×
30.05.2020
220.018.222c

Результат интеллектуальной деятельности: Способ определения координат воздушных целей в многопозиционной радиолокационной системе в условиях малого значения отношения сигнал/шум

Вид РИД

Изобретение

Аннотация: Изобретение относится к радиолокации и может быть использовано для определения координат воздушных целей в многопозиционной радиолокационной системе (МПРЛС) в условиях малого отношения сигнал/шум, что и является достигаемым техническим результатом. Технический результат достигается тем, что передатчики с известными координатами x, у, z, i=1, 2, …, I излучают ортогональные относительно друг друга фазокодоманипулированные сигналы, которые рассеиваются воздушными целями с искомыми координатами x, y, z, n=1, 2, …, N; в наземном приемнике с известными координатами x, y z, синхронизированном с передатчиками, вычисляются огибающие корреляционных функций X(τ) принятых сигналов, излученных передатчиками и отраженных воздушными целями, и опорных сигналов, представляющих собой задержанные копии сигналов передатчиков; формулируется гипотеза о том, что цель находится в точке с координатами х, у, z и в рамках нее рассчитываются соответствующие гипотетические задержки для каждой огибающей корреляционной функции, для проверяемой точки формируется значение суммарной огибающей корреляционной функции, получаемое суммированием отсчетов всех огибающих корреляционных функций X(τ), задержка которых соответствует гипотетическим задержкам τ, рассчитанным для них в рамках проверяемой гипотезы; проводится виртуальный обзор пространства и проверка всех гипотез Х(х, у, z) о нахождении воздушной цели 3.n в заданных точках пространства значений суммарной огибающей корреляционной функции от координат проверяемой точки (х, у, z), считая критерием правильности проверяемой гипотезы о нахождении воздушной цели 3.n в точке (х, у, z) превышение установленного порога значением суммарной огибающей корреляционной функции. Количество точек, в которых значение суммарной огибающей корреляционной функции превысит установленный порог Н, соответствует количеству наблюдаемых целей N. 4 ил.

Предлагаемое изобретение относится к радиолокации и может быть использовано для определения координат воздушных целей в многопозиционной радиолокационной системе (МПРЛС) в условиях малого отношения сигнал/шум.

Известен способ определения координат воздушной цели в МПРЛС, состоящей из N передатчиков и М приемников, основанный на использовании навигационных многопозиционных методов [1]. Для его реализации требуется, чтобы на этапе первичной обработки отклик цели был обнаружен не менее чем в трех (для 2-D позиционирования) или четырех (для 3-D позиционирования) каналах обработки сигналов (бистатических звеньях «передатчик-приемник»). В условиях малого ресурса мощности радиолиний «передатчик-приемник» или применения воздушной цели с малой эффективной поверхностью рассеяния отношение сигнал/шум в каналах первичной обработки сигналов может быть недостаточным для обнаружения в требуемом количестве каналов первичной обработки. В этом случае определение координат цели с использованием известного метода становится невозможным.

Для повышения отношения сигнал/шум предложены алгоритмы некогерентного суммирования видеосигналов на выходах нескольких каналов первичной обработки [2]. При этом повышается вероятность правильного обнаружения цели, но задача определения координат цели не решается. Кроме того, для реализации этих алгоритмов в МПРЛС, состоящей из N передатчиков и М приемников, требуются линии обмена данными с высокой пропускной способностью для передачи видеосигналов от разных приемных позиций в центр обработки информации.

Целью изобретения является разработка способа определения координат N воздушных целей в условиях малого значения отношения сигнал/шум в многопозиционной радиолокационной системе, содержащей I передатчиков сигналов подсвета целей и один приемник с известными координатами.

