×
07.06.2020
220.018.24db

Результат интеллектуальной деятельности: СПОСОБ УСИЛЕНИЯ СВАЙНОГО ФУНДАМЕНТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к строительству и может быть использовано для усиления свайных фундаментов зданий и сооружений, возводимых в любых нескальных грунтах для недопущения развития дополнительных деформаций грунтового основания при увеличении нагрузок на фундаменты или ухудшении физико-механических характеристик грунтов. Способ усиления свайного фундамента на слабых дисперсных грунтах включает поэтапное нагнетание твердеющего раствора под давлением в зону грунтового массива под сваями через инъекторы, погруженные на глубину, превышающую глубину погружения свай, причем инъекторы вводятся в грунт в пределах ростверка через образованные сквозные отверстия в фундаменте. Нагнетание твердеющего раствора производят на всю глубину сжимаемой грунтовой толщи снизу вверх через несколько инъекционных горизонтов, количество которых, их высотное положение и объем закачиваемого твердеющего раствора назначают в зависимости от инженерно-геологических условий площадки, геометрических параметров свайного фундамента и величины действующих на сжимаемую грунтовую толщу нагрузок. Сквозные отверстия в фундаменте выполнены в теле свай по их центру и в ростверке над ними по всей высоте фундамента. Нагнетание твердеющего раствора производят в два этапа по контурным сваям и по внутренним сваям. Технический результат состоит в обеспечении возможности усиления свайных фундаментов путем недопущения появления и развития опасных деформаций грунтового основания на всю глубину сжимаемой грунтовой толщи, повышении эффективности способа усиления. 1 ил.

Изобретение относится к строительству и может быть использовано для усиления свайных фундаментов зданий и сооружений, возведенных в любых нескальных грунтах для недопущения развития дополнительных деформаций грунтового основания при увеличении нагрузок на фундаменты или ухудшении физико-механических характеристик грунтов.

Известен «Способ усиления свайного фундамента» (Патент РФ №2301302, МПК E02D 3/12, 20.06.2007 г), включающий увеличение несущей способности свай посредством смещения концов свай в противоположных направлениях относительно их первоначального положения, перпендикулярно осям свай. Смешение нижних концов свай производят посредством нагнетания через инъектор закрепляющего раствора в пространство между сваями выше их концов, при этом нагнетание ведут в два этапа. На первом этапе раствор нагнетают под давлением 0,1-0,2 МПа, а на втором этапе нагнетание производят под давлением свыше 2 МПа или путем нагнетания закрепляющего или инертного раствора через инъектор с теряемой оболочкой в пространство между сваями выше их концов для образования цилиндрического или сферического тела. После частичного твердения раствора инъектор извлекают из грунта.

Недостатком описанного способа является высокая трудоемкость при относительно низкой эффективности получаемого результата (повышение несущей способности свай только за счет трения по боковой поверхности при возможности лишь относительно малых смешений концов свай), а также развитие дополнительных деформаций грунтового основания за счет увеличения массы условного фундамента.

Из известных технических решений наиболее близким к заявляемому является «Способ повышения несущей способности висячих свай» (Патент РФ №2275470, МПК Е 02 D 27/34, Е 02 D 3/12, 27.04.2006 г.) (прототип), включающий подачу твердеющего раствора в грунт через расположенные с шагом 1,5-2,0 м инъекторы, находящиеся в межсвайном пространстве в основании свай под возрастающим давлением до образования в грунте полостей гидроразрыва радиусом 1,5-2,0 м вокруг каждого инъектора, а дальнейшую подачу осуществляют под постоянным давлением 2-10 атм., причем инъекторы погружают на 1-2,5 м глубже отметки погружения острия свай. При создании плитного фундамента на сваях инъекторы погружаются по всему свайному полю по сетке 1,5×1,5; 2×2; 2×3 м через металлические патрубки, вмонтированные в фундаментную плиту при ее создании. При увеличении несущей способности свай построенных сооружений установку инъекторов производят из подвала сооружения.

