 04.09.2019
+ добавить свой РИД