Технический результат достигается тем, что

- передатчики с известными координатами х1,i, у1,i, z1,i, i=1, 2, …, I излучают ортогональные друг относительно друга фазокодоманипулированные сигналы, которые рассеиваются воздушными целями с искомыми координатами x3n, y3n, z3n, n=1, 2, …, N;

- в наземном приемнике с известными координатами x2, у2, z2, синхронизированном с передатчиками, вычисляются огибающие корреляционных функций Xi(τ) принятых сигналов, излученных передатчиками и отраженных воздушными целями, и опорных сигналов, представляющих собой задержанные копии сигналов передатчиков;

- формулируется гипотеза о том, что цель находится в точке с координатами х, у, z и в рамках нее рассчитываются соответствующие гипотетические задержки для каждой огибающей корреляционной функции

где с - скорость света;

- для проверяемой точки формируется значение суммарной огибающей корреляционной функции

получаемое суммированием отсчетов всех огибающих корреляционных функций Xi(τ), задержка которых соответствует гипотетическим задержкам τi,г,2, рассчитанным для них в рамках проверяемой гипотезы;

- проводится виртуальный обзор пространства и проверка всех гипотез X(xз,г, уз,г, zз,г) о нахождении воздушной цели 3.n в заданных точках пространства значений суммарной огибающей корреляционной функции от координат проверяемой точки (xз,г, уз,г, zз,г), считая критерием правильности проверяемой гипотезы о нахождении воздушной цели 3.n в точке (xз,г, уз,г, zз,г) превышение установленного порога значением суммарной огибающей корреляционной функции

Изобретение поясняется рисунками, где показано на Фиг. 1 гипотетическая схема МПРЛС, на Фиг. 2 сигнал навигационного передатчика 1.1 (а) и суммарный сигнал на входе приемника 2j (б), на Фиг. 3 огибающая корреляционной функции принятого полезного сигнала и опорного сигнала передатчика 1.1 при наличии двух целей в зоне действия МПРЛС, на Фиг. 4 двумерная зависимость Хз,r, уз,r) значений суммарной огибающей корреляционной функции от координат (хз,r, уз,r) проверяемой точки для фиксированного значения zз,r, равного высоте полета двух воздушных целей.

Способ определения координат воздушных целей в многопозиционной радиолокационной системе в условиях малого значения отношения сигнал/шум, представляющей собой систему, состоящую из I задействованных передатчиков 1.i с координатами х1,i, у1,i, z1,i, i=1, 2, …, I и одного приемника 2 с координатами х2, у2, z2. В зоне действия системы одновременно находятся N воздушных целей 3.n с искомыми координатами x3n,y3n, z3n, n=1, 2, …, N (Фиг. 1).

Каждый передатчик 1.i формирует и излучает фазокодоманипулированный сигнал (Фиг. 2а)

где Ai - амплитуда, Gi(f) - псевдослучайная последовательность (ПСП), ортогональная по отношению к ПСП сигналов всех других передатчиков, ƒ0 - несущая частота, ϕi - начальная фаза сигнала.

В качестве ПСП используются М-последовательности [3]. Характеристические многочлены, порождающие М-последовательности с периодом 2047, использованные в данном примере (не нарушает общность), имеют вид

где ⊕ - сложение по модулю 2.

Последовательности Gi(t) (i=1, 2, …, I), сформированные с использованием этих многочленов, ортогональны между собой, что дает возможность раздельного анализа откликов приемника на принимаемые сигналы от разных передатчиков.

Сигнал передатчика 1.i, отраженный от цели 3.n и принятый в приемнике 2, без учета доплеровского смещения частоты будет иметь вид

где Ai,n,2 - амплитуда полезного сигнала, τi,n,2 - задержка полезного сигнала, определяемая взаимным расположением передатчика, приемника и цели

где:

расстояние «передатчик 1.i - цель 3.n;

- расстояние «цель 3.n - приемник 2»;

с - скорость света.

Аналогично записываются сигналы передатчика 1.i, отраженные от других целей, находящихся в зоне действия МПРЛС. С учетом всех передатчиков суммарный сигнал на входах каналов первичной обработки приемника будет иметь вид (Фиг. 2б)

где n(t) - внутренний тепловой шум приемника.

В данном примере (не нарушает общности) несущие частоты сигналов равны 1200 МГц, тактовые частоты ПСП равны 300 МГц.