К недостаткам способа-прототипа относятся появление и развитие дополнительных деформаций грунтового основания усиливаемого свайного фундамента в процессе усиления за счет увеличения его веса (вследствие нагнетания раствора в межсвайное пространство) и возрастание давления на опорные слои грунта, практическая трудоемкость усиления свайных фундаментов, состоящих из большого количества свай, объединенных крупногабаритными ростверками, а также относительная сложность и дороговизна устройства полостей гидроразрыва за счет создания высоких давлений нагнетания твердеющего раствора.

Задачей заявляемого изобретения является создание возможности усиления свайных фундаментов путем недопущения появления и развития опасных деформаций грунтового основания на всю глубину сжимаемой грунтовой толщи.

Поставленная задача решается тем что, в «Способе усиления свайного фундамента №2» на слабых дисперсных грунтах, включающем поэтапное нагнетание твердеющего раствора под давлением в зону грунтового массива под сваями через инъекторы погруженные на глубину, превышающую глубину погружения свай, причем инъекторы вводятся в грунт в пределах ростверка через образованные сквозные отверстия в фундаменте, согласно изобретению нагнетание твердеющего раствора производят на всю глубину сжимаемой грунтовой толщи снизу вверх через несколько инъекционных горизонтов, количество которых, их высотное положение и объем закачиваемого твердеющего раствора назначается в зависимости от инженерно-геологических условий площадки, геометрических параметров свайного фундамента и величины действующих на сжимаемую грунтовую толщу нагрузок, причем сквозные отверстия в фундаменте выполнены в теле свай по их центру и в ростверке над ними по всей высоте фундамента, при этом нагнетание твердеющего раствора производят в два этапа по контурным сваям и по внутренним сваям.

Сущность заявляемого изобретения заключается в том, что нагнетание твердеющего раствора производят на всю глубину сжимаемой грунтовой толщи снизу вверх через несколько инъекционных горизонтов, количество которых, их высотное положение и объем закачиваемого твердеющего раствора назначается в зависимости от инженерно-геологических условий площадки, геометрических параметров свайного фундамента и величины действующих на сжимаемую грунтовую толщу нагрузок, причем сквозные отверстие в фундаменте выполнены в теле свай по их центру и в ростверке над ними по всей высоте фундамента, при этом нагнетание твердеющего раствора производят в два этапа по контурным сваям и по внутренним сваям.

Первый новый признак, заключающийся в том, что нагнетание твердеющего раствора производят на всю глубину сжимаемой грунтовой толщи снизу вверх через несколько инъекционных горизонтов, количество которых, их высотное положение и объем закачиваемого твердеющего раствора назначаются в зависимости от инженерно-геологических условий площадки, геометрических параметров свайного фундамента и величины действующих на сжимаемую грунтовую толщу нагрузок, позволяет предложенному техническому решению приобрести новые свойства, заключающиеся в том, что достигается оптимальность нагнетания раствора в грунтовое основание, так как слабые грунтовые основания свайных фундаментов по глубине обладают различными физико-механическими свойствами и сжимающие нагрузки на различные слои по глубине основания различны, причем распределение этих нагрузок зависит от геометрических параметров свайного фундамента, поэтому обработка всей инженерно-геологической и геотехнической информации позволяет выбрать строго ограниченные зоны в грунтовом основании, в каждую из которых производится отдельное нагнетание определенного количества закрепляющего раствора, а также экономичность, так как при нагнетании раствора снизу вверх перерасход закрепляющего раствора за счет утечек в нижний горизонт по скважине исключается. Второй новый признак предложенного технического решения, заключающийся в том, что сквозные отверстия в фундаменте выполнены в теле свай по их центру и в ростверке над ними по всей высоте фундамента, позволяет предложенному техническому решению приобрести новое свойство, заключающееся в том, что создается наиболее простая возможность введения инъекторов непосредственно в слабое грунтовое основание под сваями после их возведения. Третий новый признак, заключающийся в том, что нагнетание твердеющего раствора производят в два этапа по контурным сваям и по внутренним сваям, позволяет предложенному техническому решению проявить новое свойство, заключающееся в создании наиболее простого условия предотвращения утечки закрепляющего раствора за пределы укрепляемой зоны грунтового основания свайного фундамента, что позволяет равномерно укрепить слабое грунтовое основание на всю глубину под сваями, избежать перерасхода материалов и сэкономить средства.