Уровень собственных тепловых шумов приемника находится значительно выше уровня суммарного полезного сигнала, отраженного от целей, более, чем в 200 раз (не нарушает общности).

При приеме слабых рассеянных целью сигналов осуществляется компенсация мощных сигналов прямого распространения. Для этого при приеме смеси мощных прямых сигналов и слабых сигналов, рассеянных целями, осуществляется процедура обнаружения мощных прямых сигналов, формируются точные копии этих сигналов, которые вычитаются из входных смесей [4].

В приемнике в i-ом канале первичной обработки вычисляется огибающая корреляционной функции принятого суммарного сигнала и опорного сигнала, представляющего собой задержанную на τ копию сигнала передатчика 1.i

где - синфазная составляющая, - квадратурная составляющая корреляционной функции, Tн - время накопления сигнала в корреляторе, равное длительности ПСП (в приведенном примере Tн=2 мс, не нарушает общности).

Огибающая корреляционной функции будет иметь N характерных максимумов, соответствующих N целям 3.n (Фиг. 3 иллюстрирует наличие двух целей в зоне действия МПРЛС).

Задержка опорного сигнала, обеспечивающая формирование этих максимумов огибающей корреляционной функции соответствует величинам τi,n,2 (при условии синхронизации шкал времени приемника и передатчика), однако величина самих максимумов вследствие малого значения отношения сигнал/шум в принятом сигнале не будет превышать установленного порогового значения Н. Следовательно, использование известного позиционного метода определения координат будет невозможно. Кроме того, соответствующие по порядку появления максимумы в разных каналах первичной обработки приемника могут принадлежать разным целям.

Для повышения отношения сигнал/шум и определения координат всех целей применяется пространственно-некогерентное накопление (суммирование отсчетов) огибающих корреляционных функций на выходах каналов первичной обработки в ходе виртуального обзора пространства с проверкой гипотез о местонахождении цели в заданных точках пространства в пределах зоны действия МПРЛС.

Для этого в пределах зоны действия МПРЛС с шагом, соответствующим разрешающей способности по задержке, последовательно задается точка гипотетического местоположения цели 3.г с координатами х, y, z. Для проверки гипотезы о нахождении цели в этой точке в каждом i-ом канале приемника рассчитывается гипотетическая задержка

для которой при правильности этой гипотезы должен быть сформирован максимум огибающей корреляционной функции в соответствующем канале.

Значение суммарной огибающей корреляционной функции для проверяемой гипотезы (точки) получается суммированием отсчетов огибающих корреляционных функций Xi(τ) всех I каналов приемника, задержка которых соответствует гипотетическим задержкам τi,г,2, рассчитанным для этих каналов в рамках проверяемой гипотезы

В ходе виртуального обзора пространства и проверки всех гипотез о нахождении воздушной цели 3.n в заданных точках пространства в пределах зоны действия МПРЛС получают трехмерную зависимость X(xз,г, уз,г, zз,г) значений суммарной огибающей корреляционной функции от координат проверяемой точки (xз,г, уз,г, zз,г).

Для примера рассмотрим результаты наблюдения двух целей в МПРЛС, состоящей из шести передатчиков, размещенных в узлах шестиугольника со стороной 30 км, и одного приемника, размещенного в центре этого шестиугольника (Фиг. 4).

В проверяемых точках, в которых действительно находится цель, значение суммарной огибающей корреляционной функции получается суммированием отсчетов, соответствующих максимумам огибающих корреляционной функции в каждом отдельном канале приемника. При этом значение суммарной огибающей корреляционной функции в этих точках увеличивается по отношению к значению максимумов огибающих корреляционной функции в каждом канале приемника примерно в I раз и превышает величину установленного порога Н.

Таким образом, критерием правильности проверяемой гипотезы о нахождении воздушной цели 3.n в заданной точке пространства является превышение значением суммарной огибающей корреляционной функции в этой точке установленного порога Н, а координаты соответствующей проверяемой точки являются оценками координат наблюдаемой цели 3.n

Количество точек, в которых значение суммарной огибающей корреляционной функции превысит установленный порог Н, соответствует количеству наблюдаемых целей N.

Источники.

1. Журавлев А.В., Кирюшкин В.В., Коровин А.В., Савин Д.И. Синтез многопозиционных радиолокационных систем на базе специализированных излучателей // Радиотехника, 2018, №7, 109-118.

2. Черняк B.C. Многопозиционная радиолокация. - М: Радио и связь, 1993. 416 с.

3. Варакин Л.Е. Системы связи с шумоподобными сигналами. М.: Радио и связь, 1985. - 384 с.

4. Патент 2591052. МПК G01S 5/06, G01S 13/95. Способ обнаружения и оценки радионавигационных параметров сигнала космической системы навигации, рассеянного воздушной целью, и устройство его реализации / В.В. Кирюшкин (РФ), Д.А. Черепанов (РФ), А.А. Дисенов (РФ), В.В. Неровный (РФ), А.В. Коровин (РФ), С.С. Ткаченко (РФ); Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации, Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования «Военный учебно-научный центр Военно-воздушных сил «Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина» (г. Воронеж) Министерства обороны Российской Федерации. - №2014101847; Заявлено 21.01.2014; Опубл. 27.07.2015 Бюл. №21. 9 с.: 1 ил.


Способ определения координат воздушных целей в многопозиционной радиолокационной системе в условиях малого значения отношения сигнал/шум
Способ определения координат воздушных целей в многопозиционной радиолокационной системе в условиях малого значения отношения сигнал/шум
Способ определения координат воздушных целей в многопозиционной радиолокационной системе в условиях малого значения отношения сигнал/шум
Способ определения координат воздушных целей в многопозиционной радиолокационной системе в условиях малого значения отношения сигнал/шум
Способ определения координат воздушных целей в многопозиционной радиолокационной системе в условиях малого значения отношения сигнал/шум
Источник поступления информации: Роспатент

Показаны записи 31-32 из 32.
01.07.2020
№220.018.2d7f

Симметричная вибраторная антенна с симметрирующим устройством

Изобретение относится к области радиотехники, а именно к антенной технике, и может быть использовано в качестве приемопередающей антенны. Целью изобретения является создание вибраторной антенны для не горизонтального расположения с компактным симметрирующим устройством для формирования без...
Тип: Изобретение
Номер охранного документа: 0002724963
Дата охранного документа: 29.06.2020
10.05.2023
№223.018.532a

Радиопередающее устройство с автоматической регулировкой параметров спектра радиосигнала

Изобретение относится к области радиотехники, а именно к радиопередающим устройствам, осуществляющим автоматическую регулировку параметров спектра радиосигнала в интересах обеспечения электромагнитной совместимости (ЭМС) с радиоэлектронными средствами, работающими одновременно с радиопередающим...
Тип: Изобретение
Номер охранного документа: 0002795268
Дата охранного документа: 02.05.2023
Показаны записи 41-50 из 86.
04.04.2018
№218.016.306d

Способ пространственной селекции расстояний при решении задачи позиционирования мобильного средства дальномерным методом в наземной локальной радионавигационной системе

Изобретение относится к радиотехнике и предназначено для повышения точности определения местоположения мобильных средств по сигналам опорных станций наземной локальной радионавигационной системы (ЛРНС). Достигаемый технический результат – повышение точности определения местоположения...
Тип: Изобретение
Номер охранного документа: 0002644762
Дата охранного документа: 14.02.2018
04.04.2018
№218.016.3502

Способ повышения точности дифференциальной коррекции навигационных параметров в длинноволновой системе определения местоположения

Изобретение относится к радиотехнике и может быть использовано для повышения точности определения координат подвижных объектов с помощью аппаратуры длинноволновых радионавигационных систем. Способ повышения точности дифференциальной коррекции навигационных параметров в длинноволновой системе...
Тип: Изобретение
Номер охранного документа: 0002645875
Дата охранного документа: 28.02.2018
10.05.2018
№218.016.40ec