Указанные новые признаки и свойства отсутствуют в известных технических решениях и позволяют предложенному техническому решению проявить эффективность, заключающуюся в создании возможности усиления свайных фундаментов путем недопущения появления и развития опасных деформаций грунтового основания на всю глубину сжимаемой грунтовой толщи.

Вышеизложенное позволяет утверждать, что предложенное техническое решение соответствует критериям изобретения «новизна» и «изобретательский уровень».

На фиг. 1 представлена принципиальная схема усиления свайного фундамента.

На фиг. 1 показаны: свайный фундамент, состоящий из свай - 1 и ростверка - 2; 3 - сквозные отверстия, выполненные в сваях и в ростверке; 4 - инъекционные тела закрепления, выполняемые на первом этапе работ; 5 - инъекционные тела закрепления, выполняемые на втором этапе работ; ABCD - условный фундамент; PL - высотная отметка нижнего конца свай; IL - высотная отметка каждого инъекционного горизонта; Н - глубина сжимаемой толщи грунтового основания фундамента; b - ширина деформируемой области грунтового основания свайного фундамента.

В случае необходимости усиления свайного фундамента, состоящего из свай 1 и ростверка 2, производят анализ строительной ситуации, включающий построение условного фундамента ABCD (в соответствии с п. 7.4.7 СП 24.13330.2011 «Свайные фундаменты»), определение величины давления по его подошве - плоскости DC и вертикальных напряжений от собственного веса грунта на глубине PL. Определяют геометрические параметры деформируемой области грунтового основания свайного фундамента: ее ширину - b и глубину (глубину сжимаемой толщи Н). В зависимости от инженерно-геологических условий площадки назначают количество и высотные отметки инъекционных горизонтов IL, а также объем цементно-песчаной смеси 4 и 5. Усиление свайного фундамента производят в два этапа. На первом этапе нагнетание подвижной цементно-песчаной смеси 4 производят инъекторами (не показаны), погружаемыми через сквозные отверстия 3, выполненные в контурных (крайних) сваях и ростверке с образованием инъекционных тел 4. На втором этапе нагнетание подвижной цементно-песчаной смеси производят инъекторами, погружаемыми через сквозные отверстия 3, выполненные во внутренних сваях и ростверке с образованием инъекционных тел 5. В каждой инъекционной точке нагнетание ведется на всю глубину сжимаемой толщи Н снизу вверх, при этом на каждом инъекционном горизонте IL закачивается требуемый объем 4 и 5 цементно-песчаной смеси.

Экспериментальная проверка эффективности предлагаемого способа усиления свайного фундамента была выполнена на моделях свайного фундамента в натурных условиях. На моделях в качестве свай использовались металлические трубы круглого сечения диаметром 10 см, длиной 3 м. Свайный фундамент состоял из 9 свай, забитых с шагом 60 см и объединенных ростверком, выполненным из монолитного железобетона. Размеры ростверка в плане составляли 1,4×1,4 м, а высота 0,5 м. Сквозные отверстия в металлических сваях и в ростверке были образованы при помощи металлических кондукторов осесимметрично установленных в полости металлических свай и проходящих насквозь всю толщу ростверка, т.е. высота кондукторов была 3,5 м. Внутренний диаметр кондукторов выполнялся таким, чтобы в него свободно с минимальным зазором проходил трубчатый инъектор. Инженерно-геологические условия первой площадки были представлены суглинком тяжелым, пылеватым, насыщенным водой (γ=19,5 кН/м3; ϕ=18°; с=16 кПа; Е=5,0 МПа; IL>1). Свайный фундамент был загружен до давления, действующего по подошве условного фундамента, величиной Р=75 кПа. При этом, как расчетное значение осадки, определенное по СП 22.13330.2016 «Основания зданий и сооружений», так и ее фактическая величина оказались менее 0,2 см. На втором этапе эксперимента был проведен расчет осадок свайного фундамента в случае его дополнительного нагружения до давления, действующего по подошве условного фундамента, величиной Р=250 кПа. При этом свайный фундамент, согласно расчету по СП 22.13330.2016 «Основания зданий и сооружений», получал дополнительную осадку 4,7 см. На третьем этапе эксперимента было проведено усиление деформируемой области грунтового основания свайного фундамента нагнетанием цементно-песчаной смеси с целью предотвращения развития дополнительных деформаций. Вначале нагнетание производилось инъекторами, погруженными в восьми точках через крайние восемь свай, после чего было проведено нагнетание инъектором, погруженным через центральную сваю. В каждой точке инъецирование производилось на всю глубину сжимаемой толщи, определенную расчетом Н=3,6 м, цементно-песчаная смесь нагнеталась на трех инъекционных горизонтах, начиная с нижнего. На каждом инъекционном горизонте было закачено около 2,0 м смеси. В результате проведенного усиления было достигнуто существенное улучшение физико-механических характеристик грунтового основания, в том числе эквивалентный модуль общей деформации был повышен более чем в 5,5-6,0 раз (до значения Е=28-30 МПа). На четвертом этапе было произведено увеличение нагрузки на свайный фундамент, до давления, действующего по подошве условного фундамента, величиной Р=250 кПа. В процессе нагружения производилась фиксация осадок свайного фундамента, замеры также производились в течение 3-х месяцев после окончания эксперимента. В итоге дополнительные осадки усиленного свайного фундамента не превысили 0,1 см. В грунтовых условиях второй площадки, представленной супесью пылеватой, малой степени водонасыщения (γ=16,84 кН/м3; ϕ=27°; с=17 кПа; Е=14,4 МПа; IL<0), при увеличении давления по подошве условного фундамента до Р=250 кПа, дополнительная осадка, определенная согласно указаниям СП 22.13330.2016 «Основания зданий и сооружений», составила 1,8 см. В результате проведенного усиления грунтового основания свайного фундамента нагнетанием подвижной цементно-песчаной смеси в опорный слой грунта эквивалентный модуль общей деформации был повышен более чем в 2,0-2,15 раза (до значения Е=29-32 МПа) и при нагрузке на свайный фундамент, соответствующей давлению по подошве условного фундамента, величиной Р=250 кПа, его дополнительные осадки также не превышали 0,1 см.

Таким образом, предложенный «Способ усиления свайного фундамента №2» позволяет резко снизить величину дополнительных осадок при существенном увеличении нагрузок.

Технико-экономическая эффективность предложенного технического решения, по сравнению со способом-прототипом, заключается в том, что создается возможность усиления свайных фундаментов путем недопущения появления и развития опасных деформаций грунтового основания на всю глубину сжимаемой грунтовой толщи.

Способ усиления свайного фундамента на слабых дисперсных грунтах, включающий поэтапное нагнетание твердеющего раствора под давлением в зону грунтового массива под сваями через инъекторы, погруженные на глубину, превышающую глубину погружения свай, причем инъекторы вводятся в грунт в пределах ростверка через образованные сквозные отверстия в фундаменте, отличающийся тем, что нагнетание твердеющего раствора производят на всю глубину сжимаемой грунтовой толщи снизу вверх через несколько инъекционных горизонтов, количество которых, их высотное положение и объем закачиваемого твердеющего раствора назначаются в зависимости от инженерно-геологических условий площадки, геометрических параметров свайного фундамента и величины действующих на сжимаемую грунтовую толщу нагрузок, причем сквозные отверстия в фундаменте выполнены в теле свай по их центру и в ростверке над ними по всей высоте фундамента, при этом нагнетание твердеющего раствора производят в два этапа по контурным сваям и по внутренним сваям.
Источник поступления информации: Роспатент

Показаны записи 21-30 из 63.
09.05.2019
№219.017.4a3b

Способ удаления фосфора из сточных вод морской водой

Изобретение относится к области очистки фосфорсодержащих сточных вод и может быть использовано для очистки городских стоков, стоков предприятий пищевой промышленности, а также животноводческих и птицеводческих комплексов. Способ удаления фосфора из сточных вод включает осуществление...
Тип: Изобретение
Номер охранного документа: 0002686908
Дата охранного документа: 06.05.2019
24.05.2019
№219.017.5ed2

Способ удаления фосфора из сточных вод подщелачиванием

Изобретение относится к очистке сточных вод и может быть использовано для очистки городских стоков, стоков предприятий пищевой промышленности, а также животноводческих и птицеводческих комплексов с последующим их сбросом в водоем. Способ удаления фосфора из сточных вод включает стадию...
Тип: Изобретение
Номер охранного документа: 0002688631
Дата охранного документа: 21.05.2019
19.07.2019
№219.017.b60c