Многолучевая антенная система с одним выходом

Изобретение относится к радиотехнике и может быть использовано для приема сигналов с различных направлений на одно приемное устройство. Многолучевая антенная система с одним выходом содержит: антенную решетку, состоящую из пространственно разнесенных антенных элементов; диаграммообразующую...
Тип: Изобретение
Номер охранного документа: 0002649096
Дата охранного документа: 29.03.2018
10.05.2018
№218.016.42ec

Пространственно-распределенная система радиоподавления нап гнсс с функцией альтернативного координатно-временного обеспечения для санкционированных потребителей

Изобретение относится к радиоэлектронной борьбе (РЭБ) и навигации и может быть использовано при радиоподавлении навигационной аппаратуры потребителей (НАП) глобальной навигационной спутниковой системы (ГНСС) средствами радиоподавления противника и собственными средствами радиоподавления,...
Тип: Изобретение
Номер охранного документа: 0002649407
Дата охранного документа: 03.04.2018
06.07.2018
№218.016.6d12

Компенсатор помех для навигационной аппаратуры потребителя глобальной навигационной спутниковой системы

Изобретение относится к радиотехнике и предназначено для приема навигационного сигнала на фоне преднамеренных помех, и может быть использовано в навигационной аппаратуре потребителя (НАП) глобальной навигационной спутниковой системы (ГНСС). В компенсаторе помех для навигационной аппаратуры...
Тип: Изобретение
Номер охранного документа: 0002660140
Дата охранного документа: 05.07.2018
08.07.2018
№218.016.6eba

Способ эксплуатации никель-водородной аккумуляторной батареи в автономной системе электропитания искусственного спутника земли

Изобретение относится к электротехнической промышленности и может быть использовано при эксплуатации никель-водородных аккумуляторных батарей в автономных системах электропитания искусственного спутника Земли (ИСЗ). Предлагается способ эксплуатации никель-водородной аккумуляторной батареи в...
Тип: Изобретение
Номер охранного документа: 0002660471
Дата охранного документа: 06.07.2018
28.07.2018
№218.016.76a6

Способ получения битумной эмульсии и битумная эмульсия

Техническое решение относится к области строительных материалов, более конкретно к битумным эмульсиям, и может быть использовано для производства тепло- и гидроизоляционных материалов, предназначенных для устройства и ремонта разнообразных кровель, а также в дорожном строительстве в качестве...
Тип: Изобретение
Номер охранного документа: 0002662493
Дата охранного документа: 26.07.2018
01.11.2018
№218.016.982a

Способ обнаружения преднамеренных помех нап гнсс

Изобретение относится к радиотехнике, а именно к способам обнаружения преднамеренных помех навигационной аппаратурой потребителей (НАП) глобальной навигационной спутниковой системы (ГНСС). Достигаемый технический результат – обнаружение преднамеренных помех НАП ГНСС за счет анализа полученных...
Тип: Изобретение
Номер охранного документа: 0002671238
Дата охранного документа: 30.10.2018
24.01.2019
№219.016.b2d6

Устройство обнаружения источников ложных навигационных сигналов нап гнсс

Изобретение относится к области выявления источников ложных навигационных сигналов навигационной аппаратуре потребителей (НАП) глобальной навигационной системы связи (ГНСС). Устройство состоит из антенной решетки, содержащей антенные элементы, блоки весовых коэффициентов диаграммообразующей...
Тип: Изобретение
Номер охранного документа: 0002677929
Дата охранного документа: 22.01.2019
24.01.2019
№219.016.b386

Устройство пространственной селекции сигналов с компенсацией преднамеренных помех

Изобретение относится к радиотехнике. Устройство состоит из блока компенсации преднамеренных помех, состоящего из блока базы данных с информацией о частотно-временной структуре преднамеренных помех, генератора копий преднамеренных помех, блоков весовых коэффициентов, регулирующих амплитуду и...
Тип: Изобретение
Номер охранного документа: 0002677931
Дата охранного документа: 22.01.2019
+ добавить свой РИД