Устройство для пневматического механизма ударного действия

Изобретение относится к пневматическому механизму ударного действия. Пневматический механизм ударного действия содержит пневмоударный механизм дроссельно-клапанного типа с корпусом с цилиндрической полостью, рабочий инструмент с хвостовиком, стакан с центральным отверстием и дроссельным...
Тип: Изобретение
Номер охранного документа: 0002694856
Дата охранного документа: 17.07.2019
22.10.2019
№219.017.d918

Способ возведения стен здания печатающим 3d принтером дискретной печатью

Изобретение относится к области строительства, в частности к возведению зданий и сооружений строительным 3d-принтером. Техническим результатом является набор необходимой прочности печатаемого слоя перед укладыванием последующего во время печати конструкций, достижение максимально ровной...
Тип: Изобретение
Номер охранного документа: 0002703574
Дата охранного документа: 21.10.2019
10.11.2019
№219.017.e067

Способ двухстадийного сжигания водоугольного топлива с керамическим стабилизатором горения и подсветкой

Изобретение относится к области теплоэнергетики. Способ двухстадийного сжигания водоугольного топлива с керамическим стабилизатором горения и подсветкой, при котором используются две камеры горения, процесс горения протекает в двух вертикально расположенных камерах, отделенных друг от друга...
Тип: Изобретение
Номер охранного документа: 0002705534
Дата охранного документа: 07.11.2019
10.11.2019
№219.017.e069

Устройство для сжигания водоугольного топлива с керамическим стабилизатором горения и подсветкой

Изобретение относится к области теплоэнергетики. Устройство для сжигания водоугольного топлива с керамическим стабилизатором горения и подсветкой содержит две камеры горения с форсунками подачи топлива и воздуха. Камеры расположены вертикально и разделены горизонтально установленными...
Тип: Изобретение
Номер охранного документа: 0002705535
Дата охранного документа: 07.11.2019
08.12.2019
№219.017.eb05

Способ удаления фосфора из сточных вод внутриплощадочной канализации канализационных очистных сооружений

Изобретение относится к очистке фосфорсодержащих сточных вод и может быть использовано для очистки городских стоков и стоков предприятий пищевой промышленности, а также животноводческих и птицеводческих комплексов с последующим их сбросом в водоем. Способ заключается в удалении фосфора из...
Тип: Изобретение
Номер охранного документа: 0002708310
Дата охранного документа: 05.12.2019
04.02.2020
№220.017.fd22

Сырьевая смесь для получения неавтоклавного пенобетона

Изобретение относится к строительным материалам и может быть использовано при производстве теплоизоляционного пенобетона неавтоклавного твердения. Сырьевая смесь для получения неавтоклавного пенобетона включает, мас.%: портландцемент 35-45, золу-уноса ТЭЦ процентной концентрации SiO 60,7%...
Тип: Изобретение
Номер охранного документа: 0002712883
Дата охранного документа: 31.01.2020
07.06.2020
№220.018.24b2

Способ устройства свайного фундамента под машины с динамическими нагрузками и виброчувствительное оборудование

Изобретение относится к строительству и может быть применено при возведении свайных фундаментов под машины с динамическими нагрузками или виброчувствительное оборудование на любых нескальных грунтах. Способ устройства свайного фундамента под машины с динамическими нагрузками и...
Тип: Изобретение
Номер охранного документа: 0002722906
Дата охранного документа: 04.06.2020
07.06.2020
№220.018.24cd

Способ устройства свайного фундамента под машины с динамическими нагрузками и виброчувствительное оборудование

Изобретение относится к строительству и может быть применено при возведении свайных фундаментов под машины с динамическими нагрузками или виброчувствительное оборудование на любых нескальных грунтах. Способ устройства свайного фундамента под машины и виброчувствительное оборудование включает...
Тип: Изобретение
Номер охранного документа: 0002722907
Дата охранного документа: 04.06.2020
Показаны записи 21-30 из 87.
10.04.2016
№216.015.315f

Устройство с полым вкладышем для строительства канала с гибким противофильтрационным экраном

Изобретение относится к гидротехническому строительству и может быть использовано при возведении каналов оросительных систем с противофильтрационными экранами без прекращения полива сельскохозяйственных культур. Устройство включает гибкий трубопровод 9, намотанный на барабан 10 и установленный...
Тип: Изобретение
Номер охранного документа: 0002580134
Дата охранного документа: 10.04.2016
20.08.2016
№216.015.4aa5

Устройство для забора жидкости

Изобретение относится к устройствам, предназначенным для забора жидкости из источника, преимущественно воды, из водохранилища, рек, каналов, лотков, бассейнов, цистерн и т.п. Устройство для забора жидкости содержит входную воронку, поплавок, установленный с возможностью вертикального...
Тип: Изобретение
Номер охранного документа: 0002594534
Дата охранного документа: 20.08.2016
13.01.2017
№217.015.6a51

Устройство для разработки грунта

Изобретение относится к устройствам типа траншеекопателей, роторных и карьерных экскаваторов. Технический результат - повышение надежности устройства в работе. Устройство для разработки грунта включает установленный на поддоне с возможностью взаимодействия с ним посредством шарнира рабочий...
Тип: Изобретение
Номер охранного документа: 0002592926
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.7442

Железобетонная колонна (стойка) со случайным эксцентриситетом

Изобретение относится к строительству, в частности к конструкциям сборных или монолитных колонн (стоек) со случайным эксцентриситетом. Задача изобретения - повышение устойчивости и жесткости железобетонной колонны (стойки). Железобетонная колонна (стойка) со случайным эксцентриситетом имеет...
Тип: Изобретение
Номер охранного документа: 0002597909
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.8863

Туннель для автодорог, железных дорог и метрополитенов

Изобретение относится к горному и подземному строительству, в частности к конструкциям туннелей для автодорог, железных дорог и метрополитенов. Туннель для автодорог, железных дорог и метрополитенов с защитной обделкой, имеющий поперечное сечение в виде фигуры постоянной ширины. Поперечное...
Тип: Изобретение
Номер охранного документа: 0002602533
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.9c61

Железобетонная полая колонна (стойка) со случайным эксцентриситетом

Изобретение относится к строительству, в частности к конструкциям железобетонных сборных или монолитных колонн (стоек) со случайными эксцентриситетами. Железобетонная полая колонна (стойка) со случайным эксцентриситетом имеет поперечное сечение как самой колонны (стойки), так и ее полости в...
Тип: Изобретение
Номер охранного документа: 0002610477
Дата охранного документа: 13.02.2017
25.08.2017
№217.015.a0dd

Металлический вертикальный сейсмостойкий резервуар

Изобретение относится к строительству, а именно к металлическим вертикальным резервуарам для хранения жидкостей, сооружаемым в сейсмических районах. Технический результат изобретения заключается в повышении устойчивости и жесткости резервуара. Резервуар включает стенку, днище, крышу, плавающие...
Тип: Изобретение
Номер охранного документа: 0002606485
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a17e

Многоэтажное здание

Изобретение относится к строительству многоэтажных зданий. Многоэтажное здание включает корпуса с ломанными в плане очертаниями фасадов, выполненные с остекленными участками стен, установленные радиально и соединенные между собой торцами с образованием центрального ядра, наружное...
Тип: Изобретение
Номер охранного документа: 0002606898
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a17f

Железобетонный силос

Изобретение относится к строительным конструкциям, в частности к железобетонным силосам для хранения сыпучих материалов. Технический результат изобретения заключается в повышении устойчивости и жесткости силоса. Железобетонный силос имеет банку, стенки которой в поперечном сечении выполнены в...
Тип: Изобретение
Номер охранного документа: 0002606896
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a202

Многоэтажное здание повышенной устойчивости

Изобретение относится к строительству многоэтажных зданий. Задача изобретения - повышение устойчивости конструкции здания к динамическим нагрузкам и улучшение обтекаемости ветровыми воздушными потоками. Это достигается тем, что создается многоэтажное здание повышенной устойчивости, включающее...
Тип: Изобретение
Номер охранного документа: 0002606895
Дата охранного документа: 10.01.2017
+ добавить свой РИД